Сколько всего галактик во вселенной. TV "Живая Вселенная"

Те, кто имеет немного представления о Вселенной, хорошо знает, что космос постоянно находится в движении. Вселенная с каждой секундой расширяется, становиться все больше и больше. Другое дело, что в масштабах человеческого восприятия мира, осознать размеры происходящего и представить структуру Вселенной достаточно трудно. Помимо нашей галактики, в которой расположено Солнце и находимся мы, существуют десятки, сотни других галактик. Точного количества далеких миров не знает никто. Сколько галактик во Вселенной, можно знать только приблизительно, создав математическую модель космоса.

Следовательно, учитывая размеры Вселенной, можно с легкостью допустить мысль, что в десятке, в сотне миллиардов световых лет от Земли, существуют миры, похожие на наш.

Пространство и миры, которые нас окружают

Наша галактика, получившая красивое название «Млечный путь», еще несколько веков назад, по мнению многих ученых, была центром мироздания. На деле оказалось, что это только часть Вселенной,и существуют другие галактики различных видов и размеров, большие и маленькие, одни дальше, другие ближе.

В космосе все объекты тесно взаимосвязаны, движутся в определенном порядке и занимают отведенное место. Известные нам планеты, хорошо знакомые звезды, черные дыры и сама наша Солнечная система располагаются в галактике Млечный путь. Название это не случайно. Еще древние астрономы, наблюдавшие ночное небо, сравнили окружающий нас космос с молочной дорожкой, где тысячи звезд похожи на капли молока. Галактика Млечный путь, небесные галактические объекты, находящиеся в нашем поле зрения, составляют ближайший космос. Что может находиться за пределами видимости телескопов, стало известно только в XX веке.

Последующие открытия, которые увеличили наш космос до размеров Метагалактики, натолкнули ученых на теорию о Большом взрыве. Грандиозный катаклизм произошел почти 15 млрд. лет назад и послужил толчком к началу процессов образования Вселенной. Одну стадию вещества сменяла другая. Из плотных облаков водорода и гелия стали формироваться первые зачатки Вселенной — протогалактики, состоящие из звезд. Все это происходило в далеком прошлом. Свет многих небесных светил, который мы можем наблюдать в сильнейшие телескопы, является лишь прощальным приветом. Миллионы звезд, если не миллиарды, усыпавшие наш небосклон, находятся в миллиарде световых лет от Земли, и давно прекратили свое существование.

Карта Вселенной: ближайшие и дальние соседи

Наша Солнечная система, прочие космические тела, наблюдаемые с Земли — это сравнительно молодые структурные образования и наши ближайшие соседи в огромной Вселенной. Долгое время ученые считали, что ближайшей к Млечному Пути являлась карликовая галактика Большое Магелланово облако, расположенная всего в 50 килопарсеках. Только совсем недавно стали известны реальные соседи нашей галактики. В созвездии Стрельца и в созвездии Большого Пса расположились маленькие карликовые галактики, масса которых в 200- 300 раз меньше массы Млечного пути, а расстояние до них составляет чуть более 30-40 тыс. световых лет.

Это одни из самых маленьких вселенских объектов. В таких галактиках количество звезд относительно небольшое (порядка нескольких миллиардов). Как правило, карликовые галактики постепенно сливаются или поглощаются более крупными образованиями. Скорость расширяющейся Вселенной, которая составляет 20-25 км/с, невольно приведет соседствующие галактики к столкновению. Когда это произойдет и чем обернется, мы можем только предполагать. Столкновение галактик происходит все это время, и в силу скоротечности нашего существования, наблюдать за происходящим не представляется возможным.

Андромеда, в два-три раза превышающая своими размерами нашу галактику, является одной из самых близких к нам галактик. Среди астрономов и астрофизиков она продолжает оставаться одной из самых популярных и располагается всего в 2,52 миллионах световых лет от Земли. Как и наша галактика, Андромеда входит в Местную группу галактик. Размер этого гигантского космического стадиона — три миллиона световых лет в поперечнике, а количество присутствующих в ней галактик насчитывается порядка 500. Однако даже такой гигант, как Андромеда, выглядит коротышкой в сравнении с галактикой IC 1101.

Эта самая большая во Вселенной спиралевидная галактика располагается в сотне с лишним миллионов световых лет от нас и имеет диаметр более 6 миллионов световых лет. Несмотря на то, что в ее состав входит 100 триллионов звезд, галактика в основном состоит из темной материи.

Астрофизические параметры и типы галактик

Первые исследования космоса, проведенные в начале XX века, дали обильную почву для размышлений. Обнаруженные в объектив телескопа космические туманности, которых со временем насчитали более тысячи, представляли собой интереснейшие объекты во Вселенной. Длительное время эти светлые пятна на ночном небе считались скоплениями газа, входящими в структуру нашей галактики. Эдвин Хаббл в 1924 году сумел измерить расстояние до скопления звезд, туманностей и сделал сенсационное открытие: эти туманности — ни что иное, как далекие спиралевидные галактики, самостоятельно странствующие в масштабах Вселенной.

Американский астроном впервые предположил, что наша Вселенная – это множество галактик. Исследования космоса в последней четверти XX века, наблюдения, сделанные с помощью космических аппаратов и техники, включая знаменитый телескоп Хаббл, подтвердили эти предположения. Космос безграничен и наш Млечный путь — далеко не самая крупная галактика во Вселенной и к тому же не является ее центром.

Только с появлением мощных технических средств наблюдения, Вселенная стала обретать четкие очертания. Ученые столкнулись с тем фактом, что даже такие огромные образования, какими являются галактики, могут отличаться по своей структуре и строению, форме и размерам.

Усилиями Эдвина Хаббла мир получил систематизированную классификацию галактик, делящую их на три типа:

  • спиральные;
  • эллиптические;
  • неправильные.

Эллиптические галактики и спиральные являются самыми распространенными типами. К ним относятся наша галактика Млечный Путь, а также соседняя с нами галактика Андромеда и многие другие галактики во Вселенной.

Эллиптические галактики имеют форму эллипса и вытянуты в одном из направлений. Эти объекты лишены рукавов и часто меняют свою форму. По своим размерам эти объекты также отличаются друг от друга. В отличие от спиральных галактик, эти космические монстры не имеют четко выраженного центра. Ядро в таких структурах отсутствует.

По классификации такие галактики обозначаются латинской буквой E. Все на сегодняшний день известные эллиптические галактики разделены на подгруппы E0-E7. Распределение по подгруппам осуществляется в зависимости от конфигурации: от галактик почти круглой формы (E0, E1 и E2)до сильно растянутых объектов с индексами E6 и E7. Среди эллиптических галактик встречаются карлики и настоящие гиганты, имеющие диаметры в миллионы световых лет.

К спиральным галактикам относятся два подтипа:

  • галактики, представленные в виде пересеченной спирали;
  • нормальные спирали.

Первый подтип выделяется следующими особенностями. По форме такие галактики напоминают правильную спираль, однако в центре такой спиральной галактики находится перемычка (бар), дающая начало рукавам. Такие перемычки в галактике обычно являются следствием физических центробежных процессов, делящих ядро галактики на две части. Существуют галактики с двумя ядрами, тандем которых и составляет центральный диск. Когда ядра встречаются, перемычка исчезает и галактика становится нормальной, с одним центром. Существует перемычка и в нашей галактике Млечный путь, в одном из рукавов которой находится наша Солнечная система. От Солнца к центру галактики путь по современным оценкам составляет 27 тыс. световых лет. Толщина рукава Ориона Лебедя, в котором пребывает наше Солнце и вместе с ним наша планета, составляет 700 тыс. световых лет.

В соответствии с классификацией спиральные галактики обозначаются латинскими буквами Sb. В зависимости от подгруппы, существуют и другие обозначения спиральных галактик: Dba, Sba и Sbc. Разница между подгруппами определяется длиной бара, его формой и конфигурацией рукавов.

Спиральные галактики могут иметь различные размеры, начиная от 20 000 световых лет и до 100 тыс. световых лет в диаметре. Наша галактика «Млечный Путь» пребывает в «золотой серединке», своими размерами тяготея к галактикам средней величины.

Самый редкий тип — неправильные галактики. Эти вселенские объекты представляют собой крупные скопления звезд и туманностей, не имеющие четкой формы и структуры. В соответствии с классификацией они получили индексы Im и IO. Как правило, у структур первого типа диска нет или он слабо выражен. Нередко у таких галактик можно рассмотреть подобие рукавов. Галактики с индексами IO представляют собой хаотическое скопление звезд, облаков газа и темной материи. Яркими представителям такой группы галактик являются Большое и Малое Магелланово Облако.

Все галактики: правильные и неправильные, эллиптические и спиральные, состоят из триллионов звезд. Пространство между звездами с их планетарными системами заполнено темной материей или облаками космического газа и частицами пыли. В промежутках этих пустот находятся черные дыры, большие и малые, которые нарушают идиллию космического спокойствия.

Исходя из имеющейся классификации и по результатам исследований, можно с некоторой долей уверенности ответить на вопрос, сколько галактик во Вселенной и какого они типа. Больше всего во Вселенной спиральных галактик. Их более 55 % от общего количества всех вселенских объектов. Эллиптических галактик в два раза меньше — всего 22% от общего числа. Неправильных галактик, аналогичных Большому и Малому Магеллановым Облакам, во Вселенной только 5%. Одни галактики соседствуют с нами и находятся в поле зрения мощнейших телескопов. Другие находятся в самом дальнем пространстве, где преобладает темная материя и в объективе видна больше чернота бескрайнего космоса.

Галактики при близком осмотре

Все галактики относятся к определенным группам, которые в современной науке принято называть кластерами. Млечный Путь входит в один из таких кластеров, в котором присутствуют еще до 40 более-менее известных галактик. Сам кластер же является частью сверхскопления, более крупной группы галактик. Земля, вместе с Солнцем и Млечным Путем входит в сверхскопление Девы. Таков наш фактический космический адрес. Вместе с нашей галактикой в скоплении Девы существуют более двух тысяч других галактик, эллиптических, спиральных и неправильных.

Карта Вселенной, на которую сегодня ориентируются астрономы, дает представление о том, как выглядит Вселенная, каковая ее форма и структура. Все скопления собираются вокруг пустот или пузырей темной материи. Допускается мысль, что темная материя и пузыри также заполнены какими-то объектами. Возможно это антивещество, которое в противоположность законами физики, образует аналогичные структуры в другой системе координат.

Современное и будущее состояние галактик

Ученые считают, что составить общий потрет Вселенной невозможно. Мы располагаем визуальными и математическими данными о космосе, который находится в пределах нашего понимания. Реальные масштабы Вселенной представить невозможно. То, что мы видим в телескоп, является светом звезд, который идет к нам уже миллиарды лет. Возможно, реальная картина на сегодняшний день уже совершенно иная. Самые красивые галактики во Вселенной в результате космических катаклизмов уже могли превратиться в пустые и безобразные облака космической пыли и темной материи.

Нельзя исключать, что в далеком будущем, наша галактика столкнется с более крупной соседкой по Вселенной или проглотит карликовую галактику, существующую по соседству. Каковы будут последствия таких вселенских изменений, остается только гадать. Несмотря на то, что сближение галактик происходит со световой скоростью, земляне вряд ли станут свидетелями вселенской катастрофы. Математики подсчитали, что до рокового столкновения осталось чуть более трех миллиардов земных лет. Будет ли в то время существовать жизнь на нашей планете — вопрос.

В существование звезд, скоплений и галактик также могут вмешаться и другие силы. Черные дыры, которые пока известны человеку, в состоянии поглотить звезду. Где гарантия, что подобные чудовища огромных размеров, прячущиеся в темной материи и в пустотах космоса, не смогут поглотить галактику целиком.

Солнце увлекается общим орбитальным движением рукава Ориона нашей Галактики со скоростью 220 км/с в полную неизвестность, куда-то в сторону созвездия Геркулеса. Звездное окружение Солнца тоже не статично, все вокруг находится в постоянном движении, и, конечно, это приводит к наличию на небе Земли некоторого количества звезд с большим собственным смещением на нашем небе - порядка нескольких угловых секунд в год. Тут мы должны вспомнить про . Многие из них - это близкие к нам звезды, которые находятся на расстояниях в десятки световых лет, и это выглядит довольно логично - чем ближе звезда, тем больше должна проявляться ее собственная скорость относительно Солнца и тем больше она должна перемещаться на нашем небе.

Второй комплект данных космической обсерватории GAIA , которая занимается определением трехмерных координат, скоростей, блеска и прочих важных характеристик звезд нашей Галактики, - неисчерпаемая сокровищница знаний для любого ученого, который посвятил свою жизнь астрофизике, звездной астрономии, астрометрии или даже эволюции галактик. GAIA DR2 содержит данные десятков миллионов звезд, которые все еще ждут своих исследователей, в то время пока профессионалы применяют к этой гигантской базе данных технологии data science, снимая самые сливки. Именно здесь немецкий астроном Ральф - Дитер Шольц недавно обнаружил странную тесную систему из красного и коричневого карликов на расстоянии всего в 22 световых года от нас. С точки зрения астрофизика система сама по себе довольно примечательна и требует дальнейшего тщательного изучения, но тут пришли специалисты по астрометрии и потащили одеяло на себя.

Два астронома - Эрик Мамаек (Eric Mamajek) из программы по исследованию экзопланет NASA и его коллега Валентин Иванов - удивились тому, что звезда Шольца совсем не никак не перемещается на небе, хотя, по идее, должна была бы. То есть, получается, что она движется строго по лучу нашего зрения - или к нам или от нас. Вычисления допплеровского смещения показали, что система Шольца удаляется от нас со скоростью 80 км/с, и это, в свою очередь, означает, что какое-то время назад она пролетела совсем близко к Солнечной системе! Дальнейшие вычисления показали, что такой момент был 70 тысяч лет назад и точка встречи находилась в 55 тысячах а.е. от Солнца, далеко вне пределов Облака Оорта, но в 5 раз ближе Проксимы Центавра!

Можете представить такое?

Более того, покопавшись в той же базе GAIA , они увидели, что есть еще одна звезда GJ710, которая направляется к нам с твердым намерением через 1.3 млн лет просвистеть мимо Солнечной Системы на каком-то неуказанном в статье расстоянии.

Эти вещи, в отличие от танцев вокруг мифической Нибиру, - реальны. Их можно пощупать, и, при наличии навыка, вывести какие-то обоснованные версии о том, что может быть дальше. Близкие к Солнечной Системе проходы других звездных систем могут привести к разным последствиям. Во-первых, конечно, объекты облака Оорта - в основном, ледяные кометы, начнут активно вбрасываться внутрь системы, перемещаясь ближе к Солнцу, чтобы или, обогнув его, уйти навсегда в пространство, или, может быть, претерпев многочисленные гравитационные взаимодействия с планетами-гигантами - прежде всего, Юпитером, быть захваченными ими или же начать изменять свои траектории самым причудливым образом. Не исключено, что некоторые из этих траекторий могут впоследствии пересечься с орбитой Марса или Земли и устроить нам похохотать. Вполне возможно, что именно такой механизм и был в основе появления воды на указанных планетах когда очень, очень давно.

Во-вторых действительно близкое прохождение звезды может сместить с мест карликовые планеты пояса Койпера - наподобие Плутона, добавить им спутников, или наоборот, отнять. Сами планеты могут при этом также выбрасываться внутрь системы или же наружу и пропадать в темноте космоса навсегда.

Ну и, конечно, нельзя исключать возможности, что в самом худшем случае и Земля может быть вырвана из ласковых объятий Солнца и отправиться куда подальше, или найти себе любую другую смерть на свой выбор. Впрочем, вероятность подобного исчезающе мала, и серьезно беспокоиться на этот счет я бы не стал.

То есть мы видим, что подобные сближения могут существенно влиять на эволюцию и структуру Солнечной Системы.

Итак, система Шольца, состоящая из красного и коричневого карликов, просвистела с относительной скоростью 80 км/с на расстоянии 55 тыс а.е. от Солнца 70 тысяч лет назад. Наши предки с каменными топорами и копьями даже не подозревали о таком грозном соседе, ибо его видимый блеск на небе был в 100 раз меньше 6й звездной величины, доступной глазу.

Но мне так хочется верить, что, если б звезда Шольца была видима, обязательно нашелся бы какой-нибудь питекантроп, который задал себе вопрос "почему то? почему так?" и написал бы об этом в каменном блоге, подписанном как-то вроде "Неба хватит на всех"...

Часть глубокого снимка космоса «Hubble Ultra Deep Field». Все, что вы видите - это галактики.

Совсем недавно, в 1920 годах, знаменитый астроном Эдвин Хаббл сумел доказать, что наш - это не единственная существующая галактика. Сегодня нам уже привычно, что космос заполнен тысячами и миллионами других галактик, на фоне которых наша выглядит совсем крохотной. Но сколько именно галактик во Вселенной находится рядом с нами? Сегодня мы найдем ответ на этот вопрос.

Звучит невероятно, но еще наши прадеды, даже самые ученые, считали наш Млечный Путь метагалактикой - объектом, покрывающим собой всю Вселенную. Их заблуждение вполне логично объяснялось несовершенством телескопов того времени - даже лучшие из них видели галактики как расплывчатые пятна, из-за чего они поголовно именовались туманностями. Считалось, что из них со временем формируются звезды и планеты, как сформировалась когда-то наша Солнечная система. Эту догадку подтвердило обнаружение первой планетарной туманности в 1796 году, в центре которой находилась звезда. Поэтому ученые считали, что все остальные туманные объекты на небе являются такими же облаками пыли и газа, звезды в которых еще не успели образоваться.

Первые шаги

Естественно, прогресс не стоял на месте. Уже в 1845 году Уильям Парсонс построил исполинский для тех времен телескоп «Левиафан», размер которого приближался к двум метрам. Желая доказать, что «туманности» на самом деле состоят из звезд, он серьезно приблизил астрономию к современному понятию галактики. Ему удалось впервые заметить спиралевидную форму отдельных галактик, а также обнаружить в них перепады светимости, соответствующие особенно крупным и ярким звездным скоплениям.

Однако споры продлились аж до XX века. Хотя в прогрессивном ученом обществе уже было принято считать, что существует множество других галактик кроме Млечного Пути, официальной академической астрономии нужны были неопровержимые доказательства этого. Поэтому взоры телескопов со всего мира на ближайшую к нам большую галактику, раньше тоже принятой за туманность - галактику Андромеды.

В 1888 году Исааком Робертсом была сделана первая фотография Андромеды, а на протяжении 1900–1910 годов были получены дополнительные снимки. На них видны и яркое галактическое ядро, и даже отдельные скопления звезд. Но низкое разрешение снимков допускало погрешности. То, что было принято за звездные кластеры, могло быть и туманностями, и попросту несколькими звездами, «слипшимися» в одну во время выдержки снимка. Но окончательно решения вопроса было не за горами.

Современная картина

В 1924 году, пользуясь телескопом-рекордсменом начала столетия, Эдвину Хабблу удалось более-менее точно оценить расстояние к галактике Андромеды. Оно оказалось настолько огромным, что полностью исключало принадлежность объекта к Млечному Пути (притом, что оценка Хаббла была в три раза меньше современной). Еще астроном обнаружил в «туманности» множество звезд, что явно подтверждало галактическую природу Андромеды. В 1925 году, вопреки критике коллег, Хаббл представил результаты своей работы на конференции Американского астрономического сообщества.

Это выступление дало начало новому периоду в истории астрономии - ученые «переоткрывали» туманности, присваивая им звания галактик, и открывали новые. В этом им помогли наработки самого Хаббла - например, открытие . Число известных галактик росло с постройкой новых телескопов и запуском новых - например, начала широкого применения радиотелескопов после Второй Мировой.

Однако вплоть до 90-х годов XX века человечество оставалось в неведении о настоящем количестве окружающих нас галактик. Атмосфера Земли препятствует даже самым большим телескопам получить точную картину - газовые оболочки искажают изображение и поглощают свет звезд, закрывая от нас горизонты Вселенной. Но ученые сумели обойти эти ограничения, запустив космический , названный в честь уже знакомого вам астронома.

Благодаря этому телескопу люди впервые увидели яркие диски тех галактик, которые раньше казались мелкими туманностями. А там, где небо раньше казалось пустым, обнаружились миллиарды новых - и это не преувеличение. Однако дальнейшие исследования показали: даже тысячи миллиардов звезд, видимых «Хабблу» - это минимум десятая часть от их настоящего количества.

Финальный подсчет

И все же, сколько именно галактик существует во Вселенной? Сразу предупрежу, что считать придется нам вместе - такие вопросы обычно мало интересуют астрономов, так как лишены научной ценности. Да, они каталогизируют и отслеживают галактики - но лишь для более глобальных целей вроде изучения Вселенной.

Однако найти точное число никто не берется. Во-первых, наш мир бесконечен, из-за чего ведение полного списка галактик проблематично и лишено практического смысла. Во-вторых, чтобы сосчитать даже те галактики, что находятся в пределах видимой Вселенной, астроному не хватит всей жизни. Даже если он проживет 80 лет, считать галактики начнет с рождения, а на обнаружение и регистрацию каждой галактики будет тратить не больше секунды, астроном найдет всего лишь 2 триллиона объектов - куда меньше, чем существует галактик на самом деле.

Для определения примерного числа возьмем какое-то из высокоточных изучений космоса - например, «Ultra Deep Field» телескопа «Хаббл» от 2004 года. На участке, равному 1/13000000 всей площади неба, телескоп сумел обнаружить 10 тысяч галактик. Учитывая то, что другие глубокие исследования того времени показывали схожую картину, мы можем усреднить результат. Следовательно, в пределах чувствительности «Хаббла» мы видим 130 миллиардов галактик со всей Вселенной.

Однако это еще не все. После «Ultra Deep Field» было сделано множество других снимков, которые добавляли новые детали. Причем не только в видимом спектре света, которым оперирует «Хаббл», но и в инфракрасном и рентгеновском. Состоянием на 2014 год, в радиусе 14 миллиардов нам доступно 7 триллионов 375 миллиардов галактик.

Но это, опять-таки, минимальная оценка. Астрономы считают, что скопления пыли в межгалактическом пространстве отбирают у нас 90% наблюдаемых объектов - 7 триллионов легко превращается в 73 триллиона. Но и эта цифра устремится еще дальше к бесконечности, когда на орбиту Солнца выйдет телескоп . Этот аппарат за минуты достигнет туда, куда «Хаббл» пробирался днями, и проникнет еще дальше в глубины Вселенной.

(Астрономия@Science_Newworld).

Совсем недавно, в 1920 годах, знаменитый астроном Эдвин хаббл сумел доказать, что наш млечный путь - это не единственная существующая галактика. Сегодня нам уже привычно, что космос заполнен тысячами и миллионами других галактик, на фоне которых наша выглядит совсем крохотной. Но сколько именно галактик во вселенной находится рядом с нами? Сегодня мы ответ на этот вопрос найдем.

От одной до бесконечности.

Звучит невероятно, но еще наши прадеды, даже самые ученые, считали наш млечный путь метагалактикой - объектом, покрывающим собой всю обозримую вселенную. Их заблуждение вполне логично объяснялось несовершенством телескопов того времени - даже лучшие из них видели галактики как расплывчатые пятна, из-за чего они поголовно именовались туманностями. Считалось, что из них со временем формируются звезды и планеты, как сформировалась когда-то наша солнечная система. Эту догадку подтвердило обнаружение первой планетарной туманности в 1796 году, в центре которой находилась звезда. Поэтому ученые считали, что все остальные туманные объекты на небе являются такими же облаками пыли и газа, звезды в которых еще не успели образоваться.

Первые шаги.

Естественно, прогресс не стоял на месте. Уже в 1845 году Уильям парсонс построил исполинский для тех времен телескоп "Левиафан", размер которого приближался к двум метрам. Желая доказать, что "Туманности" на самом деле состоят из звезд, он серьезно приблизил астрономию к современному понятию галактики. Ему удалось впервые заметить спиралевидную форму отдельных галактик, а также обнаружить в них перепады светимости, соответствующие особенно крупным и ярким звездным скоплениям.

Однако споры аж до XX века продлились. Хотя в прогрессивном ученом обществе уже было принято считать, что существует множество других галактик кроме млечного пути, официальной академической астрономии нужны были неопровержимые доказательства этого. Поэтому взоры телескопов со всего мира на ближайшую к нам большую галактику, раньше тоже принятой за туманность - галактику Андромеды.

В 1888 году Исааком Робертсом была сделана первая фотография Андромеды, а на протяжении 1900-1910 годов были получены дополнительные снимки. На них видны и яркое галактическое ядро, и даже отдельные скопления звезд. Но низкое разрешение снимков допускало погрешности. То, что было принято за звездные кластеры, могло быть и туманностями, и попросту несколькими звездами, "Слипшимися" в одну во время выдержки снимка. Но окончательно решения вопроса было не за горами.

Современная картина.

В 1924 году, пользуясь телескопом - рекордсменом начала столетия, Эдвину хабблу удалось более-менее точно оценить расстояние к галактике Андромеды. Оно оказалось настолько огромным, что полностью исключало принадлежность объекта к млечному пути (притом, что оценка хаббла была в три раза меньше современной. Еще астроном обнаружил в "Туманности" множество звезд, что явно подтверждало галактическую природу Андромеды. В 1925 году, вопреки критике коллег, хаббл представил результаты своей работы на конференции американского астрономического сообщества.

Это выступление дало начало новому периоду в истории астрономии - ученые "Переоткрывали" туманности, присваивая им звания галактик, и открывали новые. В этом им помогли наработки самого хаббла - например, открытие красного смещения. Число известных галактик росло с постройкой новых телескопов и запуском новых - например, начала широкого применения радиотелескопов после второй мировой.

Однако вплоть до 90-х годов XX века человечество оставалось в неведении о настоящем количестве окружающих нас галактик. Атмосфера земли препятствует даже самым большим телескопам получить точную картину - газовые оболочки искажают изображение и поглощают свет звезд, закрывая от нас горизонты вселенной. Но ученые сумели обойти эти ограничения, запустив космический телескоп "Хаббл", названный в честь уже знакомого вам астронома.

Благодаря этому телескопу люди впервые увидели яркие диски тех галактик, которые раньше казались мелкими туманностями. А там, где небо раньше казалось пустым, обнаружились миллиарды новых - и это не преувеличение. Однако дальнейшие исследования показали: даже тысячи миллиардов звезд, видимых "Хабблу" - это минимум десятая часть от их настоящего количества.

Финальный подсчет.

И все же, сколько именно галактик существует во вселенной? Сразу предупрежу, что считать придется нам вместе - такие вопросы обычно мало интересуют астрономов, так как лишены научной ценности. Да, они каталогизируют и отслеживают галактики - но лишь для более глобальных целей вроде изучения крупномасштабной структуры вселенной.

Однако найти точное число никто не берется. Во-первых, наш мир бесконечен, из-за чего ведение полного списка галактик проблематично и лишено практического смысла. Во-вторых, чтобы сосчитать даже те галактики, что находятся в пределах видимой вселенной, астроному не хватит всей жизни. Даже если он проживет 80 лет, считать галактики начнет с рождения, а на обнаружение и регистрацию каждой галактики будет тратить не больше секунды, астроном найдет всего лишь 2 триллиона объектов - куда меньше, чем существует галактик на самом деле.

Для определения примерного числа возьмем какое-то из высокоточных изучений космоса - например, "Ultra Deep Field" телескопа "хаббл" от 2004 года. На участке, равному 1/130 всей площади неба, телескоп сумел обнаружить 10 тысяч галактик. Учитывая то, что другие глубокие исследования того времени показывали схожую картину, мы можем усреднить результат. Следовательно, в пределах чувствительности "Хаббла" мы видим 130 миллиардов галактик со всей вселенной.

Однако это еще не все. После "Ultra Deep Field" было сделано множество других снимков, которые добавляли новые детали. Причем не только в видимом спектре света, которым оперирует "Хаббл", но и в инфракрасном и рентгеновском. Состоянием на 2014 год, в радиусе 14 миллиардов световых лет нам доступно 7 триллионов 375 миллиардов галактик.

Но это, опять-таки, минимальная оценка. Астрономы считают, что скопления пыли в межгалактическом пространстве отбирают у нас 90% наблюдаемых объектов - 7 триллионов легко превращается в 73 триллиона. Но и эта цифра устремится еще дальше к бесконечности, когда на орбиту солнца выйдет телескоп "Джеймс Уэбб". Этот аппарат за минуты достигнет туда, куда "Хаббл" пробирался днями, и проникнет еще дальше в глубины вселенной.

Сколько же галактик во Вселенной?

Слова поэта поражают: ведь в те времена знали только одну звездную систему. И как ни много звезд в нашей Галактике, но их количество все-таки ограничено — около 100 млрд. Лишь в начале прош-лого века астрономы поняли, что есть звездные миры, существующие неза-висимо от нашей системы-галактики, называемой Млечный Путь. Туман-ность Андромеды — типичный пример соседнего гигантского звездного дома. С открытием других звездных "остро-вов" мысль о бесконечности окружаю-щего нас мира получила существенную поддержку. Ведь если галактика в созвездии Андромеды похожа на на-шу, в которой расположена Солнечная система, то схожую природу имеют и множество других галактик, в кото-рых из-за их удаленности от нас уче-ные не могут рассмотреть отдельные звезды.

Сколько же галактик во Вселенной? Ответ на этот вопрос имеет громадное значение для судеб находящихся в ней цивилизаций. Если все галактики мож-но "пересчитать", то это означает, что и время жизни Вселенной должно быть ограничено.

Наш мир существует благодаря то-му, что в начале всего лежит превраще-ние водорода в гелий, происходящее внутри звезд. Этот процесс образно опи-сал Харри Мартинсон в миниатюре:

В изнанке времени возник

водород в неброском виде

и из атомов воздвиг

богу своему хитроумный дом.

И в этом мире мы с вами сейчас жи-вем! Постепенно звезда "...сжимается и стынет и плывет в те миры, где тускло носятся в пустыне, как луны, мертвые шары". Так Семен Кирсанов в стихот-ворении "Сожаление" пишет о судьбе звезды.

Каково же будущее того мира, где звезды, исчерпав запасы горючего, под-держивавшего их свечение на протяже-нии десятков миллиардов лет, либо превратятся в холодные объекты — бе-лые карлики, нейтронные звезды, либо станут черными дырами?

Конечно, можно подсчитать, что нашей Галактике, чтобы превратить-ся в кладбище звезд, понадобится сот-ня миллиардов лет. Астрономы уста-новили, что возраст Галактики состав-ляет около 12 млрд. лет. А что прои-зойдет с ней в следующий десяток миллиардов лет? Неужели человечес-тво окажется в поистине фантастичес-ком мире, в котором все звезды погас-ли? А жизнь сохранившихся цивили-заций будет поддерживаться теплом, извлекаемым неведомыми нам путя-ми, например, в космической жаров-не, где будут сгорать отжившие свое звезды.

Но есть ли во Вселенной такие про-цессы, которые приводили бы к возоб-новлению водорода? Если есть, то в Галактике должен иметь место "кру-говорот водорода". И тогда было бы весьма затруднительно указать время "кончины" подобной системы. Такая возможность позволит какой-нибудь развитой цивилизации путешество-вать от одной звезды к другой, еще не погасшей, обеспечивая себе практи-чески вечное существование. Ведь ес-ли в одной области галактики звезды умирают, то в другой — могут заго-раться новые. Такое рассуждение по-надобилось нам, чтобы обосновать переход ученых к рассмотрению свойств объектов, расположенных за предела-ми нашего звездного дома, причем иногда на столь огромных расстояни-ях, что луч света от них идет к нам миллиарды лет. Для сравнения вспом-ним: необходимо чуть больше 8 ми-нут, чтобы световой луч известил нас о том, что произошло на Солнце. Что-бы "определить судьбу" Вселенной, в том числе и нашей Галактики, следо-вало бы узнать о свойствах громадного мира галактик.

Сейчас ни один астроном с точнос-тью не скажет, сколько галактик мож-но наблюдать на небе современными средствами. В 1934 году американ-ский астроном Эдвин Хаббл подсчи-тал, что число звездных островов, ко-торые он смог бы "увидеть" с помощью крупнейшего тогда телескопа с диа-метром зеркала 2,5 м, составляет свы-ше 5 млн. Но с тех пор построены 6-м, несколько 8-м и два 10-м телескопа. В 6-м телескоп астрономы смогли бы наблюдать уже 1,4 млрд. галактик. Конечно, столько объектов ни один астроном не в состоянии увидеть. На помощь пришли подсчеты, сделанные в небольшом участке неба, которые за-тем были увеличены с учетом площади всей небесной сферы.

А вот космическому телескопу, названному в честь Э. Хаббла, до-ступны для просмотра уже около 50 000 млрд. галактик! Сравните эту цифру с количеством жителей на Земле — на каждого приходится око-ло 10 000 галактик! А в каждой га-лактике бывает до 100 млрд. звезд. Вот и верь после этого астрологам, ут-верждающим, что звезды на небе оп-ределяют судьбу каждого человека на Земле. Но хоть и велики приведенные цифры, но им все равно далеко до бесконечности.

Как разобраться в закономерностях, определяющих вид и суть столь огром-ного количества объектов? Конечно, такая задача была бы невообразимо трудной, а может, и неразрешимой, ес-ли бы все внегалактические объекты были различны. Природа оказалась не настолько коварной, чтобы завести астрофизиков в тупик. По образному выражению Вильяма Гершеля, "Лабо-ратория Природы", а именно так он назвал мир звезд и туманностей, есть "сад", в котором различные объекты находятся на разных стадиях разви-тия. К великому сожалению, астроно-мы до сих пор не могут с уверенностью сказать, какие объекты этого косми-ческого сада являются молодыми, а ка-кие — старыми. Но все-таки разделить все множество галактик на типы уче-ные смогли более 70 лет назад. И сде-лал это уже знакомый нам Э. Хаббл. Весной 1926 года идея ученого была опубликована в отчете Комиссии по ту-манностям Международного Астроно-мического Союза.

Оказалось, что 95 % всех звездных островов имеют симметричную форму. Лишь у трех из ста галактик трудно за-метить какую-либо структуру, и по этой причине они были названы непра-вильными.

Другой известный астрофизик Вальтер Бааде писал, что "система Хаббла настолько эффективна, что число исключений неправдоподобно мало". Схема Хаббла очень проста: га-лактики бывают сферическими, эл-липтическими, спиральными и непра-вильными. Вот только га-Схема, показывающая разнообразие форм галактик, была предложена Эдвином Хабблом. Она имеет вид "камертона": на "руко-ятке " изображены эллиптические галактики, на двух ответвлениях — спиральные галак-тики. В том месте, где ответвления соединя-ются с "рукояткой", находится чечевицеобразная галактика, которая обладает некото-рыми особенностями эллиптических и спи-ральных галактик.

Галактики делятся на два больших клас-са. У одних спирали выходят прямо из ядра, а у других — из перемычки, сое-диняющей спирали с ядром.

Такая теория объясняла существо-вание всех типов галактик. По этой схеме наша Галактика и туманность Андромеды, которые являются наибо-лее массивными из всех видимых в наблюдаемой части Вселенной (Мета-галактике), должны быть наиболее старыми. Процесс сжатия ускоряется с увеличением массы протогалактического облака. Но такой вывод вряд ли верен, поскольку почти все галактики имеют один и тот же возраст. Есть и другие аргументы против изложенного допущения. Например, почему у "очень старых" неправильных галак-тик астрономы обнаружили наиболь-шее количество газа, иногда до трети от массы самого объекта. Как же так, почему у старого объекта есть еще ве-щество, из которого могут образовы-ваться звезды?

А может быть, каждая из галактик проходит свой собственный путь разви-тия? И что же тогда со временем может получиться из туманности Андромеды или из нашей собственной Галактики? Но в природе всегда множество схожих объектов развивается определенными схожими путями. Какими же?

Большинство из нас знает астроно-мические объекты, заключенные внут-ри весьма ограниченного объема про-странства — звезды, планеты и их спут-ники, кометы, астероиды... Но Абдулла Арипов в стихотворении "Безбреж-ность" верно отметил:

Доказано, что нет пределов у Вселенной:

Над небом наших звезд —

Миры других небес.

Ни мыслью, ни мечтой,

Пусть самой дерзновенной,

Не в силах мы объять

Величье всех чудес.

О звездной природе галактик узнали после того, как К. Лундмарк наблюдал звезды на окраинах туманности М 33 в созвездии Треугольника. Через пять лет Э. Хаббл сделал то же и для туманности в Андромеде М 31. В настоящее время самый крупный телескоп способен за-фиксировать сотни миллиардов галаклактики делятся на два больших клас-са. У одних спирали выходят прямо из ядра, а у других — из перемычки, сое-диняющей спирали с ядром.

Ученые любят все выражать в про-центах, и во многих случаях это бывает оправдано, ведь за цифрами всегда кро-ется какая-нибудь особенность. Поло-вина галактик имеют спирали, а чет-верть из них видна на фотографиях в виде светлых пятен эллиптической формы. Бесформенных галактик всего 5 %. Пятая часть относится к линзо-образным, поскольку это — и не эл-липтические, и не спиральные галак-тики.

Цифры всегда скучны сами по себе, если не участвуют в описании какого-нибудь сюжета, который оказывается иногда весьма занимательным. Дейст-вительно, почему галактики отличают-ся друг от друга? Не становятся ли сферические галактики со временем спиральными, которые затем теряют свой узор и превращаются в неправиль-ные? Красоту схемы Хаббла признали все. Пользоваться ею стали на всех об-серваториях, поскольку, как казалось вначале, она вроде бы описывала прос-тую схему возникновения и жизни га-лактик.

Вообразите гигантское облако газа, из которого со временем образуется га-лактика с сотней миллиардов звезд. Гравитация будет сжимать облако, а вращение приведет к сплющиванию. Вот и получается, что если галактика вначале имела сферическую форму, то со временем она становилась все более сжатой. А как же появились спирали? Вспомните катание на карусели — кру-ге, вращающемся вокруг оси, проходя-щей через его центр. Удержаться на нем становится все труднее по мере уве-личения скорости его вращения. Так и вещество галактики — оно будет отры-ваться от экваториальной плоскости, и удаляясь от оси вращения, закручи-ваться в виде спиралей.

Такая теория объясняла существо-вание всех типов галактик…

…Расстояния до галактик невозможно определить методом параллаксов, так как они слишком далеки. Для этого ис-пользуют наблюдения цефеид, Новых и Сверхновых звезд, шаровых скопле-ний, облаков ионизированного водоро-да и др. В 1912 году В. Слайфер открыл красное смещение в спектрах галак-тик, которое в сравнении с расстоянием до них и позволило Э. Хабблу установить связь между ними.

Вид галактики связан с ее характе-ристиками: более яркие галактики яв-ляются и более массивными. Масса га-лактики определяется по кривой ско-ростей, то есть, зависимости скорости вращения от расстояния до центра га-лактики.

Кривые вращения показывают так-же, что в галактиках, возможно, есть значительное количество вещества, ко-торое не проявляет себя в излучении — так называемая "скрытая масса".

Массы же галактик могут быть весь-ма велики — до нескольких сотен мил-лиардов масс Солнца, причем, наиболее массивными оказываются эллиптичес-кие галактики.

Многие галактики входят в скопле-ния. Наша галактика входит в Мест-ную группу, насчитывающую свыше трех десятков галактик, в число кото-рых входит М 31, одна из самых мас-сивных в Метагалактике, а также око-ло двух десятков карликовых галактик и знаменитые Магеллановы облака — Большое и Малое — спутники Галакти-ки. Центр ближайшего сверхскопления галактик находится в созвездии Девы на расстоянии около 65 млн. световых лет. Оно содержит около 200 галактик высокой и средней светимости, в том числе и ярчайшую из них — "Сомбре-ро". Ученые считают, что наша Мес-тная система галактик входит в это сверхскопление.

Многие галактики являются источ-никами радиоизлучения. Среди них выделяются галактики умеренной мощности (N-галактики и сейфертовские галактики). Многие галактики ак-тивно излучают избыточное количество коротковолнового излучения. Считает-ся,чтоегоисточникамиявляются электроны, движущиеся в магнитных полях галактик.

Наиболее замечательными и наибо-лее удаленными от нас галактиками яв-ляются квазары — источники необы-чайно высокого излучения, природа ко-торого до сих пор не разгадана. Астро-номы уверены, что в центре квазаров расположена сверхмассивная черная дыра, взаимодействие которой с вещес-твом Галактики и является причиной мощного излучения.

Мы еще не раз вернемся к теме изу-чения галактик, поскольку она дейс-твительно неисчерпаема, и вопросов здесь гораздо больше, чем ответов.

Космический танец царства Галактик

Детальное исследование Вселенной показало, в каком фантастическом космическом балете участвует Зем-ля. Сначала она со скоростью 30 км/с увлекает нас за собой в ежегодное путешествие по орбите вокруг Солнца диамет-ром 17 световых минут (рис. А). Солнечная система совер-шает "кругосветное путешествие" вокруг центра Млечного Пути со скоростью 230 км/с (рис. В).

Млечный Путь диаметром 100 тысяч световых лет летит со скоростью 90 км/с к своей соседке Андромеде, при этом они являются частью Местной группы, которая простира-ется на миллионы световых лет (рис. С). В свою очередь, Местная группа галактик движется со скоростью, пример-но, 600 км/с, притягиваемая сверхскоплениями в созвез-диях Девы, Гидры и Центавра, ближайшее из которых от-стоит от нас на расстоянии более 65 млн. световых лет (рис. D). Упомянутые ближайшие сверхскопления находятся в гра-витационном взаимодействии с другими галактическими агломерациями.

Совокупности сверхскоплений образуют гигантские це-почки, протяженностью в сотни миллионов и миллиарды световых лет. Самое интересное то, что видимая нашим глазом материя (звезды и галактики) играет весьма незна-чительную роль в этом "Вселенском спектакле". В значи-тельно большей степени эти гигантские пространственные структуры формирует: а) — гравитационное поле невиди-мой "скрытой массы" или "темной материи", излучение которой не фиксируется нашими приборами, а также б) — антигравитационное воздействие "темной энергии", спо-собствующее расширению Метагалактики.

В глубинах Малого Магеланового облака

Несомненным украшением южного звездного неба на-шей планеты является Малое Магелланово облако (ММО) — спутник Млечного Пути. Оно находится от нас на расстоянии 210 000 световых лет в направлении созвездия Тукана. Объектом исследований космического телескопа им. Хаббла стала область звездообразования в ММО, получив-шая название NGC 346. Эта область, запечатленная на сним-ке, приведенном на следующей странице, имеет в поперечни-ке около 200 световых лет. При детальном исследовании уче-ные обнаружили здесь множество звездных эмбрионов, за-рождающихся в коллапсирующих газово-пылевых облаках. В этих зародышах еще не начались ядерные реакции. Наи-меньшие из них имеют массу, равную половине массы наше-го Солнца. Их общее количество равно, примерно, 2500. По оценкам астрономов, общее количество звезд в NGC 346 со-ставляет 70 000. Там обнаружено несколько возрастных групп звезд. Наиболее старые имеют возраст 4500 млрд. лет (ровесники нашего Солнца), а самые молодые образовались всего 5 млн. лет назад, когда человек на Земле осваивал прямохождение.

Галактики, не имеющие выраженной структуры, подоб-ные ММО, считаются строительными блоками, из которых на ранних стадиях развития Вселенной формировались большие галактики. Этот спутник Млечного Пути является "лаборато-рией" для исследования процессов рождения звезд. ММО об-разовалось значительно позже нашей Галактики, о чем гово-рит меньшее содержание тяжелых элементов в его звездах.

P . S . Протяжность временного потока