Спектрометрический анализ. A. Спектральный анализ. Кафедра оптики и спектроскопии

Со дня открытия «спектрального анализа» вокруг этого термина велось много споров. Сначала физический принцип спектрального анализа подразумевал метод идентификации элементарного состава пробы по наблюдаемому спектру, который возбуждался в каком-нибудь высокотемпературном источнике пламени, искре или дуге.

В дальнейшем под спектральным анализом стали понимать другие методы аналитического изучения и возбуждения спектров:

  • методы комбинационного рассеяния,
  • методы поглощения и люминесценции.

В конце концов, были открыты рентгеновские и гамма спектры. Поэтому правильно, говоря о спектральном анализе, подразумевать совокупность всех существующих методов. Однако чаще явление идентификации по спектрам используют, понимая эмиссионные методы.

Способы классификации

Еще один вариант классификации – это разделение на молекулярные (определение молекулярного состава пробы) и элементарные (определение атомарного состава) исследования спектров.

Молекулярный метод основан на изучении спектров поглощения, комбинационного рассеяния и люминесценции; атомарный состав определяется по спектрам возбуждения в горячих источниках (молекулы в основном разрушаются) либо по данным рентгеноспектральных исследований. Но такая классификация не может быть строгой, потому что иногда оба эти метода совпадают.

Классификация методов спектрального анализа

Отталкиваясь от задач, которые решаются вышеописанными методами, изучение по спектрам делят на методы, применяемые для исследования сплавов, газов, руд и минералов, готовых изделий, чистых металлов и т.д. Каждый изучаемый объект обладает своими характерными особенностями и стандартами. Два основных направления анализа спектров:

  1. Качественный
  2. Количественный

Что изучается при их проведении, рассмотрим далее.

Диаграмма методов спектрального анализа

Качественный спектральный анализ

Качественный анализ служит для того, чтобы определить из каких элементов состоит анализируемый образец. Необходимо получить спектр пробы, возбужденный в каком-либо источнике, и по обнаруженным спектральным линиям определить каким элементам они принадлежат. Так станет понятно, из чего состоит образец. Сложность качественного анализа – это большое количество спектральных линий на аналитической спектрограмме, расшифровка и идентификация которых слишком трудоемка и не точна.

Количественный спектральный анализ

Метод количественного спектрального анализа основан на том, что интенсивность аналитической линии увеличивается с возрастанием содержания определяемого элемента в пробе. Эта зависимость строится на основе множества факторов, которые сложно численно рассчитать. Поэтому теоретически установить связь между интенсивностью линии и концентрацией элемента практически невозможно.

Поэтому проводятся относительные измерения интенсивностей одной и той же спектральной линии при изменении концентрации определяемого элемента. Так, при неизменности условий возбуждения и регистрации спектров, измеряемая энергия излучения пропорциональна интенсивности. Измерение этой энергии (либо зависящей от нее величины) дает нужную нам эмпирическую связь между измеряемой величиной и концентрацией элемента в пробе.

Впервые спектральный анализ попытались сделать Кирхгоф и Бунзен еще в 1859 году. Два создали спектроскоп, похожий на трубу неправильной формы. С одной стороны имелось отверстие (коллиматор), в которое попадали исследуемые лучи света. Внутри трубы располагалась призма, она отклоняла лучи и направляла их в сторону другого отверстия трубы. На выходе физики могли видеть свет, разложенный на спектр.

Ученые решили провести эксперимент. Затемнив комнату и завесив окно плотными шторами, они зажгли свечу возле щели коллиматора, а потом брали кусочки разных веществ и вводили их в пламя свечи, наблюдая, изменится ли спектр. И оказалось, что горячие пары каждого вещества давали различные спектры! Так как призма строго разделяла лучи и не давала им наслаиваться друг на друга, то по получившемуся спектру можно было точно идентифицировать вещество.

В дальнейшем Кирхгоф проанализировал спектр Солнца, обнаружив, что в его хромосфере присутствуют определенные химические элементы. Это дало начало астрофизике.

Особенности спектрального анализа

Для проведения спектрального анализа необходимо совсем малое количество вещества. Этот метод крайне чувствителен и очень быстр, что позволяет не только пользоваться им для самых разных нужд, но и делает его порой просто незаменимым. Точно известно, что каждый таблицы Менделеева излучает особенный спектр, только ему одному, поэтому при правильно проведенном спектральном анализе ошибиться практически невозможно.

Типы спектрального анализа

Спектральный анализ бывает атомный и молекулярный. Посредством атомного анализа можно выявить, соответственно, атомный состав вещества, а посредством молекулярного – молекулярный.

Способов измерить спектр существует два: эмиссионный и абсорбционный. Эмиссионный спектральный анализ проводится посредством изучения того, какой спектр излучают выбранные атомы или молекулы. Для этого им нужно придать энергию, то есть, возбудить их. Абсорбционный анализ, напротив, проводится по спектру поглощения электромагнитного изучения, направленного на объекты.

Посредством спектрального анализа можно измерить множество различных характеристик веществ, частиц или даже больших физических тел (например, космических объектов). Именно поэтому спектральный анализ дополнительно делится на различные методы. Чтобы получить требуемый для конкретной задачи результат, нужно правильно выбрать оборудование, длину волн для исследования спектра, а также саму область спектра.

Спектральный анализ

Спектральный анализ - совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др.

В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа. Атомный и молекулярный спектральные анализы позволяют определять элементный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения.

Масс-спектрометрический анализ осуществляется по спектрам масс атомарных или молекулярных ионов и позволяет определять изотопный состав объекта.

История

Тёмные линии на спектральных полосках были замечены давно, но первое серьёзное исследование этих линий было предпринято только в 1814 году Йозефом Фраунгофером. В его честь эффект получил название «Фраунгоферовы линии». Фраунгофер установил стабильность положения линий, составил их таблицу (всего он насчитал 574 линии), присвоил каждой буквенно-цифровой код. Не менее важным стало его заключение, что линии не связаны ни с оптическим материалом, ни с земной атмосферой, но являются природной характеристикой солнечного света. Аналогичные линии он обнаружил у искусственных источников света, а также в спектрах Венеры и Сириуса.

Вскоре выяснялось, что одна из самых отчётливых линий всегда появляется в присутствии натрия. В 1859 году Г. Кирхгоф и Р. Бунзен после серии экспериментов заключили: каждый химический элемент имеет свой неповторимый линейчатый спектр, и по спектру небесных светил можно сделать выводы о составе их вещества. С этого момента в науке появился спектральный анализ, мощный метод дистанционного определения химического состава.

Для проверки метода в 1868 году Парижская академия наук организовала экспедицию в Индию, где предстояло полное солнечное затмение. Там учёные обнаружили: все тёмные линии в момент затмения, когда спектр излучения сменил спектр поглощения солнечной короны, стали, как и было предсказано, яркими на тёмном фоне.

Природа каждой из линий, их связь с химическими элементами выяснялись постепенно. В 1860 году Кирхгоф и Бунзен при помощи спектрального анализа открыли цезий, а в 1861 году - рубидий. А гелий был открыт на Солнце на 27 лет ранее, чем на Земле (1868 и 1895 годы соответственно).

Принцип работы

Атомы каждого химического элемента имеют строго определённые резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектрах видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.

Оптический спектральный анализ характеризуется относительной простотой выполнения, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10-30 мг), необходимого для анализа на большое число элементов.

Атомарные спектры (поглощения или испускания) получают переведением вещества в парообразное состояние путём нагревания пробы до 1000-10000 °C. В качестве источников возбуждения атомов при эмиссионном анализе токопроводящих материалов применяют искру, дугу переменного тока; при этом пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя или плазму различных газов.

Применение

В последнее время, наибольшее распространение получили эмиссионные и масс-спектрометрические методы спектрального анализа, основанные на возбуждении атомов и их ионизации в аргоновой плазме индукционных разрядов, а также в лазерной искре.

Спектральный анализ - чувствительный метод и широко применяется в аналитической химии, астрофизике, металлургии, машиностроении, геологической разведке и других отраслях науки.

В теории обработки сигналов, спектральный анализ также означает анализ распределения энергии сигнала (например, звукового) по частотам, волновым числам и т. п.

См. также


Wikimedia Foundation . 2010 .

  • Балты
  • Северная Хань

Смотреть что такое "Спектральный анализ" в других словарях:

    СПЕКТРАЛЬНЫЙ АНАЛИЗ - физич. методы качеств. .и количеств. определения состава в ва, основанные на получении и исследовании его спектров. Основа С. а. спектроскопия атомов и молекул, его классифицируют по целям анализа и типам спектров. Атомный С. а. (АСА) определяет… … Физическая энциклопедия

    Спектральный анализ - Измерение состава вещества, основанное на исследовании его спектров Источник … Словарь-справочник терминов нормативно-технической документации

    Спектральный анализ - см. Спектроскопия. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978. Спектральный анализ … Геологическая энциклопедия

    СПЕКТРАЛЬНЫЙ АНАЛИЗ - Введенное Бунзеном и Кирхгофом в 1860 году химическое исследование вещества посредством свойственных этому последнему цветных линий, которые замечаются, если смотреть на него (во время улетучивания) через призму. Объяснение 25000 иностранных слов … Словарь иностранных слов русского языка

    СПЕКТРАЛЬНЫЙ АНАЛИЗ - СПЕКТРАЛЬНЫЙ АНАЛИЗ, один из методов анализа, в к ром используются спектры (см. Спектроскопия, спектроскоп), даваемые тем» или иными телами при их накаливании! или при пропускании через растворы лучей, дающих сплошной спектр. Для… … Большая медицинская энциклопедия

    СПЕКТРАЛЬНЫЙ АНАЛИЗ - физический метод качественного и количественного определения состава вещества, проводимый по его спектрам оптическим. Различают атомный и молекулярный спектральный анализ, эмиссионный (по спектрам испускания) и абсорбционный (по спектрам… … Большой Энциклопедический словарь

    Спектральный анализ - математико статистический метод анализа временных рядов, при котором ряд рассматривется как сложная совокупность, смесь гармонических колебаний, накладываемых друг на друга. При этом основное внимание уделяется частоте… … Экономико-математический словарь

    СПЕКТРАЛЬНЫЙ АНАЛИЗ - физ. методы качественного и количественного определения хим. состава любых веществ на основе получения и исследования их оптического спектра. В зависимости от характера используемых спектров различают следующие их виды: испускания (эмиссионный С … Большая политехническая энциклопедия

    Спектральный анализ - I Спектральный анализ физический метод качественного и количественного определения атомного и молекулярного состава вещества, основанный на исследовании его спектров. Физическая основа С. а. Спектроскопия атомов и молекул, его… … Большая советская энциклопедия

    Спектральный анализ - Содержание статьи. I. Свечение тел. Спектр лучеиспускания. Солнечный спектр. Фраунгоферовы линии. Призматический и дифракционный спектры. Цветорассеяние призмы и решетки. II. Спектроскопы. Коленчатый и прямой спектроскоп à vision directe.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Одним из основных методов анализа химического состава вещества является спектральный анализ. Анализ его состава производится, на основании изучения его спектра. Спектральный анализ — используется в различных исследованиях. С его помощью открыт комплекс химических элементов: Не, Ga, Cs. в атмосфере Солнца. А также Rb, Inи XI, определён состав Солнца и большинства других небесных тел.

Отрасли применения

Спектральная экспертиза, распространена в:

  1. Металлургии;
  2. Геологии;
  3. Химии;
  4. Минералогии;
  5. Астрофизике;
  6. Биологии;
  7. медицине и др.

Позволяет находить в изучаемых объектах малейшие количества устанавливаемого вещества (до 10 — MS) Спектральный анализ делится на качественный и количественный.

Методы

Способ установления химического состава вещества на основе спектра – это и есть основа спектрального анализа. Линейчатые спектры обладают неповторимой индивидуальностью, так же как и отпечатки пальцев у людей, или же узор снежинок. Неповторимость рисунков на коже пальца – это большое преимущество для розыска преступника. Поэтому благодаря особенности каждого спектра имеется — возможность установить химическое содержание тела, проведя анализ химического состава вещества. Даже если его масса элемента не превышает 10 — 10 г, с помощью спектрального анализа его можно обнаружить в составе сложного вещества. Это достаточно чувствительный метод.

Эмиссионный спектральный анализ

Эмиссионный спектральный анализ — это ряд методов установления химического состава вещества по его эмиссионному спектру. В основу способа установления химического состава вещества – спектральной экспертизы, положены закономерности в спектрах испускания и спектрах поглощения. Данный метод позволяет выявить миллионные доли миллиграмма вещества.

Существуют методы качественной и количественной экспертизы, в соответствии с установлением аналитической химии как предмета, целью которой является формирование способов установления химического состава вещества. Методы идентификации вещества, становятся крайне важными в пределах качественного органического анализа.

По линейчатому спектру паров какого-либо из веществ есть возможность установить, какие химические элементы содержаться в его составе, т.к. любой химический элемент имеет личный специфический спектр излучения. Подобный метод установления химического состава вещества именуется качественным спектральным анализом.

Рентгеноспектральный анализ

Существует еще один метод определения химического вещества, называемый рентгеноспектральным анализом. Рентгеноспектральный анализ основан на активации атомов вещества при облучении его рентгеновскими лучами, процесс называется вторичным или флуоресцентным. А также возможна активация при облучении электронами больших энергий, в этом случае процесс именуют прямым возбуждением. В результате перемещения электронов в более глубоких внутренних электронных слоях появляются линии рентгеновского излучения.

Формула Вульфа — Брэггов позволяет устанавливать длины волн, в составе рентгеновского излучения, при применении кристалла популярной структуры с известным расстоянием d. Это и есть основание метода определения. Изучаемое вещество бомбят стремительными электронами. Помещают его, к примеру, на анод разборной рентгеновской трубки, впоследствии чего оно источает характерные рентгеновские лучи, которые падают на кристалл известной структуры. Измеряют углы и рассчитывают по формуле соответствующие длины волн, после фотографирования возникающей при этом дифракционной картине.

Приемы

В настоящее время все методы химического анализа основаны на двух приемах. Либо на: физическом приеме, либо на химическом приеме сравнения устанавливаемой концентрации с ее единицей измерения:

Физический

Физический приём основан на способе соотнесения с эталоном единицы величины количества компонента путем измерения его физического свойства, который зависит от его содержания в пробе вещества. Пробно определяют функциональную зависимость «Насыщенность свойства – содержание компонента в пробе» способом градуировки средства измерения данного физического свойства по устанавливаемому компоненту. Из градуировочного графика получают количественные отношения, построенного в координатах: «насыщенность физического свойства — концентрация устанавливаемого компонента».

Химический

Химический приём используется в способе соотнесения с эталоном единицы величины количества компонента. Тут используются законы сохранения количества или массы компонента при химических взаимодействиях. На химических свойствах химических соединений, основаны химические взаимодействия. В пробе вещества осуществляют химическую реакцию, отвечающую поставленным требованиям, для определения искомого компонента, и производится замер объёма или массы, принимающих участие в конкретной химической реакции компонентов. Получают количественные отношения, далее записывается количества эквивалентов компонента для данной химической реакции или закон сохранения массы.

Приборы

Приборами для анализа физико-химического состава вещества являются:

  1. Газоанализаторы;
  2. Сигнализаторы предельно допустимых и до взрывоопасных концентраций паров и газов;
  3. Концентратомеры жидких растворов;
  4. Плотномеры;
  5. Солемеры;
  6. Влагомеры и др. схожие по назначению и комплектности приборы.

Со временем все более увеличивается круг анализируемых объектов и повышается скорость и правильность анализа. Одним из главнейших приборных методов установления атомного химического состава вещества становится спектральный анализ.

С каждым годом все больше появляются комплексы приборов, для количественного спектрального анализа. А также выпускают наиболее усовершенствованные виды аппаратуры и способы регистрации спектра. Организуются спектральные лаборатории первоначально в машиностроительной, металлургической, а затем и других областях промышленности. Со временем вырастает скорость и верность анализа. К тому же расширяется область анализируемых объектов. Одним из основных приборных методов установления атомного химического состава вещества становится спектральный анализ.

Спектральный анализ - один из самых важных физических методов исследования веществ. Предназначен для определения качественного и количественного состава вещества на основе его спектра.

Химикам издавна было известно, что соединения некоторых химических элементов, если их внести в пламя, окрашивают его в характерные цвета. Так, соли натрия делают пламя желтым, а соединения бора - зеленым. Окраска вещества возникает, когда оно либо излучает волны определенной длины, либо поглощает их из полного спектра падающего на него белого света. Во втором случае цвет, видимый глазом, оказывается соответствующим не этим поглощенным волнам, а другим - дополнительным, дающим при сложении с ними белый свет.

Эти закономерности, установленные еще в начале прошлого века, были обобщены в 1859-1861 гг. немецкими учеными Г. Кирхгофом и Р. Бунзеном, доказавшими, что каждый химический элемент имеет свой характерный спектр. Это позволило создать разновидность элементного анализа - атомный спектральный анализ, с помощью которого можно количественно определять содержание различных элементов в навеске вещества, разлагаемого на атомы или ионы в пламени или в электрической дуге. Еще до создания количественного варианта этого метода он успешно применялся для «элементного анализа» небесных тел. Спектральный анализ уже в прошлом веке помог исследовать состав Солнца и других звезд, а также открыть некоторые элементы, в частности гелий.

При помощи спектрального анализа стало возможным отличать не только различные химические элементы, но и изотопы одного и того же элемента, обычно дающие неодинаковые спектры. Метод применяется для анализа изотопного состава веществ и основан на различном смещении энергетических уровней молекул с различными изотопами.

Рентгеновские лучи, названные по имени открывшего их в 1895 г. немецкого физика В. Рентгена,- одна из самых коротковолновых частей полного спектра электромагнитных волн, расположенная в нем между ультрафиолетовым светом и гамма-излуче-нием. При поглощении рентгеновских лучей атомами возбуждаются глубинные электроны, расположенные вблизи ядра и связанные с ним особенно прочно. Испускание атомами рентгеновских лучей, наоборот, связано с переходами глубинных электронов с возбужденных энергетических уровней на обычные, стационарные.

И те и другие уровни могут обладать только строго определенными энергиями, зависящими от заряда атомного ядра. Значит, разность этих энергий, равная энергии поглощаемого (или излучаемого) кванта, тоже зависит от заряда ядра, и излучение каждого химического элемента в рентгеновской области спектра представляет собой характерный для данного элемента набор волн со строго определенными частотами колебаний.

На использовании этого явления и основан рентгеноспектральный анализ - разновидность элементного анализа. Он широко применяется для анализа руд, минералов, а также сложных неорганических и элементоорганических соединений.

Существуют и другие виды спектроскопии, основанные не на излучении, а на поглощении веществом световых волн. Так называемые молекулярные спектры наблюдаются, как правило, при поглощении растворами веществ видимого, ультрафиолетового или инфракрасного света; разложения молекул при этом не происходит. Если видимый или ультрафиолетовый свет обычно действует на электроны, заставляя их подниматься на новые, возбужденные энергетические уровни (см. Атом), то инфракрасные (тепловые) лучи, несущие меньше энергии, возбуждают лишь колебания связанных между собой атомов. Поэтому информация, которую такие виды спектроскопии дают химикам, различна. Если из инфракрасного (колебательного) спектра узнают о наличии в веществе определенных групп атомов, то спектры в ультрафиолетовой (а для окрашенных веществ - ив видимой) области несут информацию о строении поглощающей свет группировки в целом.

Среди органических соединений основу таких группировок, как правило, составляет система ненасыщенных связей (см. Ненасыщенные углеводороды). Чем больше в молекуле двойных или тройных связей, чередующихся с простыми (иными словами, чем длиннее цепь сопряжения), тем легче возбуждаются электроны.

Методы молекулярной спектроскопии используют не только для определения строения молекул, но и для точного измерения количества известного вещества в растворе. Особенно удобны для этого спектры в ультрафиолетовой или видимой области. Полосы поглощения в этой области обычно наблюдаются при концентрации растворенного вещества порядка сотых и даже тысячных долей процента. Частным случаем такого применения спектроскопии является метод колориметрии, широко применяемый для измерения концентрации окрашенных соединений.

Атомы некоторых веществ способны поглощать также и радиоволны. Такая способность проявляется при помещении вещества в поле мощного постоянного магнита. Многие атомные ядра обладают собственным магнитным моментом - спином, и в магнитном поле ядра с неодинаковой ориентацией спина оказываются энергетически «неравноправными». Те, у которых направление спина совпадает с направлением наложенного магнитного поля, попадают в более выгодное положение, а другие ориентации начинают играть по отношению к ним роль «возбужденных состояний». Это не значит, что ядро, находящееся в выгодном спиновом состоянии, не может перейти в/«возбужденное»; разница энергий спиновых состояний очень невелика, но все же процент ядер, находящихся в невыгодном энергетическом состоянии, сравнительно мал. И он тем меньше, чем мощнее наложенное поле. Ядра как бы колеблются между двумя энергетическими состояниями. А поскольку частота таких колебаний соответствует частоте радиоволн, то возможен и резонанс - поглощение энергии переменного электромагнитного поля с соответствующей частотой, приводящее к резкому увеличению числа ядер, находящихся в возбужденном состоянии.

На этом и основана работа спектрометров ядерного магнитного резонанса (ЯМР), способных обнаруживать наличие в веществе тех атомных ядер, спин которых равен 1/2: водорода 1Н, лития 7Li, фтора 19F, фосфора 31Р, а также изотопов углерода 13С, азота 15N, кислорода 17O и т. д.

Чувствительность таких приборов тем выше, чем мощнее постоянный магнит. Пропорционально напряженности магнитного поля растет и резонансная частота, нужная для возбуждения ядер. Она служит мерой класса прибора. Спектрометры среднего класса работают на частоте 60-90 МГц (при записи протонных спектров); более классные - на частоте 180, 360 и даже 600 МГц.

Спектрометры высокого класса - очень точные и сложные приборы - позволяют не только обнаружить и количественно измерить содержание того или иного элемента, но и различить сигналы атомов, занимающих в молекуле химически «неравноправные» положения. А изучив так называемое спин-спиновое взаимодействие, приводящее к расщеплению сигналов на группы узких линий под влиянием магнитного поля соседних ядер, можно узнать много интересного об атомах, окружающих исследуемое ядро. ЯМР-спектроскопия позволяет получить от 70 до 100% информации, нужной, например, для того, чтобы установить строение сложного органического соединения.

Еще одна разновидность радиоспектроскопии - электронный парамагнитный резонанс (ЭПР) - основана на том, что спином, равным 1/2, обладают не только ядра, но и электроны. Спектроскопия ЭПР - лучший способ исследования частиц, обладающих неспаренными электронами,- свободных радикалов. Подобно спектрам ЯМР, спектры ЭПР дают возможность многое узнать не только о самой «сигналящей» частице, но и о природе окружающих ее атомов. Приборы спектроскопии ЭПР очень чувствительны: для записи спектра обычно бывает вполне достаточно раствора, содержащего несколько стомиллионных долей моля свободных радикалов на 1 л. А прибор с рекордной чувствительностью, недавно созданный группой советских ученых, способен зафиксировать наличие в образце всего 100 радикалов, что соответствует их концентрации примерно 10 -18 моль/л.