Тема: Химия как наука. Химия - это увлекательно! Химия

Химический элемент, простое и сложное вещество, аллотропия. Относительная атомная и молекулярная массы, моль, молярная масса. Валентность, степень окисления, химическая связь, структурная формула.


Практикум: Расчеты по химическим формулам, химическим уравнениям.Решение задач на нахождение химической формулы вещества. Решение задач с использованием понятия «молярная масса». Вычисления по химическим уравнениям, если одно из веществ взято в избытке, если одно из веществ содержит примеси. Решение задач на определение выхода продукта реакции.


Химия - это наука о веществах, их свойствах и превращениях, происходящих в результате химических реакций, а также о фундаментальных законах, которым эти превращения подчиняются. Поскольку все вещества состоят из атомов, которые благодаря химическим связям способны формировать молекулы, то химия занимается в основном изучением взаимодействий между атомами и молекулами, полученными в результате таких взаимодействий.


Химический элемент - определённый вид атома имеющий название, порядковый номер, и положение в таблице Менделеева называют химическим элементом. В настоящее время известно 118 химических элементов, заканчивая Uuo (Ununoctium - Унуноктий). Каждый элемент обозначен символом, который представляет одну или две буквы из его латинского названия (водород обозначен буквой H - первой буквой его латинского названия Hydrogenium).


Вещество - вид материи с определёнными химическими и физическими свойствами. Совокупность атомов, атомных частиц или молекул, находящаяся в определённом агрегатном состоянии. Из веществ состоят физические тела (медь - вещество, а медная монета - физическое тело).


Простое вещество - вещество, состоящее из атомов одного химического элемента: водород, кислород и т.д.


Сложное вещество - вещество, состоящее из атомов разных химических элементов: кислоты, вода и др.


Аллотропия - это способность некоторых химических элементов существовать в виде двух или нескольких простых веществ, различных по строению и свойствам. Например: алмаз и уголь состоят из одного и того же элемента - углерода.

Относительная атомная масса. Относительной атомной массой элемента называют отношение абсолютной массы атома к 1/12 части абсолютной массы атома изотопа углерода 12С. Обозначают относительную атомную массу элемента символом Аr, где r - начальная буква английского слова relative (относительный).


Относительная молекулярная масса. Относительной молекулярной массой Мr называют отношение абсолютной массы молекулы к 1/12 массы атома изотопа углерода 12С.


Обратите внимание на то, что относительные массы по определению являются безразмерными величинами.


Таким образом, мерой относительных атомных и молекулярных масс избрана 1/12 часть массы атома изотопа углерода 12С, которая называется атомной единицей массы (а.е.м.):


Моль. В химии чрезвычайное значение имеет особая величина - количество вещества.


Количество вещества определяется числом структурных единиц (атомов, молекул, ионов или других частиц) этого вещества, оно обозначается обычно n и выражается в молях (моль).


Моль - это единица количества вещества, содержащая столько же структурных единиц данного вещества, сколько атомов содержится в 12 г углерода, состоящего только из изотопа 12С.


Число Авогадро. Определение моля базируется на числе структурных единиц, содержащихся в 12 г углерода. Установлено, что данная масса углерода содержит 6,02× 1023 атомов углерода. Следовательно, любое вещество количеством 1 моль содержит 6,02× 1023 структурных единиц (атомов, молекул, ионов).


Число частиц 6,02 × 1023 называется числом Авогадро или постоянной Авогадро и обозначается NA:


N A = 6,02 × 10 23 моль -1


Молярная масса. Для удобства расчетов, проводимых на основании химических реакций и учитывающих количества исходных реагентов и продуктов взаимодействия в молях, вводится понятие молярной массы вещества.


Молярная масса M вещества представляет собой отношение его массы к количеству вещества:
где г - масса в граммах, n - количество вещества в молях, М - молярная масса в г/моль - постоянная величина для каждого данного вещества.
Значение молярной массы численно совпадает с относительной молекулярной массой вещества или относительной атомной массой элемента.


Валентность - способность атомов химических элементов образовывать определённое число химических связей с атомами других элементов или количество связей, которые может образовывать вещество.


Степень окисления (окислительное число, формальный заряд) - вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций, численная величина электрического заряда, приписываемого атому в молекуле в предположении, что электронные пары, осуществляющие связь, полностью смещены в сторону более электроотрицательных атомов.
Представления о степени окисления положены в основу классификации и номенклатуры неорганических соединений.


Степень окисления соответствует заряду иона или формальному заряду атома в молекуле или в формульной единице, например:


Na + Cl - , Mg 2+ Cl 2 - , N -3 H 3 - , C +2 O -2 , C +4 O 2 -2 , Cl + F - , H + N +5 O -2 3 , C -4 H 4 + , K +1 Mn +7 O -2 4 .


Степень окисления указывается сверху над символом элемента. В отличие от указания заряда иона, при указании степени окисления первым ставится знак, а потом численное значение, а не наоборот.


H + N +3 O -2 2 - степень окисления, H + N 3+ O 2- 2 - заряды.


Степень окисления атома в простом веществе равна нулю, например:


O 0 3 , Br 0 2 , C 0 .


Алгебраическая сумма степеней окисления атомов в молекуле всегда равна нулю:


H + 2 S +6 O -2 4 , (+1 2) + (+6 1) + (-2 4) = +2 +6 -8 = 0


Химическая связь, взаимное притяжение атомов, приводящее к образованию молекул и кристаллов. Принято говорить, что в молекуле или в кристалле между соседними атомами существуют химические связи. Химическая связь определяется взаимодействием между заряженными частицами (ядрами и электронами). Основные характеристики химической связи - прочность, длина, полярность.

Свойства - совокупность признаков по которым одни вещества отличаются от других, они бывают химическими и физическими.


Физические свойства - признаки вещества, при характеристике которых вещество не изменяет свой химический состав.(плотность, агрегатное состояние, температуры плавления и кипения и т.п.)


Химические свойства - способность веществ взаимодействовать с другими веществами или изменятся под действием определённых условий.Результатом является превращения одного вещества или веществ в другие вещества.


Физические явления - новые вещество не образуется.
Химические явления - новые вещество образуется.

Химия - это наука о веществе (предмет, имеющий массу и занимающий какой-то объем).

Химия исследует строение и свойства вещества, а также происходящих с ним изменений.

Любое вещество бывает либо в чистом виде, либо состоит из смеси чистых веществ. Вследствие химически реакций вещества могут превращаться в новое вещество.

Химия очень обширная наука. Поэтому, принято выделять отдельные разделы химии:

  • Аналитическая химия. Делает количественный анализ (сколько вещества содержится) и качественный анализ (какие вещества содержатся) смесей.
  • Биохимия . Изучает химические реакции в живых организмах: пищеварение, размножение, дыхание, обмен веществ… Как правило, изучение ведется на молекулярном уровне.
  • Неорганическая химия. Изучает все элементы (структуру и свойства соединений) периодической таблицы Менделеева за исключением углерода.
  • Органическая химия. Это химия соединений углерода. Известны миллионы органических соединений, которые используются в нефтехимии, фармацевтике, производстве полимеров.
  • Физическая химия. Изучает физические явления и закономерности химических реакций.

Этапы развития химии, как науки

Химические процессы (получение металлов из руд, крашение тканей, выделка кожи...) использовались человечеством уже на заре его культурной жизни.

В 3-4 веках зародилась алхимия , задачей которой было превращение неблагородных металлов в благородные.

С эпохи Возрождения химические исследования все в большей степени стали использовать для практических целей (металлургия, стеклоделие, производство керамики, красок...); возникло также особое медицинское направление алхимии - ятрохимия .

Во второй половине 17 века Р. Бойль дал первое научное определение понятия «химический элемент» .

Период превращения химии в подлинную науку завершился во второй половине 18 века, когда был сформулирован закон сохранения массы при химических реакциях.

В начале 19 века Джон Дальтон заложил основы химической атомистики, Амедео Авогардо ввел понятие «молекула» . Эти атомно-молекулярные представления утвердились лишь в 60-х годах 19 века. Тогда же А.М. Бутлеров создал теорию строения химических соединений, а Д.И. Менделеев открыл периодический закон.

Чтобы понять суть той или иной науки, необходимо в первую очередь получать от познания удовольствие, открывая для себя что-то новое. В данном случае это химия. Поверьте, она может дать изучающему ее подлинное наслаждение. И это не просто аккумуляция знаний с сухим остатком фактов. За химическими превращениями очень интересно наблюдать, а наглядные примеры в лаборатории способны пробудить в ученике ярчайший интерес! Потому что химия - это основа основ всех веществ, тех, из которых создан мир, нас окружающий. Добро пожаловать в этот интересный мир!

Что изучает химия

Давайте разберемся, в чем же предмет изучения. Говоря по-простому, химия - это наука о веществе (а оно, как мы знаем, занимает объем и имеет определенную массу). Так вот, данная наука исследует строение и свойства веществ и все происходящие с ними изменения. Любое из них либо является чистым, или может состоять из смеси элементов. А превращение одного в другое называется химической реакцией. Образуется новое вещество - и это сродни волшебству! Не зря в давние времена к алхимикам относились как к волшебникам, полагая, что они могут получать золото из других металлов.

Общая классификация

Химия - это могучее дерево, обладающее мощными ветвями - разделами данной науки. Они довольно сильно отличаются по своим задачам и методам, однако связаны между собой прочно. :

  • Аналитическая. Рассказывает о том, сколько и каких веществ содержится в определенной смеси. Делает анализ (количественный и качественный), используя широкий инструментарий.
  • Биохимия. Ее предмет изучения - химические реакции, происходящие в организмах. Обмен веществ и пищеварение, дыхание и размножение - все это является прерогативой данной науки. Исследования ведутся учеными на микроскопическом или молекулярном уровне.
  • Неорганическая. Ее связывают с исследованиями в области неорганики (к примеру, солей). Анализируются структуры, свойства данных соединений, их отдельных компонентов. Здесь также изучаются все элементы таблицы Менделеева (исключая углерод, который «достался» органической химии).
  • Органическая. Это химия, изучающая соединения углерода. Ученым известно великое множество (миллионы!) подобных соединений, но каждый год открывают и создают все новые и новые. Они находят применение в нефтехимии, производстве полимеров, фармацевтике.
  • Физическая. Здесь предмет изучения - закономерности реакций в отношении физических явлений. Данная отрасль занимается физическими свойствами и поведением веществ, разрабатывает модели и теории действий.

Биотехнология

Достаточно новая отрасль, сопутствующая химии и биологии. Предмет изучения - модификация или создание генетического материала (либо организмов) в определенных научных целях. Новейшие технологии и исследования в данной сфере применяются при клонировании, при получении новых сельхозкультур, вырабатывании устойчивости к болезням и негативной наследственности у живых организмов.

Древняя история

Значение слова «химия» для человеческой цивилизации можно усвоить, проследив этапы развития данной науки. Еще с незапамятных времен люди, иногда сами того не осознавая, использовали для получения металлов из руды, для покраски тканей и выделки кож. Таким образом, на заре культурной жизни и развития цивилизованного мира зарождалось химическое учение.

Средневековье и Возрождение

А уже в новой эре появляется алхимия. Ее основной задачей становится обретение так называемого «философского камня», а попутной - превращение металлов в золото. Кстати, многие историки считают, что именно алхимия дала огромный толчок к развитию химической науки.

В эпоху Возрождения подобные исследования стали использоваться для практических задач (в металлургии, производстве керамики и красок, стеклоделии); возникает специализированное направление алхимии - медицинское.

17-19-й века

Во II половине 17-го столетия Р. Бойль впервые дал научное определение понятию «химический элемент».

Во II половине 18-го уже подходит к завершению превращение химии в науку. К этому времени сформулированы законы сохранения массы в химических реакциях.

В 19-м веке закладывает основу химической атомистики, а Амедео Авогадро вводит термин «молекула». Атомно-молекулярная химия утверждается в 60-х 19-го столетия. А. М. Бутлеров создает теорию построения химических соединений. Д. И. периодический закон и таблицу.

Терминология

Их много утвердилось в течение всего времени развития химии. Далее представлены только основные из них.

Вещество - это вид материи, обладающий определенными химическими, а также физическими свойствами. Это совокупность атомов и молекул, которая находится в агрегатном состоянии. Все физические тела состоят из веществ.

Атом — химически неделимая, мельчайшая частица веществ. Он включает в свой состав ядро и электронную оболочку.

А что можно сказать про химические элементы? Каждый из них имеет свое название, свой порядковый номер, расположение в таблице Менделеева. На сегодня известно 118 элементов в естественной среде (крайний Uuo — унуноктий). Элементы обозначены символами, которые представляют 1 или 2 буквы латинского названия (к примеру, водород - H, латинское наименование Hydrogenium).

Химия - одна из важнейших областей естествознания, сыгравшая огромную роль в создании современной научной картины мира. Обычно ее определяют как науку, которая изучает вещества и их превращения. Этому определению нельзя отказать в справедливости, хотя оно не совсем точно. Ведь физика тоже изучает вещества и их превращения, разумеется, своими специфическими методами и в своих собственных целях. В химии же свойства простых и сложных веществ выявляются и проявляются в ходе тех химических взаимодействий, в которых эти вещества участвуют. Поэтому химическими превращениями являются такие, в результате которых образуются новые химические индивидуумы со своими характерными свойствами. Все химические превращения обязательно связаны с перестройкой внешних электронных оболочек атомов элементов, участвующих в реакциях, тогда как внутренние оболочки и атомное ядро остаются незатронутыми.

Ныне в сферу действия химической науки вовлечены примерно 100 доступных для химических исследований элементов (существующих в природе и полученных посредством ядерного синтеза) и их самых разнообразных соединений.

Хотя с различными химическими превращениями человек имел дело еще в древние времена, становление химии как самостоятельной науки - со своими целями и задачами, с собственным арсеналом понятий и терминов - фактически начало происходить во второй половине XVIII в. Это становление подготавливалось исподволь, на протяжении многих столетий. Первоначальные сведения о химических явлениях и процессах накапливались в результате практической деятельности людей - в ходе выплавки металлов, изготовления стекла и керамики, изготовления и крашения тканей, получения различных продуктов питания и т. д. В этом плане историки науки часто используют термин «ремесленная химия». Конечно, она еще не была наукой, а лишь своеобразным сводом определенных химических приемов и рецептов. Некоторые задатки будущей химии сформировались и в период господства алхимии. Хотя алхимики преследовали мистические цели, им принадлежали и многие важные практические достижения: они предложили способы разложения различных руд и минералов, получили некоторые необходимые реактивы (например, азотную, серную и соляную кислоты, царскую водку, ряд солей и щелочей), изобрели приборы, необходимые для химических исследований (колбы, реторты, нагревательные печи), описали такие процессы, как прокаливание, перегонка, дистилляция, растворение и осаждение. Далее внесла свой вклад в фундамент будущей химической науки и ятрохимия - область знаний, которая, в частности, ставила целью изготовление различных лекарств для лечения людей.

XIV-XVI века вошли в историю человечества как эпоха Возрождения. Для нее характерен расцвет многих наук - механики, математики, физики. Что касается химии, то она лишь начала осознавать свое истинное место в системе человеческих знаний.

В XVII столетии засверкали имена многих ученых, которые своими идеями и трудами подготавливали приобретение химией статуса определенной области познания. Французский физик П. Гассенди ввел понятие «молекула», которое обозначало соединение «атомов». Его соотечественник Ж. Рей установил: при прокаливании металлов их вес увеличивается. Англичане Р. Гук и Дж. Майов значительно обогнали время, сформулировав правильные представления о процессах горения и дыхания. Голландский естествоиспытатель Я. ван Гельмонт ввел термин «газ» (от греческого слова «хаос») и фактически впервые наблюдал выделение углекислого газа. Французский ученый Н. Лемерй написал первый фундаментальный учебник «Курс химии», в котором четко определил химию как искусство разделять различные вещества, содержащиеся в смешанных телах, существующих в природе,- минералах, растительных и животных телах.

Выдающегося английского естествоиспытателя Р. Бойля Фридрих Энгельс назвал создателем научной химии: «Бойль делает из химии науку». Книга Бойля, называвшаяся «Химик-спектик» (увидела свет в 1661 г.), критически пересматривала многие прежние химические воззрения. Главная заслуга ученого состояла в том, что он стал рассматривать химические элементы не как некие отвлеченные понятия, а как реально существующие минеральные вещества. Он считал: в действительности химических элементов может быть много - и тем самым нацеливал на их поиск в природе. Бойль дал и определение элементов как простых тел, не составленных друг из друга, а являющихся составными частями всех смешанных (сложных) тел. И наконец, Бойль широко ввел в практику химический анализ как главный метод изучения состава веществ. Бойля даже считают основоположником аналитической химии. Столетие спустя именно химико-аналитический метод стал приносить обильные плоды в виде большого числа открываемых химических элементов.

Анализ позволил химии решать одну из ее важнейших задач: изучать, что из чего состоит. Так возникло учение о составе химических соединений. Позднее возникли проблемы познания их свойств и строения. Этот классический «треугольник познания»: состав - строение - свойства определил основное содержание химии фактически вплоть до нашего времени.

На рубеже XVII и XVIII вв. немецкий химик Г. Шталь предложил так называемую теорию флогистона,- по существу, первую химическую теорию. Хотя она и оказалась ошибочной, но позволила систематизировать процессы горения и обжига (кальцинации) металлов, объяснив эти процессы с единой точки зрения. Шталь считал, что различные вещества и металлы содержат в своем составе особое «начало горючести» - флогистон. При прокаливании металлы теряли флогистон, превращаясь в оксиды, т. е. процессы окисления заключались в потере окислявшимися веществами флогистона. Напротив, в ходе процессов восстановления оксиды приобретали флогистон, вновь становясь металлами. Критика учения о флогистоне во многом способствовала развитию химического мышления.

Выдающимися достижениями русского ученого-эн-циклопедиста М. В. Ломоносова в области естествознания, и в частности химии, являются материалистическое толкование химических явлений, создание корпускулярной теории веществ, формулировка основополагающего закона природы - закона сохранения массы веществ и движения.

В середине XVIII в. на авансцену вышла так называемая пневматическая химия, изучавшая газы с химической точки зрения. Одним из выдающихся ее достижений стало открытие кислорода. Понимание его природы как самостоятельного газообразного химического элемента позволило А. Лавуазье развенчать концепцию флогистона и сформулировать кислородную теорию горения и дыхания. Вместе с крупными достижениями химического анализа это событие положило начало первой химической революции. Эту революцию трудно ограничить четкими временными рамками. В последние десятилетия XVIII в. начал развиваться количественный подход к изучению химических процессов, была разработана первая номенклатура химических названий; А. Лавуазье предложил «Таблицу простых тел», которая, по существу, стала первой систематикой известных к тому времени (1789) химических элементов.

Важнейшей составляющей первой химической революции стала атомистика Дж. Дальтона. В самом начале XIX в. он четко сформулировал основы атомистического учения: тождественность атомов одного и того же вещества; способность различных атомов соединяться в различных соотношениях; абсолютную неделимость атомов. Наконец, Дальтон ввел фундаментально важное понятие атомного веса, т. е. практически первый измеримый количественный параметр, характеризующий атом. Ф. Энгельс вполне справедливо полагал, что «новая эпоха начинается в химии с атомистики (следовательно, не Лавуазье, а Дальтон- отец современной химии)» (см. Атомно-моле-кулярное учение).

Первая химическая революция имела основным своим результатом создание атомно-молекулярного учения. Под его прямым и непосредственным влиянием проходило развитие химии на протяжении всего XIX столетия. Химия полностью обрела статус самостоятельной науки в ряду других естественных наук. Она создала свои специфические понятия и термины; ее практическое значение с каждым годом все отчетливее осознавалось; она становилась предметом преподавания во многих учебных заведениях. Во многих странах возникали химические общества, появлялись новые химические журналы.

К началу 1890-х гг. сформировалась та совокупность химических знаний, которая составила так называемую классическую химию. Она достаточно четко подразделялась на четыре фундаментальных раздела: неорганическую, органическую, физическую и аналитическую химии. К краеугольным камням классической химии относились, в частности, учение о периодичности; учение о строении органических соединений; учение о координационных соединениях; учение о валентности; учение о химическом процессе (включающее проблемы кинетики и катализа); учение о растворах (вместе с теорией электролитической диссоциации). Достаточное развитие получили аналитические методы. Таким «богатством» располагала химия на исходе XIX в. Но на пути ее дальнейшего развития вставали вполне определенные трудности и преграды.

Дело в том, что первая химическая революция уже в значительной степени исчерпала себя. Атомно-моле-кулярное учение достигло больших высот развития, но ведь никто не знал, как устроен атом. Никакой заслуживающей внимания модели его строения наука прошлого столетия предложить не могла. А без этого знания многие фундаментальные теории и идеи химии не могли получить необходимого объяснения и обоснования. В том числе учение Д. И. Менделеева о периодичности свойств элементов (см. Периодический закон химических элементов), химического строения теория А. М. Бутлерова. Поэтому становилась неизбежной новая, вторая революция в химии. Ее основное содержание составила разработка учения об атоме (см. Атом). Оно стало своеобразным «знаменем» новейшей химии, химической науки XX в., подобно тому как компасом химии прошлого века было атомно-молекулярное учение.

Попробуем теперь вкратце охарактеризовать основные особенности новейшей химии. Что же представляет ныне эта область человеческого знания?

Первая отличительная черта новейшей химии - химия оказывается мощной «производительной силой». И не в том очевидном смысле, что она производит обширный ассортимент самых разнообразных практически важных продуктов. Она синтезирует, извлекает из природного сырья, растительных и животных организмов огромное количество новых химических соединений. Тем самым химия порождает непрерывно и в массовом масштабе объекты своего исследования, и, видимо, о каких-либо пределах получения новых соединений нет смысла ставить вопрос. Каждую неделю становятся известными более десятка не известных ранее химических индивидуумов. Правда, лишь очень немногие «новорожденные» соединения получают путевку в практику: в основном они имеют теоретический интерес. Но вот что особенно важно: получение новых соединений проводится, как правило, по заранее разработанному плану. Исследователь уже заранее, хотя бы в общих чертах, видит цель эксперимента.

С этой чертой связана весьма тесно вторая черта новейшей химии - решение задачи получения веществ с заранее заданными свойствами. Такими, которые характеризуются необходимыми параметрами, удовлетворяющими определенным потребностям практики. Конечно, даже на заре своего существования химия преследовала цели извлечения и получения веществ, практически ценных. Но все это делалось, разумеется, ощупью: достаточная осмысленность начала приобретаться в XIX в. Ныне поставленная задача решается с начала до конца осмысленно: выбираются наиболее рациональные методы синтеза и способы проведения эксперимента; при предварительных расчетах нередко прибегают к помощи ЭВМ. Между прочим, без широкого получения веществ с заданными свойствами современная научно-техническая революция не могла бы развиваться столь стремительно...

Однако, очевидно,- говорим мы о синтезе «просто» веществ или веществ с необходимыми свойствами - сама постановка задачи должна широко опираться на теорию. На самую современную строгую научную теорию, притом такую, которая дает реальные возможности прогнозировать. А отсюда - третья характерная черта новейшей химии - наличие у нее фундаментальных теоретических основ. Одна из основ - учение о строении атома и химической связи с многочисленными следствиями. Теоретический аппарат химии включает также многоплановое учение о химическом процессе, объединившее в себе современные представления о химической кинетике, катализе и реакционной способности. Без широчайшего использования физических и математических знаний современному химику делать нечего. Ныне сплошь да рядом говорят о «физикализации» и «математизации» химии. А это означает, что новейшая химия, безусловно, может быть отнесена к разряду точных наук. Кстати, само возникновение новейшей химии нередко связывают с появлением и стремительным развитием квантовомеханических методов исследования (см. Квантовая химия).

Химия начала процесс своего осознания с анализа минералов. Фактически вся история классической и новейшей химии - это история становления и развития самых разнообразных аналитических методов: химических, физико-химических и физических. Высокой чувствительности достиг спектральный анализ в самых разных своих направлениях и приложениях. Следы примесей в исследуемых материалах позволяет определять радиоактивационный анализ. В арсеналах лабораторий - методы ЭПР (электронного парамагнитного резонанса), ЯМР (ядерного магнитного резонанса), радиоспектроскопия, масс-спектроскопия, спектрофотометрия. Этот перечень не составляет труда продолжить. Названные методы позволяют изучать тончайшие особенности строения молекул и механизмов протекания химических реакций. С каждым годом химия становится все более и более «зрячей». И отсюда следует четвертая черта новейшей химии - широкое использование аналитических методов. Ученые затрудняются дать вполне однозначное определение аналитической химии, настолько всеобъемлющей и всепроникающей научной дисциплиной стала она в наше время.

В новом свете ныне предстают и три других фундаментальных раздела химической науки: неорганическая, органическая и физическая химия. Все более и более размываются границы между неорганикой и органикой. Вот два обширных класса химических соединений: элементоорганические и координационные. Их количество стремительно возрастает. Между тем многие из них не так-то просто отнести к неорганическим или органическим. Химики-органики включают в сферу своих интересов все большее число элементов. В то же время неорганики синтезируют постоянно новые координационные соединения с органическими лигандами. Многие аналитические методы с одинаковым успехом используются в обоих фундаментальных разделах химии.

Наблюдается дифференциация (дробление) химии на отдельные самостоятельные химические дисциплины - и в этом состоит пятая характерная черта новейшей химической науки. Современная неорганическая химия включает в себя «химии» как отдельных элементов, так и их совокупностей. Привычными стали, например, понятия: химия азота, химия фосфора, химия фтора, химия урана; исследования некоторых наиболее важных элементов достигли такого размаха, что оформились в самостоятельные подразделы неорганической химии. А ведь есть еще химия редких элементов и химия редкоземельных элементов, химия трансурановых элементов и химия инертных газов. Наконец, обрели самостоятельность и направления, изучающие отдельные классы неорганических соединений,- химия гидридов, химия карбидов и т. д.

Еще более «пестрая» картина в органической химии. Назовем белки, жиры, углеводы, ароматические и алифатические соединения, насыщенные и ненасыщенные соединения, ферменты и гормоны, терпены и полимеры. У каждого класса из этих соединений - своя, самостоятельная химия.

Дифференциация химии - веяние времени. Объем накапливаемой химической информации поражал воображение еще в середине прошлого века. Ныне он поистине безбрежен. Поэтому даже самый высокоодаренный химик не может быть специалистом-химиком «широкого профиля», как это было присуще некоторым величайшим ученым в первой половине XIX в. Он даже не может «охватить» всю органику или неорганику. Даже в отдельной химической дисциплине он не всегда одинаково уверенно ориентируется от А до Я. А потому узкая специализация в новейшей химии, как и вообще в науке, неизбежна.

Мы не сказали еще о физической химии. Как фундаментальная химическая наука, она оформилась в 1880-х гг., объединив в себе такие направления исследований, как электрохимия, термохимия, учение о кинетике, учение о катализе, учение о растворах наряду с развившимся теоретическим аппаратом химической термодинамики. В XX в. она также испытала процесс дифференциации, когда от классических дисциплин физической химии отпочковывались новые. Но в то же время возникли и совершенно новые: радиохимия, радиационная химия, плазмохимия и ряд других. Физическую химию иногда считают плодом тесного взаимодействия, интеграции химии и физики. С этим представлением нельзя целиком согласиться. Однако процесс взаимопроникновения естественных наук в нашем столетии развивался интенсивно. Примером такого рода «интегрированных» наук могут служить биохимия, геохимия, биогеохимия, космохимия. Поэтому тенденцию химии вкладывать накопленные ею знания в развитие других наук можно рассматривать как еще одну, шестую ее характерную черту.

Как и другие области знаний, химия переживает информационный взрыв. Объем новой химической информации возрастает прямо-таки в геометрической прогрессии. В настоящее время в мире выходит более 250 химических журналов, которые публикуют результаты, достигнутые химиками разных стран. Сведения о достижениях химии публикуются и в журналах более общего профиля. Издаются многие сотни монографий по химии. Чуть ли не каждую неделю происходят съезды и конференции по различным химическим проблемам. Чтобы как-то облегчить исследователям ознакомление с информацией по химии, во многих странах мира выходят специальные реферативные журналы. Все большую роль играет компьютерная обработка информации.

Вот, пожалуй, основные особенности химической науки нашего времени. Науки, без которой немыслима современная цивилизация. Науки, которая кормит, поит, одевает, обувает, строит, добывает полезные ископаемые, позволяет покорять космос и опускаться на дно океана, создавать материалы, которые не знает природа. В содружестве с другими науками она помогает все глубже постигать тайны мироздания.

Душу химии составляют химические реакции. Они протекают в различных условиях. Одни - на холоде, другие - при комнатной температуре, третьи - при небольшом нагревании, четвертые - при высоких температурах. Одни реакции происходят мгновенно, иногда со взрывом. Другие в обычных условиях или вообще не идут, или протекают чрезвычайно медленно, но их можно ускорить с помощью катализаторов. В перечне современных химических дисциплин не могут быть не упомянуты такие, как химия высоких температур и химия низких температур. Они изучают химические процессы, происходящие в экстремальных условиях: с одной стороны - десятки тысяч градусов, с другой - температуры, близкие к абсолютному нулю. Частью новейшей химии является химия плазмы: здесь предмет химического исследования - четвертое состояние вещества. Мы можем назвать, далее, химию высоких давлений. Именно на этом направлении исследований были приготовлены искусственные алмазы, получено такое удивительное вещество, как водород в металлическом состоянии.

Химия оперирует различными материальными структурами. На одном «полюсе» - огромные, состоящие из многих тысяч атомов молекулы, например молекулы белков; на другом - единичные атомы химических элементов, которые к тому же имеют чрезвычайно малую продолжительность жизни,- атомы синтезированных тяжелых трансурановых элементов. На одном «полюсе» - простейшая молекула водорода, на другом - сложнейшая по структуре молекула инсулина... Поистине химия выглядит наукой контрастов.

Классической химия становилась во многом благодаря самой себе, своим собственным теоретическим представлениям, идеям и понятиям. Новейшая химия своим возникновением и развитием существенно обязана физике. Прежде всего физическому учению о строении атома. Нередко утверждают, что химия ныне вообще не должна рассматриваться как самостоятельная наука. Что она не более, чем раздел физики. На чем основано это утверждение? На том, что в основе механизмов любых химических процессов лежат физические закономерности. Ведь даже самая простая реакция - это в конечном счете перераспределение электронов между участвующими в ней атомами. А описывается это перераспределение языком физики, понятиями квантовой механики (см. Квантовая химия). Все это трудно оспаривать. Но мир химических превращений и явлений настолько сложен, ярок, многообразен и беспределен, что свести его к попыткам объяснения через физические реалии и математические уравнения было бы совершенно неоправданным упрощением, «выхолащиванием» вечно юной души науки химии. Ведь это то же самое, что свести очарование какого-нибудь музыкального

произведения к совокупности математических уравнений, описывающих колебания воздуха, вызываемые звуками музыкального инструмента.

Конечно, физика и впредь будет помогать химии глубже познавать природу вещей и процессов, на своем языке объяснять открываемые ею законы и закономерности. Но она не отнимет у химии ее важнейшей цели - получения новых фактов и сведений о свойствах химических элементов и их соединений и разработки методов получения бесконечного множества новых веществ и материалов.

И т. п.), материалы и др. Число хим. соед. огромно и все время увеличивается; поскольку химия сама создает свой объект; к кон. 20 в. известно ок. 10 млн. хим. соединений.
Х имия как наука и отрасль пром-сти существует недолго (ок. 400 лет). Однако хим. знание и хим. практика (как ремесло) прослеживаются в глубинах тысячелетий, а в примитивной форме они появились вместе с человеком разумным в процессе его взаимод. с . Поэтому строгая дефиниция химии может основываться на широком, вневременном универсальном смысле - как области естествознания и человеческой практики, связанной с хим. элементами и их комбинациями.
Слово "химия" происходит либо от наименования Древнего Египта "Хем" ("темный", "черный" - очевидно, по цвету почвы в долине реки Нил; смысл же назв.- "египетская наука"), либо от древнегреч. chemeia - искусство выплавки . Совр. назв. химии производится от позднелат. chimia и является интернациональным, напр. нем. Chemie, франц. chimie, англ. chemistry. Термин "химия" впервые употребил в 5 в. греч. алхимик .

История химии. Как основанная на опыте практика, химия возникла вместе с зачатками человеческого общества (использование огня, приготовление пищи, шкур) и в форме ремесел рано достигла изощренности (получение и , ядов и лекарств). Вначале человек использовал хим. изменения . объектов ( , гниение), а с полным освоением огня и - хим. процессы и сплавления (гончарное и стекольное произ-ва), выплавку . Состав древнеегипетского стекла (4 тыс. лет до н. э.) существенно не отличается от состава совр. бутылочного стекла. В Египте уже за 3 тыс. лет до н. э. выплавляли в больших кол-вах , используя в качестве (самородная применялась с незапамятных времен). Согласно клинописным источникам, развитое произ-во , и существовало в Месопотамии также за 3 тыс. лет до н. э. Освоение хим. процессов произ-ва и , а затем и являлось ступенями не только , но цивилизации в целом, изменяло условия жизни людей, влияло на их устремления.
Одновременно возникали и теоретич. обобщения. Напр., китайские рукописи 12 в. до н. э. сообщают о "теоретич." построениях систем "основных элементов" ( , огонь, дерево, и земля); в Месопотамии родилась идея рядов противоположностей, взаимод. к-рых "составляют мир": мужское и женское, тепло и холод, влага и сухость и т. д. Очень важной была идея (астрологич. происхождения) единства явлений макрокосма и микрокосма.
К концептуальным ценностям относится и атомистич. учение, к-рое было развито в 5 в. до н. э. древнегреч. философами Левкиппом и Демокритом. Они предложили аналоговую семантич. модель строения в-ва, имеющую глубокий комбинаторный смысл: комбинации по определенным правилам небольшого числа неделимых элементов ( и букв) в соединения ( и слова) создают информационное богатство и разнообразие (в-ва и языки).
В 4 в. до н. э. Аристотель создал хим. систему, основанную на "принципах": сухость - и холод - тепло, с помощью попарных комбинаций к-рых в "первичной материи" он выводил 4 основных элемента (земля, и огонь). Эта система почти без изменений просуществовала 2 тыс. лет.
После Аристотеля лидерство в хим. знании постепенно перешло из Афин в Александрию. С этого времени создаются рецептуры получения хим. в-в, возникают "учреждения" (как храм Сераписа в Александрии, Египет), занимающиеся деятельностью, к-рую позже арабы назовут "аль-химия".
В 4-5 вв. хим. знание проникает в Малую Азию (вместе с несторианством), в Сирии возникают философские школы, транслировавшие греч. натурфилософию и передавшие хим. знание арабам.
В 3-4 вв. возникла - философское и культурное течение, соединяющее мистику и магию с ремеслом и искусством. внесла значит. вклад в лаб. мастерство и технику, получение многих чистых хим. в-в. Алхимики дополнили элементы Аристотеля 4 началами ( , и ); комбинации этих мистич. элементов и начал определяли индивидуальность каждого в-ва. оказала заметное влияние на формирование западноевропейской культуры (соединение рационализма с мистикой, познания с созиданием, специфич. культ ), но не получила распространения в др. культурных регионах.
, или по-европейски , Ибн (Авиценна), Абу-ар-Рази и др. алхимики ввели в хим. обиход (из ), мн. , NaOH, HNO 3 . Книги , переведенные на латынь, пользовались огромной популярностью. С 12 в. арабская начинает терять практич. направленность, а с этим и лидерство. Проникая через Испанию и Сицилию в Европу, она стимулирует работу европейских алхимиков, самыми известными из к-рых были Р. Бэкон и Р. Луллий. С 16 в. развивается практич. европейская , стимулированная потребностями (Г. Агрикола) и медицины (Т. Парацельс). Последний основал фармакологич. отрасль химии - ятрохимиюи вместе с Агриколой выступал фактически как первый реформатор .
Х имия как наука возникла в ходе научной революции 16-17 вв., когда в Западной Европе возникла новая цивилизация в результате тесно связанных революций: религиозной (Реформация), давшей новое толкование богоугодности земных дел; научной, давшей новую, механистич. картину мира (гелиоцентризм, бесконечность, подчиненность естественным законам, описание на языке математики); промышленной (возникновение фабрики как системы машин с использованием энергии ископаемого ); социальной (разрушение феодального и становление буржуазного общества).
Х имия, вслед за физикой Г. Галилея и И. Ньютона, могла стать наукой лишь на пути механицизма, к-рый задал основные нормы и науки. В химии это было гораздо сложнее, чем в физике. Механика легко абстрагируется от особенностей индивидуального объекта. В химии каждый частный объект (в-во) - индивидуальность, качественно отличная от других. Химия не могла выразить свой предмет чисто количественно и на всем протяжении своей истории оставалась мостом между миром количества и миром качества. Однако надежды антимеханицистов (от Д. Дидро до В. Оствальда) на то, что химия заложит основы иной, немеханистич. науки, не оправдались, и химия развивалась в рамках, определенных ньютоновской картиной мира.
Более двух веков химия вырабатывала представление о материальной природе своего объекта. Р. Бойль, заложивший основы рационализма и эксперим. метода в химии, в своем труде "Химик-скептик" (1661) развил представления о хим. (корпускулах), различия в форме и массе к-рых объясняют качества индивидуальных в-в. Атомистич. представления в химии подкреплялись идеологич. ролью атомизма в европейской культуре: человек-атом - модель человека, положенная в основу новой социальной философии.
Металлургич. химия, имевшая дело с р-циями , и , кальцинации - прокаливания (химию называли пиротехнией, т. е. огненным искусством) -привлекла внимание к образующимся при этом . Я. ван Гельмонт, введший понятие " " и открывший (1620), положил начало пневматич. химии. Бойль в работе "Огонь и пламя, взвешенные на " (1672), повторяя опыты Ж. Рея (1630) по увеличению массы при , пришел к выводу, что это происходит за счет "захвата весомых частиц пламени". На границе 16-17 вв. Г. Шталь формулирует общую теорию химии - теорию (теплорода, т. е. "в-ва ", удаляющегося с помощью из в-в при их ), к-рая освободила химию от продержавшейся 2 тыс. лет системы Аристотеля. Хотя М. В. Ломоносов, повторив опыты по , открыл в хим. р-циях (1748) и смог дать правильное объяснение процессам и как взаимод. в-ва с частицами (1756), познание и было невозможно без развития пневматич. химии. В 1754 Дж. Блэк открыл (повторно) ("фиксированный "); Дж. Пристли (1774) - , Г. Кавендиш (1766) - ("горючий "). Эти открытия дали всю информацию, необходимую для объяснения процессов , и , что и сделал А. Лавуазье в 1770-90-х гг., фактически похоронив этим теорию и стяжав себе славу "отца современной химии".
К нач. 19 в. пневматохимия и исследования состава в-в приблизили химиков к пониманию того, что хим. элементы соединяются в определенных, эквивалентных соотношениях; были сформулированы (Ж. Пруст, 1799-1806) и объемных отношений (Ж. Гей-Люс-сак, 1808). Наконец, Дж. Дальтон, наиб. полно изложивший свою концепцию в сочинении "Новая система химической философии" (1808-27), убедил современников в существовании , ввел понятие (массы) и возвратил к жизни понятие элемента, но уже в совсем ином смысле -как совокупности одного вида.
Гипотеза А. Авогадро (1811, принята научным сообществом под влиянием С. Канниццаро в 1860) о том, что частицы простых представляют собой из двух одинаковых , разрешила целый ряд противоречий. Картина материальной природы хим. объекта была завершена с открытием периодич. закона хим. элементов (Д. И. Менделеев, 1869). Он связал количеств. меру () с качеством (хим. св-ва), вскрыл смысл понятия хим. элемент, дал химику теорию большой предсказательной силы. Химия стала совр. наукой. Периодич. закон узаконил собственное место химии в системе наук, разрешив подспудный конфликт хим. реальности с нормами механицизма.
Одновременно шел поиск причин и сил хим. взаимодействия. Возникла дуалистич. (электрохим.) теория (И. Берцелиус, 1812-19); введены понятия " " и "хим. связь", к-рые наполнились физ. смыслом с развитием теории строения и . Им предшествовали интенсивные исследования орг. в-в в 1-й пол. 19 в., приведшие к разделению химии на 3 части: , и (до 1-й пол. 19 в. последняя была основным разделом химии). Новый эмпирич. материал (р-ции замещения) не укладывался в теорию Берцелиуса, поэтому были введены представления о группах , действующих в р-циях как целое - радикалах (Ф. Вёлер, Ю. Либих, 1832). Эти представления были развиты Ш. Жераром (1853) в (4 типа), ценность к-рой состояла в том, что она легко связывалась с концепцией (Э. Франкленд, 1852).
В 1-й пол. 19 в. было открыто одно из важнейших явлений химии - (сам термин предложен Берцелиусом в 1835), очень скоро нашедшее широкое практич. применение. В . 19 в. наряду с важными открытиями таких новых в-в (и классов), как и (В. Перкин, 1856), были выдвинуты важные для дальнейшего развития химии концепции. В 1857-58 Ф. Кекуле развил теорию применительно к орг. в-вам, установил четырехвалентность и способность его связываться друг с другом. Этим был проложен путь теории хим. строения орг. соед. (), построенной А. М. Бутлеровым (1861). В 1865 Кекуле объяснил природу ароматич. соед. Я. Вант-Гофф и Ж. Ле Бель, постулировав тетраэдрич. структуры (1874), проложили путь трехмерному взгляду на структуру в-ва, заложив основы как важного раздела химии.
В . 19 в. одновременно было положено начало исследованиям в области и . Л. Вильгельми изучил кинетику (впервые дав ур-ние скорости ; 1850), а К. Гульдберг и П. Вааге в 1864-67 сформулировали . Г. И. Гесс в 1840 открыл основной закон , М. Бертло и В. Ф. Лугинин исследовали теплоты мн. р-ций. В это же время развиваются работы по , и , начало к-рым было положено еще в 18 в.
Работами Дж. Гиббса, Вант-Гоффа, В. Нернста и др. создается . Исследования электропроводности р-ров и привели к открытию электролитич. (С. Аррениус, 1887). В этом же году Оствальд и Вант-Гофф основали первый журнал, посвященный , и она оформилась как самостоятельная дисциплина. К . 19 в. принято относить зарождение и , особенно в связи с пионерскими работами Либиха (1840-е гг.) по изучению , и .
19 в. по праву м. б. назван веком открытий хим. элементов. За эти 100 лет было открыто более половины (50) существующих на Земле элементов. Для сравнения: в 20 в. открыто 6 элементов, в 18 в.- 18, ранее 18 в.- 14.
Выдающиеся открытия в физике в кон. 19 в. (рентгеновские лучи, ) и развитие теоретич. представлений (квантовая теория) привели к открытию новых (радиоактивных) элементов и явления изотопии, возникновению и , новым представлениям о строении и о природе хим. связи, дав начало развитию совр. химии (химии 20 в.).
Успехи химии 20 в. связаны с прогрессом аналит. химии и физ. методов изучения в-в и воздействия на них, проникновением в механизмы р-ций, с синтезом новых классов в-в и новых материалов, дифференциацией хим. дисциплин и интеграцией химии с другими науками, с удовлетворением потребностей совр. пром-сти, техники и технологии, медицины, строительства, сельского хозяйства и др. сфер человеческой деятельности в новых хим. знаниях, процессах и продуктах. Успешное применение новых физ. методов воздействия привело к формированию новых важных направлений химии, напр. , а также использующие идеи . Получают дальнейшее развитие методы, моделирующие биохим. р-ции. Успехи (в т. ч. сканирующей туннельной) открыли перспективы "конструирования" в-в на мол. уровне, привели к созданию нового направления в химии - т. наз. нанотехнологии. Для управления хим. процессами как в лаб., так и в пром. масштабе, начинают использоваться принципы мол. и надмол. организации ансамблей реагирующих (в т. ч. подходы, основанные на ).
Химия как система знания о в-вах и их превращениях. Это знание содержится в запасе фактов - надежно установленных и проверенных сведений о хим. элементах и соед., их р-циях и поведении в природных и искусств. средах. Критерии фактов и способы их систематизации постоянно развиваются. Крупные обобщения, надежно связывающие большие совокупности фактов, становятся научными законами, формулировка к-рых открывает новые этапы химии (напр., и энергии, периодич. закон Менделеева). Теории, используя специфич. понятия, объясняют и прогнозируют факты более частной предметной области. По сути, опытное знание становится фактом только тогда, когда получает теоретич. толкование. Так, первая хим. теория - теория , будучи неверной, способствовала становлению химии, т. к. соединяла факты в систему и позволяла формулировать новые вопросы. (Бутлеров, Кекуле) упорядочила и объяснила огромный материал орг. химии и обусловила быстрое развитие хим. синтеза и исследования структуры орг. соединений.
Х имия как знание - система очень динамичная. Эволюционное накопление знаний прерывается революциями - глубокой перестройкой системы фактов, теорий и методов, с возникновением нового набора понятий или даже нового стиля мышления. Так, революцию вызвали труды Лавуазье (матери-алистич. теория , внедрение количеств. методов эксперимента, разработка хим. номенклатуры), открытие периодич. закона Менделеева, создание в нач. 20 в. новых аналит. методов (микроанализ, ). Революцией можно считать и появление новых областей, вырабатывающих новое видение предмета химии и влияющих на все ее области (напр., возникновение физ. химии на базе хим. и хим. кинетики).
Хим. знание обладает развитой структурой. Каркас химии составляют основные хим. дисциплины, сложившиеся в 19 в.: аналит., неорг., орг. и физ. химия. В дальнейшем в ходе структуры химии образовалось большое число новых дисциплин (напр., ), а также новая инженерная отрасль - .
На каркасе дисциплин вырастает большая совокупность исследовательских областей, часть из к-рых входит в ту или иную дисциплину (напр., химия элементоорг. соед.- часть орг. химии), другие носят многодисциплинарный характер, т. е. требуют объединения в одном исследовании ученых из разных дисциплин (напр., исследование структуры с использованием комплекса сложных методов). Третьи являются междисциплинарными, т. е. требуют подготовки специалиста нового профиля (напр., химия нервного импульса).
Поскольку почти вся практич. деятельность людей связана с применением материи как в-ва, хим. знание необходимо во всех областях науки и технологии, осваивающих материальный мир. Поэтому сегодня химия стала, наравне с математикой,