Вычисление количества теплоты. КПД нагревателя. Применение уравнения теплового баланса

Темы кодификатора ЕГЭ : изменение агрегатных состояний вещества, плавление и кристаллизация, испарение и конденсация, кипение жидкости, изменение энергии в фазовых переходах.

Лёд, вода и водяной пар - примеры трёх агрегатных состояний вещества: твёрдого, жидкого и газообразного. В каком именно агрегатном состоянии находится данное вещество - зависит от его температуры и других внешних условий, в которых оно находится.

При изменении внешних условий (например, если внутренняя энергия тела увеличивается или уменьшается в результате нагревания или охлаждения) могут происходить фазовые переходы - изменения агрегатных состояний вещества тела. Нас будут интересовать следующие фазовые переходы .

Плавление (твёрдое тело жидкость) и кристаллизация (жидкость твёрдое тело).
Парообразование (жидкость пар) и конденсация (пар жидкость).

Плавление и кристаллизация

Большинство твёрдых тел являются кристаллическими , т.е. имеют кристаллическую решётку - строго определённое, периодически повторяющееся в пространстве расположение своих частиц.

Частицы (атомы или молекулы) кристаллического твёрдого тела совершают тепловые колебания вблизи фиксированных положений равновесия - узлов кристаллической решётки.

Например, узлы кристаллической решётки поваренной соли - это вершины кубических клеток «трёхмерной клетчатой бумаги» (см. рис. 1 , на котором шарики большего размера обозначают атомы хлора (изображение с сайта en.wikipedia.org.)); если дать испариться воде из раствора соли, то оставшаяся соль будет нагромождением маленьких кубиков.

Рис. 1. Кристаллическая решётка

Плавлением называется превращение кристаллического твёрдого тела в жидкость. Расплавить можно любое тело - для этого нужно нагреть его до температуры плавления , которая зависит лишь от вещества тела, но не от его формы или размеров. Температуру плавления данного вещества можно определить из таблиц.

Наоборот, если охлаждать жидкость, то рано или поздно она перейдёт в твёрдое состояние. Превращение жидкости в кристаллическое твёрдое тело называется кристаллизацией или отвердеванием . Таким образом, плавление и кристаллизация являются взаимно обратными процессами.

Температура, при которой жикость кристаллизуется, называется температурой кристаллизации . Оказывается, что температура кристаллизации равна температуре плавления: при данной температуре могут протекать оба процесса. Так, при лёд плавится, а вода кристаллизуется; что именно происходит в каждом конкретном случае - зависит от внешних условий (например, подводится ли тепло к веществу или отводится от него).

Как происходят плавление и кристаллизация? Каков их механизм? Для уяснения сути этих процессов рассмотрим графики зависимости температуры тела от времени при его нагревании и охлаждении - так называемые графики плавления и кристаллизации.

График плавления

Начнём с графика плавления (рис. 2 ). Пусть в начальный момент времени (точка на графике) тело является кристаллическим и имеет некоторую температуру .

Рис. 2. График плавления

Затем к телу начинает подводиться тепло (скажем, тело поместили в плавильную печь), и температура тела повышается до величины - температуры плавления данного вещества. Это участок графика.

На участке тело получает количество теплоты

где - удельная теплоёмкость вещества твёрдого тела, - масса тела.

При достижении температуры плавления (в точке ) ситуация качественно меняется. Несмотря на то, что тепло продолжает подводиться, температура тела остаётся неизменной. На участке происходит плавление тела - его постепенный переход из твёрдого состояния в жидкое. Внутри участка мы имеем смесь твёрдого вещества и жидкости, и чем ближе к точке , тем меньше остаётся твёрдого вещества и тем больше появляется жидкости. Наконец, в точке от исходного твёрдого тела не осталось ничего: оно полностью превратилось в жидкость.

Участок соответствует дальнейшему нагреванию жидкости (или, как говорят, расплава ). На этом участке жидкость поглощает количество теплоты

где - удельная теплоёмкость жидкости.

Но нас сейчас больше всего интересует - участок фазового перехода. Почему не меняется температура смеси на этом участке? Тепло-то подводится!

Вернёмся назад, к началу процесса нагревания. Повышение температуры твёрдого тела на участке есть результат возрастания интенсивности колебаний его частиц в узлах кристаллической решётки: подводимое тепло идёт на увеличение кинетической энергии частиц тела (на самом деле некоторая часть подводимого тепла расходуется на совершение работы по увеличению средних расстояний между частицами - как мы знаем, тела при нагревании расширяются. Однако эта часть столь мала, что её можно не принимать во внимание.).

Кристаллическая решётка расшатывается всё сильнее и сильнее, и при температуре плавления размах колебаний достигает той предельной величины, при которой силы притяжения между частицами ещё способны обеспечивать их упорядоченное расположение друг относительно друга. Твёрдое тело начинает «трещать по швам», и дальнейшее нагревание разрушает кристаллическую решётку - так начинается плавление на участке .

С этого момента всё подводимое тепло идёт на совершение работы по разрыву связей, удерживающих частицы в узлах кристаллической решётки, т.е. на увеличение потенциальной энергии частиц. Кинетическая энергия частиц при этом остаётся прежней, так что температура тела не меняется. В точке кристаллическая структура исчезает полностью, разрушать больше нечего, и подводимое тепло снова идёт на увеличение кинетической энергии частиц - на нагревание расплава.

Удельная теплота плавления

Итак, для превращения твёрдого тела в жидкость мало довести его до температуры плавления. Необходимо дополнительно (уже при температуре плавления) сообщить телу некоторое количество теплоты для полного разрушения кристаллической решётки (т.е. для прохождения участка ).

Это количество теплоты идёт на увеличение потенциальной энергии взаимодействия частиц. Следовательно, внутренняя энергия расплава в точке больше внутренней энергии твёрдого тела в точке на величину .

Опыт показывает, что величина прямо пропорциональна массе тела:

Коэффициент пропорциональности не зависит от формы и размеров тела и является характеристикой вещества. Он называется удельной теплотой плавления вещества . Удельную теплоту плавления данного вещества можно найти в таблицах.

Удельная теплота плавления численно равна количеству теплоты, необходимому для превращения в жидкость одного килограмма данного кристаллического вещества, доведённого до температуры плавления.

Так, удельная теплота плавления льда равна кДж/кг, свинца - кДж/кг. Мы видим, что для разрушения кристаллической решётки льда требуется почти в раз больше энергии! Лёд относится к веществам с большой удельной теплотой плавления и поэтому весной тает не сразу (природа приняла свои меры: обладай лёд такой же удельной теплотой плавления, как и свинец, вся масса льда и снега таяла бы с первыми оттепелями, затопляя всё вокруг).

График кристаллизации

Теперь перейдём к рассмотрению кристаллизации - процесса, обратного плавлению. Начинаем с точки предыдущего рисунка. Предположим, что в точке нагревание расплава прекратилось (печку выключили и расплав выставили на воздух). Дальнейшее изменение температуры расплава представлено на рис. (3) .

Рис. 3. График кристаллизации

Жидкость остывает (участок ), пока её температура не достигнет температуры кристаллизации, которая совпадает с температурой плавления .

С этого момента температура расплава меняться перестаёт, хотя тепло по-прежнему уходит от него в окружающую среду. На участке происходит кристаллизация расплава - его постепенный переход в твёрдое состояние. Внутри участка мы снова имеем смесь твёрдой и жидкой фаз, и чем ближе к точке , тем больше становится твёрдого вещества и тем меньше - жидкости.Наконец,вточке жидкостинеостаётсявовсе-онаполностьюкристаллизовалась.

Следующий участок соответствует дальнейшему остыванию твёрдого тела, возникшего в результате кристаллизации.

Нас опять-таки интересует участок фазового перехода : почему температура остаётся неизменной, несмотря на уход тепла?

Снова вернёмся в точку . После прекращения подачи тепла температура расплава понижается, так как его частицы постепенно теряют кинетическую энергию в результате соударений с молекулами окружающей среды и излучения электромагнитных волн.

Когда температура расплава понизится до температуры кристаллизации (точка ), его частицы замедлятся настолько, что силы притяжения окажутся в состоянии «развернуть» их должным образом и придать им строго определённую взаимную ориентацию в пространстве. Так возникнут условия для зарождения кристаллической решётки, и она действительно начнёт формироваться благодаря дальнейшему уходу энергии из расплава в окружающее пространство.

Одновременно начнётся встречный процесс выделения энергии: когда частицы занимают свои места в узлах кристаллической решётки, их потенциальная энергия резко уменьшается, за счёт чего увеличивается их кинетическая энергия - кристаллизующаяся жидкость является источником тепла (часто у проруби можно увидеть сидящих птиц. Они там греются!). Выделяющееся в ходе кристаллизации тепло в точности компенсирует потерю тепла в окружающую среду, и потому температура на участке не меняется.

В точке расплав исчезает, а вместе с завершением кристаллизации исчезает и этот внутренний «генератор» тепла. Вследствие продолжающегося рассеяния энергии во внешнюю среду понижение температуры возобновится, но только остывать уже будет образовавшееся твёрдое тело (участок ).

Как показывает опыт, при кристаллизации на участке выделяется ровно то же самое количество теплоты , которое было поглощено при плавлении на участке .

Парообразование и конденсация

Парообразование - это переход жидкости в газообразное состояние (в пар ). Существует два способа парообразования: испарение и кипение.

Испарением называется парообразование, которое происходит при любой температуре со свободной поверхности жидкости. Как вы помните из листка «Насыщенный пар», причиной испарения является вылет из жидкости наиболее быстрых молекул, которые способны преодолеть силы межмолекулярного притяжения. Эти молекулы и образуют пар над поверхностью жидкости.

Разные жидкости испаряются с разными скоростями: чем больше силы притяжения молекул друг к другу - тем меньшее число молекул в единицу времени окажутся в состоянии их преодолеть и вылететь наружу, и тем меньше скорость испарения. Быстро испаряются эфир, ацетон, спирт (их иногда называют летучими жидкостями), медленнее - вода, намного медленнее воды испаряются масло и ртуть.

Скорость испарения растёт с повышением температуры (в жару бельё высохнет скорее), поскольку увеличивается средняя кинетическая энергия молекул жидкости, и тем самым возрастает число быстрых молекул, способных покинуть её пределы.

Скорость испарения зависит от площади поверхности жидкости: чем больше площадь, тем большее число молекул получают доступ к поверхности, и испарение идёт быстрее (вот почему при развешивании белья его тщательно расправляют).

Одновременно с испарением наблюдается и обратный процесс: молекулы пара, совершая беспорядочное движение над поверхностью жидкости, частично возвращаются обратно в жидкость. Превращение пара в жидкость называется конденсацией .

Конденсация замедляет испарение жидкости. Так, в сухом воздухе бельё высохнет быстрее, чем во влажном. Быстрее оно высохнет и на ветру: пар сносится ветром, и испарение идёт более интенсивно

В некоторых ситуациях скорость конденсации может оказаться равной скорости испарения. Тогда оба процесса компенсируют друг друга и наступает динамическое равновесие: из плотно закупоренной бутылки жидкость не улетучивается годами, а над поверхностью жидкости в этом случае находится насыщенный пар .

Конденсацию водяного пара в атмосфере мы постоянно наблюдаем в виде облаков, дождей и выпадающей по утрам росы; именно испарение и конденсация обеспечивают круговорот воды в природе, поддерживая жизнь на Земле.

Поскольку испарение - это уход из жидкости самых быстрых молекул, в процессе испарения средняя кинетическая энергия молекул жидкости уменьшается, т.е. жидкость остывает. Вам хорошо знакомо ощущение прохлады и порой даже зябкости (особенно при ветре), когда выходишь из воды: вода, испаряясь по всей поверхности тела, уносит тепло, ветер же ускоряет процесс испарения (nеперь понятно, зачем мы дуем на горячий чай. Кстати сказать, ещё лучше при этом втягивать воздух в себя, поскольку на поверхность чая тогда приходит сухой окружающий воздух, а не влажный воздух из наших лёгких;-)).

Ту же прохладу можно почувствовать, если провести по руке кусочком ваты, смоченным в летучем растворителе (скажем, в ацетоне или жидкости для снятия лака). В сорокаградусную жару благодаря усиленному испарению влаги через поры нашего тела мы сохраняем свою температуру на уровне нормальной; не будь этого терморегулирующего механизма, в такую жару мы бы попросту погибли.

Наоборот, в процессе конденсации жидкость нагревается: молекулы пара при возвращении в жидкость разгоняются силами притяжения со стороны находящихся поблизости молекул жидкости, в результате чего средняя кинетическая энергия молекул жидкости увеличивается (сравните это явление с выделением энергии при кристаллизации расплава!).

Кипение

Кипение - это парообразование, происходящее по всему объёму жидкости.

Кипение оказывается возможным потому, что в жидкости всегда растворено какое-то количество воздуха, попавшего туда в результате диффузии. При нагревании жидкости этот воздух расширяется, пузырьки воздуха постепенно увеличиваются в размерах и становятся видимы невооружённым глазом (в кастрюле с водой они осаждают дно и стенки). Внутри воздушных пузырьков находится насыщенный пар, давление которого, как вы помните, быстро растёт с повышением температуры.

Чем крупнее становятся пузырьки, тем большая действует на них архимедова сила, и определённого момента начинается отрыв и всплытие пузырьков. Поднимаясь вверх, пузырьки попадают в менее нагретые слои жидкости; пар в них конденсируется, и пузырьки сжимаются опять. Схлопывание пузырьков вызывает знакомый нам шум, предшествующий закипанию чайника. Наконец, с течением времени вся жидкость равномерно прогревается, пузырьки достигают поверхности и лопаются, выбрасывая наружу воздух и пар - шум сменяется бульканьем, жидкость кипит.

Пузырьки, таким образом, служат «проводниками» пара изнутри жидкости на её поверхность. При кипении наряду с обычным испарением идёт превращение жидкости в пар по всему объёму - испарение внутрь воздушных пузырьков с последующим выводом пара наружу. Вот почему кипящая жидкость улетучивается очень быстро: чайник, из которого вода испарялась бы много дней, выкипит за полчаса.

В отличие от испарения, происходящего при любой температуре, жидкость начинает кипеть только при достижении температуры кипения - именно той температуры, при которой пузырьки воздуха оказываются в состоянии всплыть и добраться до поверхности. При температуре кипения давление насыщенного пара становится равно внешнему давлению на жидкость (в частности, атмосферному давлению ). Соответственно, чем больше внешнее давление, тем при более высокой температуре начнётся кипение.

При нормальном атмосферном давлении ( атм или Па) температура кипения воды равна . Поэтому давление насыщенного водяного пара при температуре равно Па. Этот факт необходимо знать для решения задач - часто он считается известным по умолчанию.

На вершине Эльбруса атмосферное давление равно атм, и вода там закипит при температуре . А под давлением атм вода начнёт кипеть только при .

Температура кипения (при нормальном атмосферном давлении) является строго определённой для данной жидкости величиной (температуры кипения, приводимые в таблицах учебников и справочников - это температуры кипения химически чистых жидкостей. Наличие в жидкости примесей может изменять температуру кипения. Скажем, водопроводная вода содержит растворённый хлор и некоторые соли, поэтому её температура кипения при нормальном атмосферном давлении может несколько отличаться от ). Так, спирт кипит при , эфир - при , ртуть - при . Обратите внимание: чем более летучей является жидкость, тем ниже её температура кипения. В таблице температур кипения мы видим также, что кислород кипит при . Значит, при обычных температурах кислород - это газ!

Мы знаем, что если чайник снять с огня, то кипение тут же прекратится - процесс кипения требует непрерывного подвода тепла. Вместе с тем, температура воды в чайнике после закипания перестаёт меняться, всё время оставаясь равной . Куда же при этом девается подводимое тепло?

Ситуация аналогична процессу плавления: тепло идёт на увеличение потенциальной энергии молекул. В данном случае - на совершение работы по удалению молекул на такие расстояния, что силы притяжения окажутся неспособными удерживать молекулы неподалёку друг от друга, и жидкость будет переходить в газообразное состояние.

График кипения

Рассмотрим графическое представление процесса нагревания жидкости - так называемый график кипения (рис. 4 ).

Рис. 4. График кипения

Участок предшествует началу кипения. На участке жидкость кипит, её масса уменьшается. В точке жидкость выкипает полностью.

Чтобы пройти участок , т.е. чтобы жидкость, доведённую до температуры кипения, полностью превратить в пар, к ней нужно подвести некоторое количество теплоты . Опыт показывает, что данное количество теплоты прямо пропорционально массе жидкости:

Коэффициент пропорциональности называется удельной теплотой парообразования жидкости (при температуре кипения). Удельная теплота парообразования численно равна количеству теплоты, которое нужно подвести к 1 кг жидкости, взятой при температуре кипения, чтобы полностью превратить её в пар.

Так, при удельная теплота парообразования воды равна кДж/кг. Интересно сравнить её с удельной теплотой плавления льда ( кДж/кг) - удельная теплота парообразования почти в семь раз больше! Это и не удивительно: ведь для плавления льда нужно лишь разрушить упорядоченное расположение молекул воды в узлах кристаллической решётки; при этом расстояния между молекулами остаются примерно теми же. А вот для превращения воды в пар нужно совершить куда большую работу по разрыву всех связей между молекулами и удалению молекул на значительные расстояния друг от друга.

График конденсации

Процесс конденсации пара и последующего остывания жидкости выглядит на графике симметрично процессу нагревания и кипения. Вот соответствующий график конденсации для случая стоградусного водяного пара, наиболее часто встречающегося в задачах (рис. 5 ).

Рис. 5. График конденсации

В точке имеем водяной пар при . На участке идёт конденсация; внутри этого участка - смесь пара и воды при . В точке пара больше нет, имеется лишь вода при . Участок - остывание этой воды.

Опыт показывает, что при конденсации пара массы (т. е. при прохождении участка ) выделяется ровно то же самое количество теплоты , которое было потрачено на превращение в пар жидкости массы при данной температуре.

Давайте ради интереса сравним следующие количества теплоты:

Которое выделяется при конденсации г водяного пара;
, которое выделяется при остывании получившейся стоградусной воды до температуры, скажем, .

Дж;
Дж.

Эти числа наглядно показывают, что ожог паром гораздо страшнее ожога кипятком. При попадании на кожу кипятка выделяется «всего лишь» (кипяток остывает). А вот при ожоге паром сначала выделится на порядок большее количество теплоты (пар конденсируется), образуется стоградусная вода, после чего добавится та же величина при остывании этой воды.

а) Нагревание и охлаждение

892. Какая масса ртути имеет такую же теплоемкость, как 13 кг спирта? Удельная теплоемкость спирта 2440 Дж/(кг×К), удельная теплоемкость ртути 130 Дж/(кг×К). (244)

893. При трении друг о друга двух одинаковых тел их температура через одну минуту повысилась на 30°С. Какова средняя мощность, развиваемая в обоих телах при трении? Теплоемкость каждого тела 800 Дж/К. (800)

894. На электроплитке мощностью 600 Вт 3 л воды нагреваются до кипения за 40 минут. Начальная температура воды 20°С. Удельная теплоемкость воды 4200 Дж/(кг×К). Определите КПД (в процентах) установки. (70)

895. При сверлении металла ручной дрелью сверло массой 0,05 кг нагрелось на 20°С за 200 с непрерывной работы. Средняя мощность, потребляемая дрелью от сети при сверлении, равна 10 Вт. Сколько процентов затраченной энергии пошло на нагревание сверла, если удельная теплоемкость материала сверла 460 Дж/(кг×К)? (23)

896. При работе электромотора мощностью 400 Вт он нагревается на 10 К за 50 с непрерывной работы. Чему равен КПД (в процентах) мотора? Теплоемкость мотора 500 Дж/К. (75)

897. Трансформатор, погруженный в масло, вследствие перегрузки начинает греться. Каков его КПД (в процентах), если при полной мощности 60 кВт масло массой 60 кг нагревается на 30°С за 4 минуты работы трансформатора? Удельная теплоемкость масла 2000 Дж/(кг×К). (75)

898. Генератор излучает импульсы сверхвысокой частоты с энергией в каждом импульсе 6 Дж. Частота повторения импульсов 700 Гц. КПД генератора 60%. Сколько литров воды в час надо пропускать через охлаждающую систему генератора, чтобы вода нагрелась не выше, чем на 10 К? Удельная теплоемкость воды 4200 Дж/(кг·К). (240)

б) Фазовые превращения

899. Сколько льда, взятого при температуре 0°С, можно расплавить, сообщив ему энергию 0,66 МДж? Удельная теплота плавления льда 330 кДж/кг. (2)

900. При отвердевании 100 кг стали при температуре плавления выделилось 21 МДж теплоты. Какова удельная теплота плавления (в кДж/кг) стали? (210)

901. Какое количество теплоты (в кДж) надо сообщить 2 кг льда, взятого при температуре ‑10°С, чтобы полностью его растопить? Удельная теплоемкость льда 2100 Дж/(кг×К), удельная теплота плавления льда 330 кДж/кг. (702)

902. Для того чтобы превратить некоторое количество льда, взятого при температуре ‑50°С, в воду с температурой 50°С, требуется 645 кДж энергии. Чему равна масса льда? Удельная теплоемкость воды 4200 Дж/(кг×К), удельная теплоемкость льда 2100 Дж/(кг×К), удельная теплота плавления льда 3,3×105 Дж/кг. (1)

903. Какое количество теплоты (в кДж) необходимо для превращения в пар 0,1 кг кипящей воды? Удельная теплота парообразования воды 2,26 МДж/кг. (226)

904. Сколько теплоты (в кДж) выделится при конденсации 0,2 кг водяного пара при температуре 100°С? Удельная теплота парообразования воды 2,3×106 Дж/кг. (460)

905. Какое количество теплоты (в кДж) нужно сообщить 1 кг воды, взятой при 0°С, чтобы нагреть ее до 100°С и полностью испарить? Удельная теплоемкость воды 4200 Дж/(кг×К), удельная теплота парообразования воды 2,3×106 Дж/кг. (2720)

906. Для нагревания воды, взятой при температуре 20°С, и обращения ее в пар израсходовано 2596 кДж энергии. Определите массу воды. Удельная теплоемкость воды 4200 Дж/(кг×К), удельная теплота парообразования воды 2,26 МДж/кг. (1)

907. Для расплавления одной тонны стали используется электропечь мощностью 100 кВт. Сколько минут продолжается плавка, если слиток до начала плавления надо нагреть на 1500 К? Удельная теплоемкость стали 460 Дж/(кг×К), удельная теплота плавления стали 210 кДж/кг. (150)

908. Для нагревания некоторой массы воды от 0°С до 100°С требуется 8400 Дж теплоты. Сколько еще потребуется теплоты (в кДж), чтобы полностью испарить эту воду? Удельная теплоемкость воды 4200 Дж/(кг·К), удельная теплота парообразования воды 2300 кДж/кг. (46)

909. Чтобы охладить воду в холодильнике от 33°С до 0°С, потребовалась 21 минута. Сколько времени потребуется, чтобы превратить затем эту воду в лед? Удельная теплоемкость воды 4200 Дж/(кг·К), удельная теплота плавления льда 3,3·105 Дж/кг. Ответ дать в минутах. (50)

910. Сосуд с водой нагревают на электроплитке от 20°С до кипения за 20 минут. Сколько еще нужно времени (в минутах), чтобы 42% воды обратить в пар? Удельная теплоемкость воды 4200 Дж/(кг×К), удельная теплота парообразования воды 2,2×106 Дж/кг. (55)

911. Вычислите КПД (в процентах) газовой горелки, если в ней используется газ с удельной теплотой сгорания 36 МДж/м3 , а на нагревание чайника с 3 л воды от 10°С до кипения было израсходовано 60 л газа. Теплоемкость чайника ­600 Дж/К. Удельная теплоемкость воды 4200 Дж/(кг·К). (55)

912. Для работы паровой машины расходуется 210 кг угля за 1 час. Охлаждение машины осуществляется водой, которая на входе имеет температуру 17°С, а на выходе 27°С. Определите расход воды (в кг) за 1 с, если на ее нагревание идет 24% общего количества теплоты. Удельная теплоемкость воды 4200 Дж/(кг×К), удельная теплота сгорания угля 30 МДж/кг. (10)

913. На сколько километров пути хватит 10 кг бензина для двигателя автомобиля, развивающего при скорости 54 км/час мощность 69 кВт и имеющего КПД 40%? Удельная теплота сгорания бензина 4,6×107 Дж/кг. (40)

Одно и тоже вещество в реальном мире в зависимости от окружающих условий может находиться в различных состояниях. Например, вода может быть в виде жидкости, в идее твердого тела - лед, в виде газа - водяной пар.

  • Эти состояния называются агрегатными состояниями вещества.

Молекулы вещества в различных агрегатных состояниях ничем не отличаются друг от друга. Конкретное агрегатное состояние определяется расположением молекул, а так же характером их движения и взаимодействия между собой.

Газ - расстояние между молекулами значительно больше размеров самих молекул. Молекулы в жидкости и в твердом теле расположены достаточно близко друг к другу. В твердых телах еще ближе.

Чтобы изменить агрегатное состояние тела, ему необходимо сообщить некоторую энергию. Например, чтобы перевести воду в пар её надо нагреть.Чтобы пар снова стал водой, он должен отдать энергию.

Переход из твердого состояния в жидкое

Переход вещества из твердого состояние в жидкое называется плавлением. Для того чтобы тело начало плавиться, его необходимо нагреть до определенной температуры. Температура, при которой вещество плавится, называют температурой плавления вещества.

Каждое вещество имеет свою температуру плавления. У каких-то тел она очень низкая, например, у льда. А у каких-то тел температура плавления очень высокая, например, железо. Вообще, плавление кристаллического тела это сложный процесс.

График плавления льда

Ниже на рисунке представлен график плавления кристаллического тела, в данном случае льда.

  • График показывает зависимость температуры льда от времени, которое его нагревают. На вертикально оси отложена температура, по горизонтальной - время.

Из графика, что изначально температура льда была -20 градусов. Потом его начали нагревать. Температура начала расти. Участок АВ это участок нагревания льда. С течением времени, температура увеличилась до 0 градусов. Эта температура считается температурой плавления льда. При этой температуре лед начал плавиться, но при этом перестала возрастать его температура, хотя при этом лед также продолжали нагревать. Участку плавления соответствует участок ВС на графике.

Затем, когда весь лед расплавился и превратился в жидкость, температура воды снова стала увеличиваться. Это показано на графике лучом C. То есть делаем вывод, что во время плавления температура тела не изменяется, вся поступающая энергия идет на плвление.

До сих пор мы рассматривали первый закон термодинамики применительно к газам. Отличительной особенностью газа является то, что его объем может значительно изменяться. Поэтому согласно первому закону термодинамики переданное газу количество теплоты Q равно сумме совершенной газом работы и изменения его внутренней энергии:

Q = ∆U + A г.

В этом параграфе мы рассмотрим случаи, когда некоторое количество теплоты сообщают жидкости или твердому телу. При нагревании или охлаждении они незначительно изменяются в объеме, поэтому совершенной ими при расширении работой обычно пренебрегают. Следовательно, для жидкостей и твердых тел первый закон термодинамики можно записать в виде

Простота этого уравнения, однако, обманчива.

Дело в том, что внутренняя энергия тела представляет собой только суммарную кинетическую энергию хаотического движения составляющих его частиц лишь тогда, когда этим телом является идеальный газ. В таком случае, как мы уже знаем, внутренняя энергия прямо пропорциональна абсолютной температуре (§ 42). В жидкостях же и в твердых телах большую роль играет потенциальная энергия взаимодействия частиц. А она, как показывает опыт, может изменяться даже при постоянной температуре!

Например, если передавать некоторое количество теплоты смеси воды со льдом, то ее температура будет оставаться постоянной (равной 0 ºС), пока весь лед не растает. (Именно по этой причине температуру таяния льда и приняли в свое время в качестве опорной точки при определении шкалы Цельсия.) При этом подводимое тепло расходуется на увеличение потенциальной энергии взаимодействия молекул:чтобы превратить кристалл в жидкость, необходимо затратить энергию на разрушение кристаллической решетки.

Похожее явление происходит и при кипении: если передавать некоторое количество теплоты воде при температуре кипения, ее температура будет оставаться постоянной (равной 100 ºС при нормальном атмосферном давлении), пока вся вода не выкипит. (Потому ее и выбрали в качестве второй опорной точки для шкалы Цельсия.) В этом случае подводимое тепло также расходуется на увеличение потенциальной энергии взаимодействия молекул.

Может показаться странным, что потенциальная энергия взаимодействия молекул в паре больше, чем в воде. Ведь молекулы газа почти не взаимодействуют друг с другом, поэтому потенциальную энергию их взаимодействия естественно принять за нулевой уровень. Так и поступают. Но тогда потенциальную энергию взаимодействия молекул в жидкости надо считать отрицательной.

Такой знак потенциальной энергии взаимодействия характерен для притягивающихся тел. В таком случае, чтобы увеличить расстояние между телами, надо совершить работу, то есть увеличить потенциальную энергию их взаимодействия. И если после этого она становится равной нулю, значит, до этого она была отрицательной.

Итак, изменение состояния жидкостей и твердых тел при сообщении им некоторого количества теплоты надо рассматривать с учетом возможности изменения их агрегатного состояния. Изменения агрегатного состояния называют фазовыми переходами. Это – превращение твердого тела в жидкость (плавление), жидкости в твердое тело (отвердевание или кристаллизация), жидкости в пар (парообразование) и пара в жидкость (конденсация).

Закон сохранения энергии в тепловых явлениях, происходящих с жидкостями и твердыми телами, называют уравнением теплового баланса.
Рассмотрим сначала уравнение теплового баланса для случая, когда теплообмен происходит между двумя телами, а их теплообменом с другими телами можно пренебречь (на опыте для создания таких условий используют калориметры – сосуды, которые обеспечивают теплоизоляцию своего содержимого).

Будем считать (как мы считали ранее для газов) переданное телу количество теплоты положительным, если вследствие этого внутренняя энергия тела увеличивается, и отрицательным, если внутренняя энергия уменьшается. В таком случае уравнение теплового баланса имеет вид

Q 1 + Q 2 = 0, (1)

где Q 1 – количество теплоты, переданное первому телу со стороны второго, а Q 2 – количество теплоты, переданное второму телу со стороны первого.

Из уравнения (1) видно, что если одно тело получает тепло, то другое тело его отдает. Скажем, если Q 1 > 0, то Q 2 < 0.

Если теплообмен происходит между n телами, уравнение теплового баланса имеет вид

Q 1 + Q 2 + … + Q n = 0.

2. Уравнение теплового баланса без фазовых переходов

Будем считать тело однородным, то есть состоящим целиком из одного вещества (например, некоторая масса воды, стальной или медный брусок и т. д.). Рассмотрим сначала случай, когда агрегатное состояние тела не изменяется, то есть фазового перехода не происходит.

Из курса физики основной школы вы знаете, что в таком случае переданное телу количество теплоты Q прямо пропорционально массе тела m и изменению его температуры ∆t:

В этой формуле как Q, так и ∆t могут быть как положительными, так и отрицательными величинами.

Входящую в эту формулу величину с называют удельной теплоемкостью вещества, из которого состоит тело. Обычно в задачах на уравнение теплового баланса используют температуру по шкале Цельсия. Мы тоже будем так поступать.

1. На рисунке 48.1 приведены графики зависимости температуры двух тел от переданного им количества теплоты Q. Масса каждого тела 100 г.

А) У какого тела удельная теплоемкость больше и во сколько раз?
б) Чему равна удельная теплоемкость каждого тела?

2. В калориметр, содержащий 150 г воды при температуре 20 ºС, погружают вынутый из кипятка металлический цилиндр. Удельная теплоемкость воды равна 4,2 кДж/(кг * К). Примите, что тепловыми потерями можно пренебречь.
а) Объясните, почему справедливо уравнение

c м m м (t к – 100º) + c в m в (t к – 20º) = 0,

где c м и c в – значения теплоемкости данного металла и воды соответственно, m м и m в – значения массы цилиндра и воды соответственно, t к – значение конечной температуры содержимого калориметра, когда в нем установится тепловое равновесие.

б) Какое из двух слагаемых в приведенной формуле положительно, а какое – отрицательно? Поясните ваш ответ.
в) Чему равна удельная теплоемкость данного металла, если масса цилиндра 100 г, а конечная температура равна 25 ºС?
г) Чему равна конечная температура, если цилиндр изготовлен из алюминия, а его масса 100 г? Удельная теплоемкость алюминия равна 0,92 кДж/(кг * К).
д) Чему равна масса цилиндра, если он изготовлен из меди и его конечная температура 27 ºС? Удельная теплоемкость меди 0,4 кДж/(кг * К).

Рассмотрим случай, когда механическая энергия переходит во внутреннюю. Английский физик Дж. Джоуль пытался измерить, насколько нагреется вода в водопаде при ударе о землю.

3. С какой высоты должна падать вода, чтобы при ударе о землю ее температура повысилась на 1 ºС? Примите, что во внутреннюю энергию воды переходит половина ее потенциальной энергии.

Полученный вами ответ объяснит, почему ученого постигла неудача. Примите во внимание, что опыты ученый ставил на родине, где высота самого высокого водопада – около 100 м.

Если тело нагревают с помощью электронагревателя или сжигая топливо, надо учитывать коэффициент полезного действия нагревателя. Например, если коэффициент полезного действия нагревателя равен 60 %, это означает, что увеличение внутренней энергии нагреваемого тела составляет 60 % от теплоты, выделившейся при сгорании топлива или при работе электронагревателя.

Напомним также, что при сгорании топлива массой m выделяется количество теплоты Q, которое выражается формулой

где q – удельная теплота сгорания.

4. Чтобы довести 3 л воды в котелке от температуры 20 ºС до кипения, туристам пришлось сжечь в костре 3 кг сухого хвороста. Чему равен коэффициент полезного действия костра как нагревательного прибора? Удельную теплоту сгорания хвороста примите равной 107 Дж/кг.

5. С помощью электронагревателя пытаются довести до кипения 10 л воды, но вода не закипает: при включенном нагревателе ее температура остается постоянной, ниже 100 ºС. Мощность нагревателя 500 Вт, коэффициент полезного действия 90 %.
а) Какое количество теплоты передается за 1 с воде от нагревателя?
б) Какое количество теплоты передается за 1 с от воды окружающему воздуху при включенном нагревателе, когда температура воды остается постоянной?
в) Какое количество теплоты передаст вода за 1 мин окружающему воздуху сразу после выключения нагревателя? Считайте, что за это время температура воды существенно не изменится.
г) Насколько понизится температура воды за 1 мин сразу после выключения нагревателя?

3. Уравнение теплового баланса при наличии фазовых переходов

Напомним некоторые факты, известные вам из курса физики основной школы.

Для того чтобы полностью расплавить кристаллическое твердое тело при его температуре плавления, надо сообщить ему количество теплоты Q, пропорциональное массе m тела:

Коэффициент пропорциональности λ называют удельной теплотой плавления. Она численно равна количеству теплоты, которое надо сообщить кристаллическому телу массой 1 кг при температуре плавления, чтобы полностью превратить его в жидкость. Единицей удельной теплоты плавления является 1 Дж/кг (джоуль на килограмм).

Например, удельная теплота плавления льда равна 330 кДж/кг.

6. На какую высоту можно было бы поднять человека массой 60 кг, если увеличить его потенциальную энергию на величину, численно равную количеству теплоты, которая нужна для того, чтобы расплавить 1 кг льда при температуре 0 ºС?

При решении задач важно учитывать, что твердое тело начнет плавиться только после того, как оно все нагреется до температуры плавления. На графике зависимости температуры тела от переданного ему количества теплоты процесс плавления представляет собой горизонтальный отрезок.

7. На рисунке 48.2 изображен график зависимости температуры тела массой 1 кг от переданного ему количества теплоты.


а) Какова удельная теплоемкость тела в твердом состоянии?
б) Чему равна температура плавления?
в) Чему равна удельная теплота плавления?
г) Какова удельная теплоемкость тела в жидком состоянии?
д) Из какого вещества может состоять данное тело?

8. В атмосферу Земли влетает железный метеорит. Удельная теплоемкость железа равна 460 Дж/(кг * К), температура плавления 1540 ºС, удельная теплота плавления 270 кДж/кг. Начальную температуру метеорита до входа в атмосферу примите равной -260 ºС. Примите, что 80 % кинетической энергии метеорита при движении сквозь атмосферу переходит в его внутреннюю энергию.
а) Какова должна быть минимальная начальная скорость метеорита, чтобы он нагрелся до температуры плавления?
б) Какая часть метеорита расплавится, если его начальная скорость равна 1,6 км/с?

Если при наличии фазовых переходов требуется найти коечную температуру тел, то прежде всего надо выяснить, каким будет конечное состояние. Например, если в начальном состоянии заданы массы льда и воды и значения их температур, то есть три возможности.

В конечном состоянии только лед (такое может быть, если начальная температура льда была достаточно низкой или масса льда была достаточно большой). В таком случае неизвестной величиной является конечная температура льда. Если задача решена правильно, то полученное значение не превышает 0 ºС. При установлении теплового равновесия лед нагревается до этой конечной температуры, а вся вода охлаждается до 0 ºС, затем замерзает, и образовавшийся из нее лед охлаждается до конечной температуры (если она ниже 0 ºС).

В конечном состоянии находятся в тепловом равновесии лед и вода. Такое возможно только при температуре 0 ºС. Неизвестной величиной в таком случае будет конечная масса льда (или конечная масса воды: сумма масс воды и льда дана). Если задача решена правильно, то конечные массы льда и воды положительны. В таком случае при установлении теплового равновесия сначала лед нагревается до 0 ºС, а вода охлаждается до 0 ºС. Затем либо часть льда тает, либо часть воды замерзает.

В конечном состоянии только вода. Тогда неизвестной величиной является ее температура (она должна быть не ниже 0 ºС), В этом случае вода охлаждается до конечной температуры, а льду приходится пройти более сложный путь: сначала он весь нагревается до 0 ºС, затем весь тает, а потом образовавшаяся из него вода нагревается до конечной температуры.

Чтобы определить, какая из этих возможностей реализуется в той или иной задаче, надо провести небольшое исследование.

9. В калориметр, содержащий 1,5 л воды при температуре 20 ºС, кладут кусок льда при температуре –10 ºС. Примите, что тепловыми потерями можно пренебречь. Удельная теплоемкость льда 2,1 кДж/(кг * К).
а) Какова могла быть масса льда, если в конечном состоянии в калориметре находится только лед? только вода? лед и вода в тепловом равновесии?
б) Чему равна конечная температура, если начальная масса льда 40 кг?
в) Чему равна конечная температура, если начальная масса льда 200 г?
г) Чему равна конечная масса воды, если начальная масса льда равна 1 кг?

То, что для плавления телу надо сообщить некоторое количество теплоты, кажется естественным. Это явление служит нам добрую службу: оно замедляет таяние снега, уменьшая паводки весной.

А вот то, что при кристаллизации тело отдает некоторое количество теплоты, может удивить: неужели вода при замерзании действительно отдает некоторое количество теплоты? И тем не менее это так: замерзая и превращаясь в лед, вода отдает довольно большое количество теплоты холодному воздуху или льду, температура которых ниже 0 ºС. Это явление тоже служит нам добрую службу, смягчая первые заморозки и наступление зимы.
Учтем теперь возможность превращения жидкости в пар или пара в жидкость.

Как вы знаете из курса физики основной школы, количество теплоты Q, необходимое для того, чтобы превратить жидкость в пар при постоянной температуре, пропорционально массе m жидкости:

Коэффициент пропорциональности L называют удельной теплотой парообразования. Она численно равна количеству теплоты, которое необходимо сообщить 1 кг жидкости, чтобы полностью превратить ее в пар. Единицей удельной теплоты парообразования является 1 Дж/кг.

Например, удельная теплота парообразования воды при температуре кипения и нормальном атмосферном давлении авиа примерно 2300 кДж/кг.

10. В калориметр, в котором находится 1 л воды при температуре 20 ºС, вводят 100 г водяного пара при температуре 100 ºС. Чему будет равна температура в калориметре после установления теплового равновесия? Тепловыми потерями можно пренебречь.

Дополнительные вопросы и задания

11. Чтобы нагреть на плите некоторую массу воды от 20 ºС до температуры кипения, потребовалось 6 мин. Сколько времени потребуется, чтобы вся эта вода выкипела? Примите, что потерями тепла можно пренебречь.

12. В калориметр, содержащий лед массой 100 г при температуре 0 ºС, впускают пар при температуре 100 ºС. Чему будет равна масса воды в калориметре, когда весь лед растает и температура воды будет равна 0 ºС?

13. Нагретый алюминиевый куб положили на плоскую льдину, температура которой 0 ºС. До какой температуры был нагрет куб, если он полностью погрузился в лед? Примите, что потерями тепла можно пренебречь. Удельная теплоемкость алюминия 0,92 кДж/(кг * К).

14. Свинцовая пуля ударяется о стальную плиту и отскакивает от нее. Температура пули до удара равна 50 ºС, скорость 400 м/с. Скорость пули после удара равна 100 м/с. Какая часть пули расплавилась, если во внутреннюю энергию пули перешло 60 % потерянной кинетической энергии? Удельная теплоемкость свинца 0,13 кДж/(кг * К), температура плавления 327 ºС, удельная теплота плавления 25 кДж/кг.

15. В калориметр, в котором содержится 1 л воды при температуре 20 ºС, кладут 100 г мокрого снега, содержание воды в котором (по массе) составляет 60 %. Какая температура установится в калориметре после установления теплового равновесия? Тепловыми потерями можно пренебречь.
Подсказка. Под мокрым снегом подразумевают смесь воды и льда при температуре 0 ºС.

понижение температуры возобновится, но только остывать уже будет образовавшееся твёрдое тело (участок F G).

Как показывает опыт, при кристаллизации на участке EF выделяется ровно то же самое количество теплоты Q = m, которое было поглощено при плавлении на участке BC.

10.5 Парообразование и конденсация

Парообразование это переход жидкости в газообразное состояние (в пар). Существует два способа парообразования: испарение и кипение.

Испарением называется парообразование, которое происходит при любой температуре со свободной поверхности жидкости. Как вы помните из листка ¾Насыщенный пар¿, причиной испарения является вылет из жидкости наиболее быстрых молекул, которые способны преодолеть силы межмолекулярного притяжения. Эти молекулы и образуют пар над поверхностью жидкости.

Разные жидкости испаряются с разными скоростями: чем больше силы притяжения молекул друг к другу тем меньшее число молекул в единицу времени окажутся в состоянии их преодолеть и вылететь наружу, и тем меньше скорость испарения. Быстро испаряются эфир, ацетон, спирт (их иногда называют летучими жидкостями), медленнее вода, намного медленнее воды испаряются масло и ртуть.

Скорость испарения растёт с повышением температуры (в жару бельё высохнет скорее), поскольку увеличивается средняя кинетическая энергия молекул жидкости, и тем самым возрастает число быстрых молекул, способных покинуть её пределы.

Скорость испарения зависит от площади поверхности жидкости: чем больше площадь, тем большее число молекул получают доступ к поверхности, и испарение идёт быстрее (вот почему при развешивании белья его тщательно расправляют).

Одновременно с испарением наблюдается и обратный процесс: молекулы пара, совершая беспорядочное движение над поверхностью жидкости, частично возвращаются обратно в жидкость. Превращение пара в жидкость называется конденсацией.

Конденсация замедляет испарение жидкости. Так, в сухом воздухе бельё высохнет быстрее, чем во влажном. Быстрее оно высохнет и на ветру: пар сносится ветром, и испарение идёт более интенсивно.

В некоторых ситуациях скорость конденсации может оказаться равной скорости испарения. Тогда оба процесса компенсируют друг друга и наступает динамическое равновесие: из плотно закупоренной бутылки жидкость не улетучивается годами, а над поверхностью жидкости в этом случае находится насыщенный пар.

Конденсацию водяного пара в атмосфере мы постоянно наблюдаем в виде облаков, дождей и выпадающей по утрам росы; именно испарение и конденсация обеспечивают круговорот воды в природе, поддерживая жизнь на Земле.

Поскольку испарение это уход из жидкости самых быстрых молекул, в процессе испарения средняя кинетическая энергия молекул жидкости уменьшается, т. е. жидкость остывает. Вам хорошо знакомо ощущение прохлады и порой даже зябкости (особенно при ветре), когда выходишь из воды: вода, испаряясь по всей поверхности тела, уносит тепло, ветер же ускоряет процесс испарения19 .

Ту же прохладу можно почувствовать, если провести по руке кусочком ваты, смоченным в летучем растворителе (скажем, в ацетоне или жидкости для снятия лака). В сорокаградусную жару благодаря усиленному испарению влаги через поры нашего тела мы сохраняем свою температуру на уровне нормальной; не будь этого терморегулирующего механизма, в такую жару

19 Теперь понятно, зачем мы дуем на горячий чай. Кстати сказать, ещё лучше при этом втягивать воздух в себя, поскольку на поверхность чая тогда приходит сухой окружающий воздух, а не влажный воздух из наших лёгких;-)

мы бы попросту погибли.

Наоборот, в процессе конденсации жидкость нагревается: молекулы пара при возвращении в жидкость разгоняются силами притяжения со стороны находящихся поблизости молекул жидкости, в результате чего средняя кинетическая энергия молекул жидкости увеличивается (сравните это явление с выделением энергии при кристаллизации расплава!).

10.6 Кипение

Процесс кипения воды вам хорошо знаком. В отличие от испарения, которое происходит только со свободной поверхности жидкости, кипение это парообразование, происходящее по всему объёму жидкости.

Кипение оказывается возможным потому, что в жидкости всегда растворено какое-то количество воздуха, попавшего туда в результате диффузии. При нагревании жидкости этот воздух расширяется, пузырьки воздуха постепенно увеличиваются в размерах и становятся видимы невооружённым глазом (в кастрюле с водой они осаждают дно и стенки). Внутри воздушных пузырьков находится насыщенный пар, давление которого, как вы помните, быстро растёт с повышением температуры.

Чем крупнее становятся пузырьки, тем б´ольшая действует на них архимедова сила, и определённого момента начинается отрыв и всплытие пузырьков. Поднимаясь вверх, пузырьки попадают в менее нагретые слои жидкости; пар в них конденсируется, и пузырьки сжимаются опять. Схлопывание пузырьков вызывает знакомый нам шум, предшествующий закипанию чайника. Наконец, с течением времени вся жидкость равномерно прогревается, пузырьки достигают поверхности и лопаются, выбрасывая наружу воздух и пар шум сменяется бульканьем, жидкость кипит.

Пузырьки, таким образом, служат ¾проводниками¿ пара изнутри жидкости на её поверхность. При кипении наряду с обычным испарением идёт превращение жидкости в пар по всему объёму испарение внутрь воздушных пузырьков с последующим выводом пара наружу. Вот почему кипящая жидкость улетучивается очень быстро: чайник, из которого вода испарялась бы много дней, выкипит за полчаса.

В отличие от испарения, происходящего при любой температуре, жидкость начинает кипеть только при достижении температуры кипения именно той температуры, при которой пузырьки воздуха оказываются в состоянии всплыть и добраться до поверхности. При температуре кипения давление насыщенного пара становится равно внешнему давлению на жидкость (в частности, атмосферному давлению). Соответственно, чем больше внешнее давление, тем при более высокой температуре начнётся кипение.

При нормальном атмосферном давлении (1 атм или 105 Па) температура кипения воды равна

100 C. Поэтому давление насыщенного водяного пара при температуре 100 C равно 105 Па. Этот факт необходимо знать для решения задач часто он считается известным по умолчанию.

На вершине Эльбруса атмосферное давление равно 0,5 атм, и вода там закипит при температуре 82 C. А под давлением 15 атм вода начнёт кипеть только при 200 C.

Температура кипения (при нормальном атмосферном давлении) является строго определённой для данной жидкости величиной20 . Так, спирт кипит при 78 C, эфир при 35 C, ртуть при 357 C. Обратите внимание: чем более летучей является жидкость, тем ниже её температура кипения. В таблице температур кипения мы видим также, что кислород кипит при 183 C. Значит, при обычных температурах кислород это газ!

20 Температуры кипения, приводимые в таблицах учебников и справочников это температуры кипения химически чистых жидкостей. Наличие в жидкости примесей может изменять температуру кипения. Скажем, водопроводная вода содержит растворённый хлор и некоторые соли, поэтому её температура кипения при нормальном атмосферном давлении может несколько отличаться от 100 C.

Мы знаем, что если чайник снять с огня, то кипение тут же прекратится процесс кипения требует непрерывного подвода тепла. Вместе с тем, температура воды в чайнике после закипания перестаёт меняться, всё время оставаясь равной 100 C. Куда же при этом девается подводимое тепло?

Ситуация аналогична процессу плавления: тепло идёт на увеличение потенциальной энергии молекул. В данном случае на совершение работы по удалению молекул на такие расстояния, что силы притяжения окажутся не способными удерживать молекулы неподалёку друг от друга, и жидкость будет переходить в газообразное состояние.

10.7 График кипения

Рассмотрим графическое представление процесса нагревания жидкости так называемый график кипения (рис. 24 ).

Температура

t кип

Рис. 24. График кипения

Участок AB предшествует началу кипения. На участке BC жидкость кипит, её масса уменьшается. В точке C жидкость выкипает полностью.

Чтобы целиком пройти участок BC, т. е. чтобы жидкость, уже доведённую до температуры кипения, полностью превратить в пар, к этой жидкости нужно подвести некоторое количество теплоты Qпар . Опыт показывает, что данное количество теплоты прямо пропорционально массе жидкости:

Qпар = Lm:

Коэффициент пропорциональности L называется удельной теплотой парообразования жидкости (при температуре кипения). Удельная теплота парообразования численно равна количеству теплоты, которое нужно подвести к 1 кг жидкости, взятой при температуре кипения, чтобы полностью превратить её в пар.

Так, при 100 C удельная теплота парообразования воды равна 2300 кДж/кг. Интересно сравнить её с удельной теплотой плавления льда (340 кДж/кг) удельная теплота парообразования почти в семь раз больше! Это и не удивительно: ведь для плавления льда нужно лишь разрушить упорядоченное расположение молекул воды в узлах кристаллической решётки; при этом расстояния между молекулами остаются примерно теми же (порядка размеров самих молекул). А вот для превращения воды в пар нужно совершить куда б´ольшую работу по разрыву всех связей между молекулами и удалению молекул на значительные расстояния друг от друга (гораздо большие, чем размеры молекул).

10.8 График конденсации

Процесс конденсации пара и последующего остывания жидкости выглядит на графике симметрично процессу нагревания и кипения. Вот соответствующий график конденсации для случая стоградусного водяного пара, наиболее часто встречающегося в задачах (рис. 25 ).

Температура

Рис. 25. График конденсации

В точке C имеем водяной пар при 100 C. На участке CD идёт конденсация; внутри этого участка смесь пара и воды при 100 C. В точке D пара больше нет, имеется лишь вода при 100 C. Участок DE остывание этой воды.

Опыт показывает, что при конденсации пара массы m (т. е. при прохождении участка CD) выделяется ровно то же самое количество теплоты Q = Lm, которое было потрачено на превращение в пар жидкости массы m при данной температуре.

Давайте ради интереса сравним следующие количества теплоты:

Q1 , которое выделяется при конденсации 1 г водяного пара;

Q2 , которое выделяется при остывании получившейся стоградусной воды до температуры, скажем, 20 C.

Q1 = Lm = 2300000 0;001 = 2300 Дж;

Q2 = cm t = 4200 0;001 80 = 336 Дж:

Эти числа наглядно показывают, что ожог паром гораздо страшнее ожога кипятком. При попадании на кожу кипятка выделяется ¾всего лишь¿ Q2 (кипяток остывает). А вот при ожоге паром сначала выделится на порядок большее количество теплоты Q1 (пар конденсируется), образуется стоградусная вода, после чего добавится та же величина Q2 при остывании этой воды.