Женские и мужские хромосомы. Y-хромосома и происхождение евреев. Что ждет мужчин

Заказать проведение днк теста

Оставьте свой телефон и мы перезвоним Вам в ближайшее время

Заказать звонок

Y-хромосома - самая короткая из хромосом. 22 из 23 пар человеческих хромосом имеют примерно одинаковую по объему свою генетическую информацию, и только последняя, 23 пара, определяющая пол, нарушает эту размерность. Y-хромосома, содержащая гены, кодирующие развитие мужских половых признаков, гораздо меньше по объему, чем Х-хромосома, которая идет с ней в паре (мужской пол соответствует комбинация хромосом ХY, а за женский отвечает пара ХХ). Сегодня мужская Y-хромосома имеет только 19 из примерно 600 генов, которые 200-300 млн. лет назад она должна была иметь совместно с Х. Небольшой объем Y-хромосомы и постепенная утрата ею генов побудили отдельных ученых заявить, что в будущем она вообще исчезнет, в частности у человека (уже сегодня у отдельных млекопитающих как за женский, так и мужской пол отвечает комбинация ХХ). Однако исследование биологов из МТИ, опубликованное в Nature, показало, что мужская хромосома имеет иммунитет от исчезновения, и природа, похоже, сохранит ее на веки вечные.

В течение последних 26 млн. лет генетическое содержание Y-хромосомы оставалось неизменным. Это связано с тем, что многие из ее генов играют ключевую роль в выживании, а ее роль не ограничивается сугубо определением пола. Эта хромосома, в частности, содержит гены, которые участвуют в синтезе белков, регулируют активность других генов и играют важную роль в сращении вместе молекул РНК. Ее роль проявляется в клетках сердца, крови, легких и других тканей и органов тела. Как образно выразился Дэвид Пейдж, биолог Института биомедицинских исследований при Массачусетском технологическом институте, «гены Y-хромосомы - это сильные игроки в центральной командной комнате организма». Пейдж возглавил команду исследователей, которые в статье в Nature показали, что с концепцией деградирующей Y-хромосомы нужно распрощаться.

Выводы Пейджа и его команды, однако, убедили не всех. В частности, генетика из Австралийского национального университета Джениффер Грейвз, которая говорит, что 26 млн. лет - не такой уж и большой период в длительном тренде деграции Y-хромосомы. Кроме того, существуют млекопитающие, которые уже обходятся без нее.

В 2002 Грейвз в своей статье, которая, кстати, также вышла в Nature, показала, что Y-хромосома постепенно уменьшалась в размерах, начиная с ранних млекопитающих и предсказала, что через 10 млн. лет она исчезнет вообще. Это, в свою очередь, ставит закономерный вопрос: а что же тогда будет с мужским полом и половыми различиями, необходимыми для продолжения жизни? Грейвз и другие биологи, которые поддерживают гипотезу дальнейшей деградации Y-хромосомы, утверждают, что ее функции возьмут на себя иные хромосомы, и механизмы половой дифференциации будут продолжены.

Дэвид Пейдж и его коллеги задались целью детально изучить эволюционную историю мужской хромосомы. Ученые сравнили и проанализировали полные последовательности его ДНК у восьми видов млекопитающих, начиная от самых древних, как опоссумы, крысы и мыши, и заканчивая приматами, которые появились относительно недавно, являясь в частности самыми молодыми из них - макаками-резус, шимпанзе и людьми.
Исследование показало, что уже сотни миллионов лет длится пагубная потеря Y-хромосомой своих генов, однако 26 млн. лет назад, когда от остальных обезьян отделились шимпанзе, и особенно 7 млн. лет назад, когда появились первые представители рода Homo (люди), процесс «износа» мужской хромосомы остановился. Как выразился Пейдж, «очень удивило, насколько стабильной была эта хромосома в течение последних 26 млн. лет».

Эта стабильность происходит из жизненно важного ядра мужской хромосомы, в состав которого входит 12 генов, которые не имеют ничего общего с определением пола или развитием мужской половой системы. Зато экспрессия этих генов происходит в других тканях, таких как клетки сердца и крови. Они отвечают за ключевые клеточные функции, такие как синтез белков и регулирование транскрипции других генов. Это означает, что Y-хромосома важна для выживания всего организма, поэтому ее выживание в будущем гарантировано эволюцией.

Грейвз на этот вывод команды Пейджа ответила, что деградация Y-хромосомы не является линейным процессом, и последние его стадии с высокой вероятностью имеют склонность к флуктуациям, поэтому и стабильность может быть временной. Грейвз утверждает, что два вида японских игольчатых крыс (Echimyidae) полностью потеряли Y-хромосому самцов и передали ее гены другим хромосомам, а два вида хомяков (Cricetidae) полностью потеряли некоторые гены Y-хромосомы, а их функции, очевидно, взяли на себя гены в других хромосомах. «Хотя создается впечатление, что природа с новыми формами генетических систем решила поэкспериментировать сначала над грызунами, не следует думать, что и нам, людям, в будущем это не грозит», — резюмирует Грейвз.

Кроме дискуссии о дальнейшей эволюции мужской хромосомы, исследования Пейджа заставило медиков и биологов серьезно задуматься: мужские и женские клетки могут быть биохимически разными. Поскольку команда Пейджа доказала, что функции Y-хромосомы идут далеко за пределы определения пола, поэтому и Y-родственные гены мужчин ведут к появлению несколько других клеток, чем у женщин. Когда биологи экспериментируют с линиями клеток, они обычно не принимают во внимание их мужское или женское происхождение. Поэтому и значимость многих предыдущих исследований может быть поставлена под сомнение, ведь эксперименты с XY клеточной линией могут вести к другим результатам, чем эксперименты с XX.

Прежде всего, это касается генетического происхождения отдельных болезней. Известно, например, что аутоиммунные заболевания поражают больше женщин, тогда как расстройства, родственные с аутизмом, более характерны для мужчин. Пытаясь докопаться до причины этого, биологи, как правило, не принимали во внимание тонкие биохимические и генетические особенности на клеточном уровне. Пора избавиться от этих иллюзий, - объясняет Дэвид Пейдж.

ТРАГЕДИЯ МУЖСКОЙ ХРОМОСОМЫ

Представьте себе мир, в котором нет места мужчинам. Мир, управляемый женщинами. Скажете, не может быть? А ведь будет...

Мужчины будущего будут отличаться от женщин лишь дефектным набором генов. Возможно, они будут даже плодородны, но только как женщины

Н е зря, оказывается, радикально настроенные феминистки пытались убедить человечество в том, что на самом деле слабым полом являются мужчины. Теперь их поддержала и наука. Недавно один из столпов современной генетики во всеуслышание заявил, что мужчины обречены и уже относительно недалек тот час, когда они полностью исчезнут с лица Земли.

Случится это, если верить профессору, крупнейшему в Оксфорде специалисту по человеческой генетике Брайану Сайксу, не далее как через 125 000 лет. То есть примерно через 5000 стандартных поколений. По современным научным данным, первый человек вида Sahelanthropus tchadensis появился на Земле уже 7 000 000 лет назад.

ЖЕНЩИНЫ, МУЖАЙТЕСЬ!

К неутешительному для мужчин выводу профессор Сайкс пришел после того, как в течение нескольких лет анализировал тенденции развития представителей человеческого вида. За последние несколько столетий генетический материал, отвечающий за «мужскую информацию», оказался в значительной степени разрушенным. И процесс разрушения продолжается.

Виновником этой катастрофы является как раз тот основной кирпичик, который и делает мужчину мужчиной. Единственная непарная хромосома в генотипе человека. Хромосома, появившаяся сотни миллионов лет назад в результате чрезвычайно сложной мутации, механизм которой до сих пор является для ученых-генетиков одной из основных загадок. Хромосома, разделившая животный мир на мужскую и женскую особи. Y-хромосома. Хромосома, которая не умеет исправлять ошибки.

Для тех, кто не силен в генетике, напомним, что генотип человека содержит всех хромосом по паре: одна от папы, одна от мамы - это в примитиве. Члены каждой пары не идентичны друг другу, но очень похожи. Исключение составляет лишь мужская пара половых хромосом: она состоит из двух АБСОЛЮТНО разных частей - женской X и мужской Y.

Именно эта Y-хромосома, возникшая, если верить науке, в результате ошибки (ибо мутация есть не что иное, как ошибка при размножении), и делает мужчин более сильными, более агрессивными и более конкурентоспособными в борьбе за жизнь, чем женщины.

Y-хромосома определяет пол эмбриона через маленькую свою часть, называемую SRY (the Sex-determining Region of the

Y-chromosome - определяющая пол область Y-хромосомы). Кстати, эта самая SRY очень хорошо проявляет себя именно на фоне сильных, волевых личностей. Генетики всегда приводят пример с американскими президентами: 43 американских президента, от Джорджа Вашингтона до Джорджа Буша, произвели на свет 90 сыновей и только 63 дочери.

Но, несмотря на это, согласно Сайксу именно Y-хромосома со своим SRY-участком пребывает сейчас в состоянии все увеличивающихся хаоса и беспорядка, вызванных постоянной цепью распадов и мутаций. Из присутствовавших в ней изначально полутора тысяч генов сейчас в живых осталось лишь тридцать девять. «Как ни тяжело мне это говорить, - признает профессор, - но она обречена».

РЕМОНТУ НЕ ПОДЛЕЖИТ

Причиной такого положения дел является то, что Y-хромосома не способна «излечивать» себя. Остальные гены пытаются компенсировать и минимизировать последствия вредных мутаций за счет того, что в парной хромосоме содержится своеобразный «эталон», по которому разрушенный участок можно «реконструировать». Y-хромосома такой возможности просто лишена, и, следовательно, все «неисправности», которые в ней происходят, не исправляются, а накапливаются. Что и повлечет в конце концов, по словам оксфордского профессора, «смерть хромосомы от множественных ранений». Уже сейчас ученые находят в ней огромное количество поврежденных участков, и со временем это число будет только расти.

Одним из проявлений этого роста является увеличение количества случаев мужского бесплодия. Только за последние полстолетия их количество выросло на треть и составило цифру в семь процентов. По расчетам ученых, через 125 000 лет эта цифра достигнет 99%. В этом случае нормальное зачатие будет просто невозможным. Конечно, можно возразить, что особой проблемы в этом нет, что искусственное зачатие, когда сперматозоид, даже полностью неподвижный, искусственно вводится в яйцеклетку, уже сейчас не вызывает у людей удивления. Но ведь проблема этим не решается, а только оттягивается и переносится на плечи следующих поколений. Отсекая, таким образом, всякую возможность естественного отбора, человечество просто добьется того, что несчастная хромосома вконец высохнет и полностью потеряет какое-либо влияние на организм.

СПАСТИ РЯДОВУЮ ХРОМОСОМУ

Пока ученые говорят о двух возможных способах решения этого непростого вопроса.

Можно пойти по пути, уже подсказанному природой, и постараться разбросать гены, отвечающие за мужские функции, по другим хромосомам. Это позволит довольно существенно продлить жизнь человечества. И ничего особенно фантастичного в этом проекте нет. В предгорьях Кавказа обитает зверек, называемый горной слепушонкой, Ellobius lutescens. У самца этого, похожего на крота-грызуна, нет ни Y-хромосомы, ни SRY-участка, и, несмотря на это, он остается вполне полноценным и продуктивным самцом. Правда, полностью спасти мужской род от вымирания таким способом нельзя, ибо ген, отвечающий за выбор пола, все равно рано или поздно «сломается» окончательно, но увеличить срок его жизни на десяток миллионов лет вполне реально.

Есть, однако, и другой, гораздо более радикальный способ, который приведет в восторг феминисток. Когда-то, еще в 1967 году, Валери Соланс, прославившаяся тем, что чуть не убила Энди Уорхола, прострелив ему легкие и селезенку, основала движение SCUM, название которого расшифровывается как Общество полного уничтожения мужчин. В манифесте SCUM было написано: «...социально активным, не склонным к компромиссам женщинам остается единственный выход - ...полностью уничтожить мужской пол». Возможно, мечтам Валери суждено сбыться. В этом случае зачатие опять будет происходить по искусственной схеме, но в яйцеклетку будут внедряться не мертвые сперматозоиды, а хромосомные наборы, взятые из клетки другой женщины. При таком способе клонирования на свет будут появляться только девочки, а мужчины займут свое место в витринах палеонтологических музеев где-нибудь между птицей додо и сумчатым волком.

Впрочем, наряду с этими двумя путями профессор Сайкс предлагает свой, третий, путь: путь создания особой «адонисовой» хромосомы - X-хромосомы с вмонтированными в нее мужскими генами. У такого способа есть один недостаток: если он будет осуществлен, то на каждую родившуюся девочку в мире будут приходиться три родившихся мальчика. Но зато это будут вполне нормальные, сильные, активные и готовые к репродукции мальчики.

НЕ БОЙТЕСЬ, МУЖИКИ!

Справедливости ради стоит отметить, что не и все генетики согласны с пессимистическими прогнозами профессора Сайкса. Например, группа ученых под руководством доктора Дэвида Пейджа из Института Уайтхед при Технологическом институте штата Массачусетс, исследовав злосчастную хромосому, пришла к выводу, что она таки обладает особым механизмом саморемонта. Согласно Пейджу Y - сама себе пара, она содержит в себе удвоенный набор генов, которых в ней на самом деле не тридцать девять, как считалось ранее, а семьдесят восемь.

Кроме того, Пейдж считает, что даже если допустить, что хромосома действительно гибнет, то по мере гибели будет увеличиваться ее сила. То есть репродуктивных мужчин будет становиться все меньше, зато от оставшихся будут рождаться все больше мальчиков.

Их поддерживает команда австралийских исследователей во главе с доктором Дженни Грейвс из Исследовательской школы биологических наук при Австралийском национальном университете в Канберре. Им удалось посчитать скорость «умирания» Y-хромосомы. Согласно их подсчетам она теряет по пять генов за миллион лет. А раз так, то еще пять-десять миллионов лет у самцов человека в запасе есть. А за это время человечество, наверное, какой-нибудь выход найдет. Если, конечно, живо будет.

Валерий ЧУМАКОВ

Изображение с сайта unc.edu

Каждая женщина - это не просто загадка, а мозаика, состоящая из клеток с разными наборами активных хромосом. У человека 23 пары хромосом, и хромосомы одной пары несут одни и те же наборы генов. Исключение составляет пара половых хромосом. У мужчин одна из них называется X, а другая - Y, и они существенно отличаются своими наборами генов. X-хромосома значительно крупнее, чем Y, и содержит больше генов. Обе половые хромосомы женщин - Х, и они отличаются между собой также, как хромосомы внутри других 22 пар. У каждой женщины по две X-хромосомы, а у каждого мужчины - только по одной, и чтобы они были одинаково активны у женщин и мужчин, организм регулирует их работу. Для этого во всех клетках тела женщины одна из X-хромосом инактивируется. Какая именно из двух половых хромосом будет отключена, для каждой клетки решает случай, так что в части клеток тела женщины работает одна X-хромосома, а в оставшихся - другая.

Как следствие такой мозаичности у женщин редко проявляются болезни, связанные с повреждениями X-хромосом. Даже если у женщины оказывается X-хромосома с дефектом какого-либо гена, другая хромосома пары, работающая в половине клеток, спасает положение и не дает болезни проявиться. Чтобы болезнь, связанная с повреждением X-хромосомы «разыгралась» на полную мощь, женщине должны достаться целых две копии этой хромосомы с дефектом одного и того же гена. Это маловероятное событие. В то же время, если мужчина получает дефектную X-хромосому (она приходит от матери), у нее не будет пары, чтобы скомпенсировать ущерб, и заболевание покажет себя.

X-хромосома, к несчастью для мужчин, несет множество жизненно важных генов, так что ее поломка чревата печальными последствиями. Дальтонизм, гемофилия, миопатия Дюшена, синдром ломкой X-хромосомы, X-сцепленный иммунодефицит - это только самые известные генетические заболевания, от которых страдают почти исключительно мужчины.

Цветовая слепота

Распространено заблуждение, что дальтониками могут быть только мужчины. Это неверно, однако, женщины-дальтоники встречаются намного реже. Сложности с различением некоторых цветов испытывают лишь 0,4 процента женщин и около 5 процентов мужчин. Дальтонизм - это потеря или нарушение работы одного из пигментов, связанных с распознаванием света определенного цвета. Всего таких пигментов три, и они чувствительны к волнам красного, зеленого и синего цвета. Любой сложный цвет можно представить как комбинацию этих трех. В каждой клетке-колбочке, которые находятся в сетчатке и отвечают за распознавание цвета, находится лишь один тип пигмента. По неизвестным пока причинам, неполадки с работой пигментов, с помощью которых мы различаем красный и зеленый цвета, встречаются чаще, чем дефекты пигмента, необходимого, чтобы правильно узнавать синий цвет.

За синтез пигментов отвечают гены, находящиеся на X-хромосоме. Если мужчине досталась хромосома с дефектным геном, определяющим за узнавание, к примеру, красного цвета, то во всех колбочках его сетчатки будет активна лишь эта дефектная X-хромосома - другой у него просто нет. Поэтому у такого мужчины не будет колбочек, способных правильно распознать красный цвет. Сетчатка женщины имеет мозаичное строение, и если даже одна из X-хромосом несет поврежденный ген, эта хромосома будет активна лишь в части колбочек, отвечающих за распознавание соответствующего цвета. В других колбочках будет активна вторая хромосома, которая несет нормальный ген. Восприятие цвета у такой женщины будет немного измененным, но все же она будет способна различать все цвета, которые обычно различают люди.

Гемофилия

Другое известное заболевание, связанное с дефектами генов X-хромосомы - это гемофилия, нарушение свертывания крови. После травмы в крови здорового человека запускается сложная система реакций, приводящая к образованию нитей белка фибрина. Благодаря накоплению этих нитей, в месте повреждения кровь становится более густой и закупоривает рану. Если любая из стадий процесса нарушается, кровь не свертывается вовсе или делает это слишком медленно, так что больной может умереть от кровопотери даже после удаления зуба. Кроме того, больные с гемофилией страдают от спонтанных внутренних кровоизлияний из-за уязвимости стенок сосудов.

Каскад реакций, приводящий с итоге к образованию нитей фибрина и загустению крови, очень сложен, а чем сложнее система, тем больше мест, где она может сломаться. Известно три типа гемофилии, связанных с дефектами трех генов, кодирующих белки-участники каскада. Два из этих генов располагаются на X-хромосоме, поэтому гемофилией страдает один мужчина из 5000, а случаев заболеваний женщин за всю историю было зафиксировано лишь 60.

Миопатия Дюшена

Еще один важный ген, располагающийся на X-хромосоме - ген белка дистрофина, необходимого для поддержания целостности мембран мышечных клеток. При миопатии Дюшена работа этого гена нарушается, и дистрофин не образуется. У мужчин, которым досталась X-хромосома с таким поврежденным геном, развивается прогрессирующая мышечная слабость, в результате чего мальчики с такой болезнью уже к 12 годам не могут самостоятельно ходить. Как правило, больные погибают в возрасте около 20 лет из-за связанных со слабостью мышц нарушений дыхания. У девочек, получивших X-хромосому с неисправным геном дистрофина, из-за мозаичности белок отсутствует лишь в половине клеток тела. Поэтому женщины-носительницы дефектного гена дистрофина страдают лишь легкой мышечной слабостью, и то не всегда.

X-сцепленный тяжелый иммунодефицит

Больные с тяжелыми иммунодефицитами вынуждены жить в полностью стерильной среде, потому что они крайне уязвимы перед инфекционными заболеваниями. X-сцепленный тяжелый иммунодефицит возникает из-за мутации в гене, который кодирует общий компонент нескольких рецепторов, необходимых для взаимодействия клеток иммунной системы. Как очевидно из названия болезни, этот ген тоже располагается в X-хромосоме. Из-за неработающих рецепторов иммунная система с самого начала развивается неправильно, ее клетки малочислены, плохо функционируют и не могут координировать свои действия. К счастью, это тяжелое заболевание встречается редко: им страдает один мальчик из 100000. У девочек появление этой болезни можно считать практически невероятным.

Синдром ломкой X-хромосомы

Еще один важный ген, расположенный на X-хромосоме - ген FMR1, необходимый для нормального развития нервной системы. Работа этого гена может быть нарушена из-за патологического процесса, при котором в гене увеличивается число повторяющихся фрагментов ДНК. Дело в том, что точное копирование повторяющегося числа единиц всегда представляет собой трудность. Представим себе, что нам нужно аккуратно переписать длинное число, в котором есть много одинаковых цифр подряд - легко ошибиться и написать на несколько цифер больше или меньше. Точно так и в ДНК. При делении клеток, когда ДНК удваивается, число повторов может случайно измениться. Именно из-за увеличения числа повторов в коротком фрагменте ДНК на X-хромосоме может появиться «ломкий» участок, который легко рвется при делении клеток. Ген FMR1 находится рядом с «ломким» участком, и его работа нарушается. В результате такой патологии возникает умственная отсталость, которая проявляется у мужчин с «ломкой» X-хромосомой более явственно, чем у женщин.

Всегда ли лучше иметь две X-хромосомы, чем одну?

Кажется, что иметь две X-хромосомы выгоднее, чем одну: меньше риск заболеваний из-за неудачных генов. Как насчет самцов, имеющих такой состав половых хромосом: XXY? Можно ли ожидать, что они будут иметь преимущество перед самцами с обычным составом половых хромосом XY? Оказывается, состав хромосом XXY - не благо, а совсем наоборот. Мужчины с таким набором хромосом страдают от синдрома Клайнфельтера, при котором наблюдается множество патологии, но нет никаких преимуществ.

Более того, известны заболевания, для которых характерны еще большие количества X-хромосом, вплоть до пяти на генотип. Такие патологии встречаются как у женщин, так и у мужчин. При наличии избыточных X-хромосом все они, кроме одной, инактивируются. Однако, пусть лишние X-хромосомы и не работают, чем их больше, тем тяжелее заболевание. Интересно, что особенно страдает от наличия избыточных X-хромосом интеллект - каждая лишняя хромосома этого типа ведет к понижению IQв среднем примерно на 15 пунктов. Получается, что иметь запасной вариант X-хромосомы хорошо, но не всегда (мужчинам от дополнительной X-хромосомы лучше не становится). Иметь много запасных вариантов этой половой хромосомы - не выгодно ни для женщин, ни для мужчин.

Чем же дополнительные неактивные X-хромосомы вредны, и почему каждая лишняя хромосома усугубляет тяжесть заболевания? Во-первых, лишние X-хромосомы выключаются далеко не сразу, а только спустя первые 16 суток развития эмбриона. А чем раньше во время развития возникает нарушение, тем более разнообразными и многочисленными будут его проявления. Поэтому лишние хромосомы могут успеть «навредить» достаточно фундаментально, так, что патологии будут проявляться в совершенно разных сферах.

Во-вторых, некоторые гены на инактивированных X-хромосомах каким-то образом избегают отключения. Хотя Xи Y-хромосомы очень непохожи, все же они образуют пару и имеют небольшое количество одинаковых генов. Если половых хромосом слишком много, и на всех них эти гены останутся активными, в клетках нарушается генный баланс. Поэтому чем больше лишних хромосом, тем тяжелее болезнь.

X-хромосома несет на себе множество жизненно важных генов, и неудивительно, что ее дефекты имеют крайне неприятные проявления. Женщинам от природы дана возможность «подстраховаться» за счет дополнительной копии хромосомы, которая может уменьшить тяжесть заболевания. Однако такая «запаска» хороша только в единственном числе, а все дополнительные X-хромосомы ведут к развитию тяжелых патологий. Ну а мужчинам, у которых нет второй X-хромосомы, с самого их зачатия достается больше риска. Увы.

Юлия Кондратенко

Как заявил в 2006 году ныне премьер-министр (тогда еще президент) России Владимир Путин, «если бы у бабушки были определенные половые признаки, она была бы дедушкой». Речь шла о возможности принятия Россией санкций против Ирана, однако сравнение не совсем верно. Благодаря достижениям генетики мы знаем, что бабушка отличается от дедушки не только внешне, но и набором половых хромосом.

У большинства млекопитающих пол определяется именно ими: мужской организм является носителем X- и Y-хромосом, а женщины «обходятся» двумя Х-хромосомами. Когда-то этого разделения не существовало, однако в результате эволюции около 300 млн лет назад хромосомы дифференцировались. Существуют отклонения, в результате которых клетки некоторых мужчин содержат две X-хромосомы и одну Y-хромосому или одну X-хромосому и две Y-хромосомы; клетки некоторых женщин содержат три или одну X-хромосомы. Изредка наблюдаются женские XY-организмы или мужские XX-организмы, однако подавляющее большинство людей все-таки имеют стандартную конфигурацию половых хромосом. С этой особенностью, например, связан феномен заболевания гемофилией. Дефектный ген, ухудшающий свертываемость крови, сцеплен с Х-хромосомой и является рецессивным. По этой причине женщины лишь переносят заболевание, сами не страдая от него из-за наличия дублирующего гена из-за второй Х-хромосомы, а вот мужчины в аналогичной ситуации несут только дефектный ген и болеют.

Так или иначе, Y-хромосома традиционно считалась слабым местом мужских организмов, сокращающим генетическое разнообразие и препятствующим эволюции.

Однако последние исследования показали, что страхи об угасании рода мужского сильно преувеличены: Y-хромосома и не думает стагнировать.

Напротив, ее эволюция протекает весьма активно, она меняется гораздо быстрее других участков генетического кода человека.

Исследование, опубликованное в Nature , показало, что специфическая часть Y-хромосомы человека и одного из его ближайших родственников - шимпанзе - отличается весьма сильно. За 6 млн лет раздельной эволюции обезьяны и человека фрагмент хромосомы, отвечающий за производство половых клеток, изменился на треть или даже наполовину. Остальная часть хромосомы действительно достаточно постоянна.

Предположения ученых о консервативности Y-хромосомы основывались на объективных факторах: передаваясь от отца к сыну без изменений (для X-хромосомы есть целых три варианта - две от матери и одна от отца, все они могут обмениваться генами), она не может черпать генетическое разнообразие извне, изменяясь только за счет потери генов. Согласно этой теории, уже через 125 тысяч лет Y-хромосома окончательно угаснет, что может стать концом всего человечества.

Однако вот уже 6 млн лет раздельной эволюции человека и шимпанзе Y-хромосома успешно меняется и прогрессирует. В новой работе, проведенной в Массачусетском технологическом институте, рассказывается об Y-хромосоме шимпанзе. Y-хромосома человека была расшифрована в 2003 году той же группой под руководством профессора Дэвида Пейджа.

Результаты нового исследования удивили генетиков: они ожидали, что последовательность генов в двух хромосомах будет очень сходной.

Для сравнения: в общей массе ДНК человека и шимпанзе различными являются только 2% генов, а Y-хромосома отличается более чем на 30%!

Профессор Пейдж сравнил процесс эволюции мужской хромосомы с изменением облика дома, хозяева которого остаются прежними. «Несмотря на то что в доме живут одни и те же люди, почти постоянно одна из комнат полностью обновляется и ремонтируется. В результате через какой-то период времени в результате «покомнатного» ремонта меняется весь дом. Однако такая тенденция не является нормальной для целого генома», — отметил он.

Причина такой неожиданной неустойчивости Y-хромосомы пока точно не ясна. Ученые предполагают, что генетическое разнообразие в ней обеспечивается неустойчивостью к мутациям. Обычный механизм «починки» генов дает сбой на Y-хромосоме, открывая путь новым мутациям. Статистически большее количество из них закрепляются и меняют геном.

Кроме того, эти мутации подвергаются значительно более сильному давлению отбора. Это определяется их функцией - производством половых клеток. Любые выгодные мутации закрепятся с большей степенью вероятности, так как они действуют напрямую - повышая способность к размножению особи. В то же время обычные мутации оказывают косвенное действие — повышая сопротивляемость организма к болезни или к суровым условиям окружающей среды, например. Таким образом, выгодность мутации в неспецифическом участке ДНК выявится, только если организм попадет в соответствующие неблагоприятные условия. В других случаях мутантные и немутантные организмы будут работать аналогично. Фертильность же проявляется очень быстро - уже во втором поколении. Особь либо размножается в результате мутации более успешно и оставляет многочисленное потомство, либо размножается заметно хуже и не может увеличить долю своих генов в общей популяции. Этот механизм более эффективно функционирует у шимпанзе, самки которых постоянно спариваются с большим количеством самцов. В результате половые клетки вступают в прямую конкуренцию, и «селекция» идет максимально эффективно. У человека из-за более консервативных моделей размножения Y-хромосома эволюционировала не столь стремительно, считают генетики.

Эта гипотеза подтверждается тем, что части хромосомы, задействованные в производстве сперматозоидов, наиболее отличны у человека и шимпанзе.

Группа профессора Пейджа в сотрудничестве с Центром генома Вашингтонского университета продолжает работу по расшифровке Y-хромосомы других млекопитающих. Они надеются пролить свет на эволюцию половых хромосом и ее связь с моделями поведения в популяции.

Энциклопедичный YouTube

    1 / 5

    ✪ Гены, ДНК и хромосомы

    ✪ Как японцы японию украли. Куда подевались айны. Кто такие самураи

    ✪ Хромосомные болезни

    ✪ Secrets of the X chromosome - Robin Ball

    ✪ Тайны х-хромосомы - Робин Мяч #TED-Ed | TED Ed на русском

    Субтитры

    Гены, ДНК и хромосомы это то, что делает нас уникальными. Они представляют собой набор инструкций, переданных вам от отца и матери. Эти инструкции находятся в ваших клетках. А все живые организмы состоят из клеток. Существует много типов клеток - нервные, клетки волос или кожи. Все они отличаются по форме и размерам, но каждая имеет определенные составляющие. У клетки есть внешняя граница, называемая мембраной, которая содержит в себе жидкость - цитоплазму. В цитоплазме находится ядро, в котором расположены хромосомы. В каждой человеческой клетке обычно 23 пары хромосом или всего 46. 22 пары из них называются аутосомами и они одинаковые у мужчин и женщин. 23я пара - это половые хромосомы, у мужчин и женщин они отличаются. Женщины имеют 2 X хромососы, мужчины одну X и одну Y хромосому. Хромосомы это длинные молекулы ДНК - дезоксирибонуклеиновой кислоты Форма ДНК напоминает закрученную лестницу. И называется двойная спираль. Ступенями в лестнице являются 4 основания: Аденин - А Тимин - Т Гуанин - G И Цитозин - C Участок ДНК называется геном. Тело читает гены как рецепты для приготовления протеинов. Длина и порядок оснований в ДНК генов определяет размер и форму получаемых протеинов. Размер и форма протеина определяют его функцию в теле. Протеины образуют клетки, формирующие ткани, из которых состоят органы, такие как наши глаза или кожа. Таким образом, гены определяют кем вы являетесь - коровой, яблоком или человеком и как вы выглядете - цвет ваших волос, кожи, глаз и всего остального.

Общие сведения

Клетки большинства млекопитающих содержат две половых хромосомы: Y-хромосома и X-хромосома - у самцов, две X-хромосомы - у самок. У некоторых млекопитающих, например, утконоса , пол определяется не одной, а пятью парами половых хромосом . При этом, половые хромосомы утконоса имеют больше сходства с Z-хромосомой птиц , а ген SRY, вероятно, не участвует в его половой дифференциации .

Происхождение и эволюция

До появления Y хромосомы

Ингибирование рекомбинации

Неэффективный отбор

При возможности генетической рекомбинации геном потомства будет отличаться от родительского. В частности, геном с меньшим числом вредных мутаций может быть получен из родительских геномов с большим числом вредных мутаций.

Если рекомбинация невозможна, то при появлении некой мутации можно ожидать, что она проявится и в будущих поколениях, так как процесс обратной мутации маловероятен. По этой причине при отсутствии рекомбинации количество вредных мутаций со временем увеличивается. Этот механизм называется храповиком Мёллера .

Часть Y-хромосомы (у человека - 95 %) неспособна к рекомбинации. Считается, что это - одна из причин, по которой она подвергается порче генов.

Возраст Y-хромосомы

До недавних пор считалось, что X- и Y-хромосомы появились около 300 миллионов лет назад. Однако недавние исследования , в частности секвенирование генома утконоса , показывают, что хромосомное определение пола отсутствовало еще 166 миллионов лет назад, при отделении однопроходных от других млекопитающих . Эта переоценка возраста хромосомной системы определения пола базируется на исследованиях, показавших, что последовательности в X-хромосоме сумчатых и плацентарных млекопитающих присутствуют в аутосомах утконоса и птиц . Более старая оценка базировалась на ошибочных сообщениях о наличии этих последовательностей в X-хромосоме утконоса .

Y-хромосома человека

У человека Y-хромосома состоит из более чем 59 миллионов пар нуклеотидов, что составляет почти 2 % от человеческой ДНК -в клеточном ядре . Хромосома содержит немногим более 86 генов, которые кодируют 23 белка . Наиболее значимым геном на Y-хромосоме является ген SRY , служащий генетическим "включателем" для развития организма по мужскому типу. Признаки, наследуемые через Y-хромосому, носят название голандрических.

Человеческая Y-хромосома не способна рекомбинироваться с X-хромосомой, за исключением небольших псевдоаутосомных участков на теломерах (которые составляют около 5 % длины хромосомы). Это реликтовые участки древней гомологии между X- и Y-хромосомами. Основная часть Y-хромосомы, которая не подвержена рекомбинации, называется NRY (англ. non-recombining region of the Y chromosome ) . Эта часть Y-хромосомы позволяет посредством оценки однонуклеотидного полиморфизма определить прямых предков по отцовской линии.

См. также

Источники

  1. Grützner F, Rens W, Tsend-Ayush E; et al. (2004). “In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes”. Nature . 432 : 913-917. DOI :10.1038/nature03021 .
  2. Warren WC, Hillier LDW, Graves JAM; et al. (2008). “Genome analysis of the platypus reveals unique signatures of evolution” . Nature . 453 : 175-183. DOI :10.1038/nature06936 .
  3. Veyrunes F, Waters PD, Miethke P; et al. (2008). “Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes” . Genome Research . 18 : 965-973. DOI :10.1101/gr.7101908 .
  4. Lahn B, Page D (1999). “Four evolutionary strata on the human X chromosome”. Science . 286 (5441): 964-7. DOI :10.1126/science.286.5441.964 . PMID .
  5. Graves J.A.M. (2006). “Sex chromosome specialization and degeneration in mammals”. Cell . 124 (5): 901-14. DOI :10.1016/j.cell.2006.02.024 . PMID .
  6. Graves J.A.M., Koina E., Sankovic N. (2006). “How the gene content of human sex chromosomes evolved”. Curr Opin Genet Dev . 16 (3): 219-24. DOI :10.1016/j.gde.2006.04.007 . PMID .
  7. Graves J. A. The degenerate Y chromosome--can conversion save it? (англ.) // Reproduction, fertility, and development. - 2004. - Vol. 16, no. 5 . - P. 527-534. - DOI :10.10371/RD03096 . - PMID 15367368 . [исправить ]