Gleichungssystem. Detaillierte Theorie mit Beispielen (2019). Beispiele für lineare Gleichungssysteme: Lösungsmethode

1. Substitutionsmethode: Aus jeder Gleichung des Systems drücken wir eine Unbekannte durch eine andere aus und setzen sie in die zweite Gleichung des Systems ein.


Aufgabe. Lösen Sie das Gleichungssystem:


Lösung. Aus der ersten Gleichung des Systems drücken wir aus bei durch X und setze es in die zweite Gleichung des Systems ein. Holen wir uns das System entspricht dem Original.


Nach Eingabe ähnlicher Begriffe nimmt das System die Form an:


Aus der zweiten Gleichung finden wir: . Setzen Sie diesen Wert in die Gleichung ein bei = 2 - 2X, wir bekommen bei= 3. Daher ist die Lösung dieses Systems ein Zahlenpaar.


2. Algebraische Additionsmethode: Durch Addition zweier Gleichungen erhält man eine Gleichung mit einer Variablen.


Aufgabe. Lösen Sie die Systemgleichung:



Lösung. Durch Multiplizieren beider Seiten der zweiten Gleichung mit 2 erhalten wir das System entspricht dem Original. Addiert man die beiden Gleichungen dieses Systems, erhält man das System


Nachdem ähnliche Begriffe eingeführt wurden, sieht dieses System wie folgt aus: Aus der zweiten Gleichung finden wir . Setzen Sie diesen Wert in Gleichung 3 ein X + 4bei= 5, wir bekommen , Wo . Daher ist die Lösung dieses Systems ein Zahlenpaar.


3. Methode zur Einführung neuer Variablen: Wir suchen nach sich wiederholenden Ausdrücken im System, die wir durch neue Variablen bezeichnen und so das Erscheinungsbild des Systems vereinfachen.


Aufgabe. Lösen Sie das Gleichungssystem:



Lösung. Schreiben wir dieses System anders:


Lassen x + y = Du, xy = v. Dann bekommen wir das System


Lösen wir es mit der Substitutionsmethode. Aus der ersten Gleichung des Systems drücken wir aus u durch v und setze es in die zweite Gleichung des Systems ein. Holen wir uns das System diese.


Aus der zweiten Gleichung des Systems finden wir v 1 = 2, v 2 = 3.


Einsetzen dieser Werte in die Gleichung u = 5 - v, wir bekommen u 1 = 3,
u 2 = 2. Dann haben wir zwei Systeme


Wenn wir das erste System lösen, erhalten wir zwei Zahlenpaare (1; 2), (2; 1). Das zweite System hat keine Lösungen.


Übungen zum selbstständigen Arbeiten


1. Lösen Sie Gleichungssysteme mit der Substitutionsmethode.


Die Wahrung Ihrer Privatsphäre ist uns wichtig. Aus diesem Grund haben wir eine Datenschutzrichtlinie entwickelt, die beschreibt, wie wir Ihre Daten verwenden und speichern. Bitte lesen Sie unsere Datenschutzpraktiken durch und teilen Sie uns mit, wenn Sie Fragen haben.

Erhebung und Nutzung personenbezogener Daten

Unter personenbezogenen Daten versteht man Daten, die dazu genutzt werden können, eine bestimmte Person zu identifizieren oder mit ihr in Kontakt zu treten.

Sie können jederzeit um die Angabe Ihrer persönlichen Daten gebeten werden, wenn Sie mit uns Kontakt aufnehmen.

Nachfolgend finden Sie einige Beispiele für die Arten personenbezogener Daten, die wir möglicherweise sammeln, und wie wir diese Informationen verwenden können.

Welche personenbezogenen Daten erfassen wir:

  • Wenn Sie auf der Website eine Bewerbung einreichen, erfassen wir möglicherweise verschiedene Informationen, einschließlich Ihres Namens, Ihrer Telefonnummer, Ihrer E-Mail-Adresse usw.

Wie wir Ihre persönlichen Daten verwenden:

  • Die von uns erfassten personenbezogenen Daten ermöglichen es uns, Sie mit einzigartigen Angeboten, Werbeaktionen und anderen Veranstaltungen sowie bevorstehenden Veranstaltungen zu kontaktieren.
  • Von Zeit zu Zeit können wir Ihre persönlichen Daten verwenden, um wichtige Mitteilungen und Mitteilungen zu versenden.
  • Wir können personenbezogene Daten auch für interne Zwecke verwenden, beispielsweise zur Durchführung von Audits, Datenanalysen und verschiedenen Forschungsarbeiten, um die von uns bereitgestellten Dienste zu verbessern und Ihnen Empfehlungen zu unseren Diensten zu geben.
  • Wenn Sie an einer Verlosung, einem Wettbewerb oder einer ähnlichen Aktion teilnehmen, können wir die von Ihnen bereitgestellten Informationen zur Verwaltung solcher Programme verwenden.

Weitergabe von Informationen an Dritte

Wir geben die von Ihnen erhaltenen Informationen nicht an Dritte weiter.

Ausnahmen:

  • Wenn es erforderlich ist – in Übereinstimmung mit dem Gesetz, dem Gerichtsverfahren, in Gerichtsverfahren und/oder auf der Grundlage öffentlicher Anfragen oder Anfragen von Regierungsbehörden im Hoheitsgebiet der Russischen Föderation – Ihre personenbezogenen Daten offenzulegen. Wir können auch Informationen über Sie offenlegen, wenn wir zu dem Schluss kommen, dass eine solche Offenlegung aus Sicherheits-, Strafverfolgungs- oder anderen Gründen von öffentlicher Bedeutung notwendig oder angemessen ist.
  • Im Falle einer Umstrukturierung, Fusion oder eines Verkaufs können wir die von uns erfassten personenbezogenen Daten an den jeweiligen Nachfolger-Dritten weitergeben.

Schutz personenbezogener Daten

Wir treffen Vorkehrungen – einschließlich administrativer, technischer und physischer –, um Ihre persönlichen Daten vor Verlust, Diebstahl und Missbrauch sowie vor unbefugtem Zugriff, unbefugter Offenlegung, Änderung und Zerstörung zu schützen.

Respektieren Sie Ihre Privatsphäre auf Unternehmensebene

Um sicherzustellen, dass Ihre persönlichen Daten sicher sind, kommunizieren wir Datenschutz- und Sicherheitsstandards an unsere Mitarbeiter und setzen Datenschutzpraktiken strikt durch.

I. Gewöhnliche Differentialgleichungen

1.1. Grundlegende Konzepte und Definitionen

Eine Differentialgleichung ist eine Gleichung, die eine unabhängige Variable in Beziehung setzt X, die erforderliche Funktion j und seine Ableitungen oder Differentiale.

Symbolisch wird die Differentialgleichung wie folgt geschrieben:

F(x,y,y")=0, F(x,y,y")=0, F(x,y,y",y",.., y (n))=0

Eine Differentialgleichung heißt gewöhnlich, wenn die gewünschte Funktion von einer unabhängigen Variablen abhängt.

Lösen einer Differentialgleichung heißt eine Funktion, die diese Gleichung in eine Identität umwandelt.

Die Ordnung der Differentialgleichung ist die Ordnung der höchsten in dieser Gleichung enthaltenen Ableitung

Beispiele.

1. Betrachten Sie eine Differentialgleichung erster Ordnung

Die Lösung dieser Gleichung ist die Funktion y = 5 ln x. In der Tat, ersetzen y" In die Gleichung erhalten wir die Identität.

Und das bedeutet, dass die Funktion y = 5 ln x– eine Lösung dieser Differentialgleichung ist.

2. Betrachten Sie die Differentialgleichung zweiter Ordnung y" - 5y" +6y = 0. Die Funktion ist die Lösung dieser Gleichung.

Wirklich, .

Wenn wir diese Ausdrücke in die Gleichung einsetzen, erhalten wir: , – Identität.

Und das bedeutet, dass die Funktion die Lösung dieser Differentialgleichung ist.

Integrieren von Differentialgleichungen ist der Prozess, Lösungen für Differentialgleichungen zu finden.

Allgemeine Lösung der Differentialgleichung eine Funktion der Form genannt , die so viele unabhängige beliebige Konstanten enthält, wie die Ordnung der Gleichung.

Teillösung der Differentialgleichung ist eine Lösung, die aus einer allgemeinen Lösung für verschiedene numerische Werte beliebiger Konstanten erhalten wird. Die Werte beliebiger Konstanten liegen bei bestimmten Anfangswerten des Arguments und der Funktion.

Der Graph einer bestimmten Lösung einer Differentialgleichung heißt Integralkurve.

Beispiele

1. Finden Sie eine bestimmte Lösung für eine Differentialgleichung erster Ordnung

xdx + ydy = 0, Wenn j= 4 bei X = 3.

Lösung. Wenn wir beide Seiten der Gleichung integrieren, erhalten wir

Kommentar. Eine durch Integration erhaltene beliebige Konstante C kann in jeder für weitere Transformationen geeigneten Form dargestellt werden. In diesem Fall ist es unter Berücksichtigung der kanonischen Kreisgleichung zweckmäßig, eine beliebige Konstante C in der Form darzustellen.

- allgemeine Lösung der Differentialgleichung.

Bestimmte Lösung der Gleichung, die die Anfangsbedingungen erfüllt j = 4 bei X = 3 ergibt sich aus der allgemeinen Lösung durch Einsetzen der Anfangsbedingungen in die allgemeine Lösung: 3 2 + 4 2 = C 2 ; C=5.

Wenn wir C=5 in die allgemeine Lösung einsetzen, erhalten wir x 2 +y 2 = 5 2 .

Dies ist eine spezielle Lösung einer Differentialgleichung, die aus einer allgemeinen Lösung unter gegebenen Anfangsbedingungen erhalten wird.

2. Finden Sie die allgemeine Lösung der Differentialgleichung

Die Lösung dieser Gleichung ist eine beliebige Funktion der Form, wobei C eine beliebige Konstante ist. Tatsächlich erhalten wir, wenn wir , in die Gleichungen einsetzen: , .

Folglich hat diese Differentialgleichung unendlich viele Lösungen, da für unterschiedliche Werte der Konstante C die Gleichheit unterschiedliche Lösungen der Gleichung bestimmt.

Durch direkte Substitution können Sie beispielsweise überprüfen, ob die Funktionen funktionieren sind Lösungen der Gleichung.

Ein Problem, bei dem Sie eine bestimmte Lösung für die Gleichung finden müssen y" = f(x,y) Erfüllung der Anfangsbedingung y(x 0) = y 0, wird Cauchy-Problem genannt.

Lösung der Gleichung y" = f(x,y), die Anfangsbedingung erfüllend, y(x 0) = y 0, wird als Lösung des Cauchy-Problems bezeichnet.

Die Lösung des Cauchy-Problems hat eine einfache geometrische Bedeutung. Tatsächlich lässt sich nach diesen Definitionen das Cauchy-Problem lösen y" = f(x,y) angesichts dessen y(x 0) = y 0 bedeutet, die Integralkurve der Gleichung zu finden y" = f(x,y) die durch einen gegebenen Punkt geht M 0 (x 0,y 0).

II. Differentialgleichungen erster Ordnung

2.1. Grundlegendes Konzept

Eine Differentialgleichung erster Ordnung ist eine Gleichung der Form F(x,y,y") = 0.

Eine Differentialgleichung erster Ordnung umfasst die erste Ableitung und keine Ableitungen höherer Ordnung.

Die gleichung y" = f(x,y) heißt eine nach der Ableitung gelöste Gleichung erster Ordnung.

Die allgemeine Lösung einer Differentialgleichung erster Ordnung ist eine Funktion der Form , die eine beliebige Konstante enthält.

Beispiel. Betrachten Sie eine Differentialgleichung erster Ordnung.

Die Lösung dieser Gleichung ist die Funktion.

Tatsächlich erhalten wir, wenn wir diese Gleichung durch ihren Wert ersetzen

also 3x=3x

Daher ist die Funktion eine allgemeine Lösung der Gleichung für jede Konstante C.

Finden Sie eine bestimmte Lösung dieser Gleichung, die die Anfangsbedingung erfüllt y(1)=1 Anfangsbedingungen ersetzen x = 1, y =1 In die allgemeine Lösung der Gleichung gelangen wir von wo C=0.

Somit erhalten wir eine bestimmte Lösung aus der allgemeinen Lösung, indem wir den resultierenden Wert in diese Gleichung einsetzen C=0– private Lösung.

2.2. Differentialgleichungen mit separierbaren Variablen

Eine Differentialgleichung mit separierbaren Variablen ist eine Gleichung der Form: y"=f(x)g(y) oder durch Differentiale, wo f(x) Und g(y)– spezifizierte Funktionen.

Für diejenigen j, für die die Gleichung y"=f(x)g(y) ist äquivalent zur Gleichung, in dem die Variable j ist nur auf der linken Seite vorhanden und die Variable x ist nur auf der rechten Seite vorhanden. Sie sagen: „In Gl. y"=f(x)g(y Trennen wir die Variablen.“

Gleichung des Formulars wird als Gleichung mit getrennten Variablen bezeichnet.

Integration beider Seiten der Gleichung Von X, wir bekommen G(y) = F(x) + C ist die allgemeine Lösung der Gleichung, wobei G(y) Und F(x)– einige Stammfunktionen jeweils von Funktionen und f(x), C Willkürliche Konstante.

Algorithmus zur Lösung einer Differentialgleichung erster Ordnung mit separierbaren Variablen

Beispiel 1

Löse die Gleichung y" = xy

Lösung. Ableitung einer Funktion y" Ersetzen Sie es durch

Trennen wir die Variablen

Integrieren wir beide Seiten der Gleichheit:

Beispiel 2

2yy" = 1- 3x 2, Wenn y 0 = 3 bei x 0 = 1

Dies ist eine Gleichung mit getrennten Variablen. Stellen wir es uns in Differentialen vor. Dazu schreiben wir diese Gleichung in der Form um Von hier

Wir finden, dass wir beide Seiten der letzten Gleichheit integrieren

Ersetzen der Anfangswerte x 0 = 1, y 0 = 3 wir werden finden MIT 9=1-1+C, d.h. C = 9.

Daher wird das erforderliche Teilintegral sein oder

Beispiel 3

Schreiben Sie eine Gleichung für eine Kurve, die durch einen Punkt verläuft M(2;-3) und eine Tangente mit einem Winkelkoeffizienten haben

Lösung. Je nach Zustand

Dies ist eine Gleichung mit trennbaren Variablen. Durch Division der Variablen erhalten wir:

Wenn wir beide Seiten der Gleichung integrieren, erhalten wir:

Unter Verwendung der Anfangsbedingungen x = 2 Und y = - 3 wir werden finden C:

Daher hat die erforderliche Gleichung die Form

2.3. Lineare Differentialgleichungen erster Ordnung

Eine lineare Differentialgleichung erster Ordnung ist eine Gleichung der Form y" = f(x)y + g(x)

Wo f(x) Und g(x)- einige spezifizierte Funktionen.

Wenn g(x)=0 dann heißt die lineare Differentialgleichung homogen und hat die Form: y" = f(x)y

Wenn dann die Gleichung y" = f(x)y + g(x) als heterogen bezeichnet.

Allgemeine Lösung einer linearen homogenen Differentialgleichung y" = f(x)y wird durch die Formel gegeben: wo MIT- Willkürliche Konstante.

Insbesondere, wenn C = 0, dann ist die Lösung y = 0 Wenn eine lineare homogene Gleichung die Form hat y" = ky Wo k eine Konstante ist, dann hat ihre allgemeine Lösung die Form: .

Allgemeine Lösung einer linearen inhomogenen Differentialgleichung y" = f(x)y + g(x) ergibt sich aus der Formel ,

diese. ist gleich der Summe der allgemeinen Lösung der entsprechenden linearen homogenen Gleichung und der besonderen Lösung dieser Gleichung.

Für eine lineare inhomogene Gleichung der Form y" = kx + b,

Wo k Und B- Einige Zahlen und eine bestimmte Lösung sind eine konstante Funktion. Daher hat die allgemeine Lösung die Form.

Beispiel. Löse die Gleichung y" + 2y +3 = 0

Lösung. Stellen wir die Gleichung im Formular dar y" = -2y - 3 Wo k = -2, b= -3 Die allgemeine Lösung ergibt sich aus der Formel.

Daher ist C eine beliebige Konstante.

2.4. Lösung linearer Differentialgleichungen erster Ordnung nach der Bernoulli-Methode

Finden einer allgemeinen Lösung für eine lineare Differentialgleichung erster Ordnung y" = f(x)y + g(x) reduziert sich auf die Lösung zweier Differentialgleichungen mit getrennten Variablen mittels Substitution y=uv, Wo u Und v- unbekannte Funktionen von X. Diese Lösungsmethode wird Bernoulli-Methode genannt.

Algorithmus zur Lösung einer linearen Differentialgleichung erster Ordnung

y" = f(x)y + g(x)

1. Geben Sie die Vertretung ein y=uv.

2. Differenzieren Sie diese Gleichheit y" = u"v + uv"

3. Ersatz j Und y" in diese Gleichung: u"v + uv" =f(x)uv + g(x) oder u"v + uv" + f(x)uv = g(x).

4. Gruppieren Sie die Terme der Gleichung so, dass u nimm es aus der Klammer:

5. Finden Sie in der Klammer die Funktion, indem Sie sie mit Null gleichsetzen

Dies ist eine trennbare Gleichung:

Teilen wir die Variablen und erhalten:

Wo . .

6. Ersetzen Sie den resultierenden Wert v in die Gleichung ein (aus Schritt 4):

und finden Sie die Funktion Dies ist eine Gleichung mit trennbaren Variablen:

7. Schreiben Sie die allgemeine Lösung in das Formular: , d.h. .

Beispiel 1

Finden Sie eine bestimmte Lösung der Gleichung y" = -2y +3 = 0 Wenn y=1 bei x = 0

Lösung. Lassen Sie es uns durch Substitution lösen y=uv,.y" = u"v + uv"

Ersetzen j Und y" in diese Gleichung erhalten wir

Indem wir den zweiten und dritten Term auf der linken Seite der Gleichung gruppieren, entfernen wir den gemeinsamen Faktor u außerhalb der Klammern

Wir setzen den Ausdruck in Klammern mit Null gleich und finden nach Lösung der resultierenden Gleichung die Funktion v = v(x)

Wir erhalten eine Gleichung mit getrennten Variablen. Integrieren wir beide Seiten dieser Gleichung: Finden Sie die Funktion v:

Ersetzen wir den resultierenden Wert v in die Gleichung erhalten wir:

Dies ist eine Gleichung mit getrennten Variablen. Integrieren wir beide Seiten der Gleichung: Finden wir die Funktion u = u(x,c) Lassen Sie uns eine allgemeine Lösung finden: Finden wir eine bestimmte Lösung der Gleichung, die die Anfangsbedingungen erfüllt y = 1 bei x = 0:

III. Differentialgleichungen höherer Ordnung

3.1. Grundlegende Konzepte und Definitionen

Eine Differentialgleichung zweiter Ordnung ist eine Gleichung, die Ableitungen nicht höherer als zweiter Ordnung enthält. Im allgemeinen Fall wird eine Differentialgleichung zweiter Ordnung wie folgt geschrieben: F(x,y,y",y") = 0

Die allgemeine Lösung einer Differentialgleichung zweiter Ordnung ist eine Funktion der Form, die zwei beliebige Konstanten enthält C 1 Und C 2.

Eine besondere Lösung einer Differentialgleichung zweiter Ordnung ist eine Lösung, die aus einer allgemeinen Lösung für bestimmte Werte beliebiger Konstanten erhalten wird C 1 Und C 2.

3.2. Lineare homogene Differentialgleichungen zweiter Ordnung mit konstante Koeffizienten.

Lineare homogene Differentialgleichung zweiter Ordnung mit konstanten Koeffizienten wird als Gleichung der Form bezeichnet y" + py" +qy = 0, Wo P Und Q- konstante Werte.

Algorithmus zur Lösung homogener Differentialgleichungen zweiter Ordnung mit konstanten Koeffizienten

1. Schreiben Sie die Differentialgleichung in der Form: y" + py" +qy = 0.

2. Erstellen Sie die charakteristische Gleichung und bezeichnen Sie sie y" durch r 2, y" durch R, j in 1: r 2 + pr +q = 0

Um ein lineares Gleichungssystem mit zwei Variablen mithilfe der Additionsmethode zu lösen, müssen Sie Folgendes tun:

1) Multiplizieren Sie die linke und rechte Seite einer oder beider Gleichungen mit einer bestimmten Zahl, sodass die Koeffizienten einer der Variablen in den Gleichungen entgegengesetzte Zahlen werden;

2) falten Mitglied für Mitglied die resultierenden Gleichungen und ermitteln Sie den Wert einer der Variablen;

3) Setzen Sie den gefundenen Wert einer Variablen in eine dieser Gleichungen ein und ermitteln Sie den Wert der zweiten Variablen.

Wenn in einem gegebenen System die Koeffizienten einer Variablen entgegengesetzte Zahlen sind, beginnen wir sofort mit der Lösung des Systems ab Punkt 2).

Beispiele. Lösen Sie ein lineares Gleichungssystem mit zwei Variablen mithilfe der Additionsmethode.

Da die Koeffizienten von y entgegengesetzte Zahlen sind (-1 und 1), beginnen wir die Lösung ab Punkt 2). Wir addieren die Gleichungen Term für Term und erhalten die Gleichung 8x = 24. Die zweite Gleichung des Systems kann als jede beliebige Gleichung des ursprünglichen Systems geschrieben werden.

Lassen Sie uns x finden und seinen Wert in die 2. Gleichung einsetzen.

Wir lösen die 2. Gleichung: 9-y = 14, also y = -5.

Lass es uns tun überprüfen. Setzen wir die Werte x = 3 und y = -5 in das ursprüngliche Gleichungssystem ein.

Notiz: Der Scheck kann mündlich und nicht schriftlich erfolgen, wenn das Vorliegen des Schecks nicht in den Bedingungen festgelegt ist.

Antwort: (3; -5).

Wenn wir die 1. Gleichung mit (-2) multiplizieren, werden die Koeffizienten der x-Variablen zu entgegengesetzten Zahlen:

Fügen wir diese Gleichheiten Term für Term hinzu.

Wir erhalten ein äquivalentes Gleichungssystem, in dem die 1. Gleichung die Summe zweier Gleichungen des vorherigen Systems ist, und mit der 2. Gleichung des Systems schreiben wir die 1. Gleichung des ursprünglichen Systems ( Normalerweise wird die Gleichung mit kleineren Koeffizienten geschrieben):

Wir finden bei aus der 1. Gleichung und setzen Sie den resultierenden Wert in die 2. ein.

Wir lösen die letzte Gleichung des Systems und erhalten x = -2.

Antwort: (-2; 1).

Lassen Sie uns Koeffizienten für die Variable erstellen bei entgegengesetzte Zahlen. Multiplizieren Sie dazu alle Terme der 1. Gleichung mit 5 und alle Terme der 2. Gleichung mit 2.

Setzen wir den Wert x=4 in die 2. Gleichung ein.

3 · 4 - 5y = 27. Vereinfachen wir: 12 - 5y = 27, also -5y = 15 und y = -3.

Antwort: (4; -3).

Um ein lineares Gleichungssystem mit zwei Variablen mit der Substitutionsmethode zu lösen, gehen Sie wie folgt vor:

1) eine Variable durch eine andere in einer der Gleichungen des Systems ausdrücken (x durch y oder y durch x);

2) Wir setzen den resultierenden Ausdruck in eine andere Gleichung des Systems ein und erhalten eine lineare Gleichung mit einer Variablen;

3) Lösen Sie die resultierende lineare Gleichung mit einer Variablen und ermitteln Sie den Wert dieser Variablen;

4) Wir ersetzen den gefundenen Wert der Variablen in Ausdruck (1) durch eine andere Variable und ermitteln den Wert dieser Variablen.

Beispiele. Lösen Sie ein lineares Gleichungssystem mit der Substitutionsmethode.

Lassen Sie uns ausdrücken X durch y aus der 1. Gleichung. Wir erhalten: x=7+y. Ersetzen wir stattdessen den Ausdruck (7+y). X in die 2. Gleichung des Systems ein.

Wir haben die Gleichung: 3 · (7+y)+2y=16. Dies ist eine Gleichung mit einer Variablen bei. Lass es uns lösen. Öffnen wir die Klammern: 21+3y+2y=16. Begriffe mit einer Variablen sammeln bei auf der linken Seite und kostenlose Bedingungen auf der rechten Seite. Wenn wir einen Begriff von einer Seite einer Gleichheit auf eine andere übertragen, ändern wir das Vorzeichen des Begriffs in das Gegenteil.

Wir erhalten: 3y+2y=16-21. Wir präsentieren in jedem Teil der Gleichheit ähnliche Begriffe. 5y=-5. Wir dividieren beide Seiten der Gleichheit durch den Koeffizienten der Variablen. y=-5:5; y=-1. Ersetzen Sie diesen Wert bei in den Ausdruck x=7+y umwandeln und finden X. Wir erhalten: x=7-1; x=6. Ein Paar variabler Werte x=6 und y=-1 ist eine Lösung für dieses System.

Schreiben Sie auf: (6; -1). Antwort: (6; -1). Es ist praktisch, diese Argumente wie unten gezeigt zu schreiben, d. h. Gleichungssysteme - links untereinander. Auf der rechten Seite finden Sie Berechnungen, notwendige Erläuterungen, Überprüfung der Lösung usw.

Seite 1 von 1 1

Gleichungssysteme werden im Wirtschaftsbereich häufig zur mathematischen Modellierung verschiedener Prozesse eingesetzt. Zum Beispiel bei der Lösung von Problemen des Produktionsmanagements und der Produktionsplanung, Logistikrouten (Transportproblem) oder der Geräteplatzierung.

Gleichungssysteme werden nicht nur in der Mathematik, sondern auch in der Physik, Chemie und Biologie zur Lösung von Problemen zur Bestimmung der Bevölkerungsgröße verwendet.

Ein lineares Gleichungssystem besteht aus zwei oder mehr Gleichungen mit mehreren Variablen, für die eine gemeinsame Lösung gefunden werden muss. Eine solche Zahlenfolge, bei der alle Gleichungen zu wahren Gleichheiten werden oder beweisen, dass die Folge nicht existiert.

Lineare Gleichung

Gleichungen der Form ax+by=c heißen linear. Die Bezeichnungen x, y sind die Unbekannten, deren Wert gefunden werden muss, b, a sind die Koeffizienten der Variablen, c ist der freie Term der Gleichung.
Wenn Sie eine Gleichung durch Auftragen lösen, sieht sie wie eine gerade Linie aus, deren Punkte alle Lösungen des Polynoms sind.

Arten von linearen Gleichungssystemen

Als einfachste Beispiele gelten Systeme linearer Gleichungen mit zwei Variablen X und Y.

F1(x, y) = 0 und F2(x, y) = 0, wobei F1,2 Funktionen und (x, y) Funktionsvariablen sind.

Gleichungssystem lösen - Dies bedeutet, Werte (x, y) zu finden, bei denen das System zu einer echten Gleichheit wird, oder festzustellen, dass keine geeigneten Werte für x und y existieren.

Ein Wertepaar (x, y), geschrieben als Koordinaten eines Punktes, wird als Lösung eines linearen Gleichungssystems bezeichnet.

Wenn Systeme eine gemeinsame Lösung haben oder keine Lösung existiert, werden sie als äquivalent bezeichnet.

Homogene lineare Gleichungssysteme sind Systeme, deren rechte Seite gleich Null ist. Wenn der rechte Teil nach dem Gleichheitszeichen einen Wert hat oder durch eine Funktion ausgedrückt wird, ist ein solches System heterogen.

Die Anzahl der Variablen kann viel mehr als zwei betragen, dann sollten wir über ein Beispiel eines linearen Gleichungssystems mit drei oder mehr Variablen sprechen.

Wenn Schüler mit Systemen konfrontiert werden, gehen sie davon aus, dass die Anzahl der Gleichungen zwangsläufig mit der Anzahl der Unbekannten übereinstimmen muss, was jedoch nicht der Fall ist. Die Anzahl der Gleichungen im System hängt nicht von den Variablen ab; es können beliebig viele davon vorhanden sein.

Einfache und komplexe Methoden zur Lösung von Gleichungssystemen

Es gibt keine allgemeine analytische Methode zur Lösung solcher Systeme; alle Methoden basieren auf numerischen Lösungen. Der Schulmathematikkurs beschreibt ausführlich Methoden wie Permutation, algebraische Addition, Substitution sowie grafische und Matrixmethoden, Lösung nach der Gaußschen Methode.

Die Hauptaufgabe bei der Vermittlung von Lösungsmethoden besteht darin, zu lehren, wie man das System richtig analysiert und für jedes Beispiel den optimalen Lösungsalgorithmus findet. Die Hauptsache besteht nicht darin, sich ein System von Regeln und Aktionen für jede Methode zu merken, sondern die Prinzipien der Verwendung einer bestimmten Methode zu verstehen

Das Lösen von Beispielen für lineare Gleichungssysteme im allgemeinbildenden Lehrplan der 7. Klasse ist recht einfach und wird ausführlich erklärt. In jedem Mathematiklehrbuch wird diesem Abschnitt genügend Aufmerksamkeit geschenkt. Die Lösung von Beispielen linearer Gleichungssysteme mit der Gauß- und Cramer-Methode wird in den ersten Studienjahren genauer untersucht.

Lösen von Systemen mit der Substitutionsmethode

Die Aktionen der Substitutionsmethode zielen darauf ab, den Wert einer Variablen durch die zweite auszudrücken. Der Ausdruck wird in die verbleibende Gleichung eingesetzt und dann auf eine Form mit einer Variablen reduziert. Die Aktion wird abhängig von der Anzahl der Unbekannten im System wiederholt

Geben wir eine Lösung für ein Beispiel eines linearen Gleichungssystems der Klasse 7 mit der Substitutionsmethode:

Wie aus dem Beispiel hervorgeht, wurde die Variable x durch F(X) = 7 + Y ausgedrückt. Der resultierende Ausdruck, der anstelle von X in die zweite Gleichung des Systems eingesetzt wurde, trug dazu bei, eine Variable Y in der zweiten Gleichung zu erhalten . Das Lösen dieses Beispiels ist einfach und ermöglicht es Ihnen, den Y-Wert zu ermitteln. Der letzte Schritt besteht darin, die erhaltenen Werte zu überprüfen.

Es ist nicht immer möglich, ein Beispiel eines linearen Gleichungssystems durch Substitution zu lösen. Die Gleichungen können komplex sein und die Variable als zweite Unbekannte auszudrücken wäre für weitere Berechnungen zu umständlich. Wenn das System mehr als drei Unbekannte enthält, ist die Lösung durch Substitution ebenfalls ungeeignet.

Lösung eines Beispiels eines Systems linearer inhomogener Gleichungen:

Lösung mit algebraischer Addition

Bei der Suche nach Systemlösungen mit der Additionsmethode werden Gleichungen Term für Term addiert und mit verschiedenen Zahlen multipliziert. Das ultimative Ziel mathematischer Operationen ist eine Gleichung in einer Variablen.

Die Anwendung dieser Methode erfordert Übung und Beobachtung. Es ist nicht einfach, ein lineares Gleichungssystem mit der Additionsmethode zu lösen, wenn drei oder mehr Variablen vorhanden sind. Die algebraische Addition ist praktisch, wenn Gleichungen Brüche und Dezimalzahlen enthalten.

Lösungsalgorithmus:

  1. Multiplizieren Sie beide Seiten der Gleichung mit einer bestimmten Zahl. Als Ergebnis der arithmetischen Operation sollte einer der Koeffizienten der Variablen gleich 1 werden.
  2. Addieren Sie den resultierenden Ausdruck Term für Term und finden Sie eine der Unbekannten.
  3. Setzen Sie den resultierenden Wert in die zweite Gleichung des Systems ein, um die verbleibende Variable zu finden.

Lösungsmethode durch Einführung einer neuen Variablen

Eine neue Variable kann eingeführt werden, wenn das System eine Lösung für nicht mehr als zwei Gleichungen erfordert und die Anzahl der Unbekannten ebenfalls nicht mehr als zwei betragen sollte.

Die Methode wird verwendet, um eine der Gleichungen durch Einführung einer neuen Variablen zu vereinfachen. Die neue Gleichung wird nach der eingeführten Unbekannten gelöst und der resultierende Wert wird zur Bestimmung der ursprünglichen Variablen verwendet.

Das Beispiel zeigt, dass es durch die Einführung einer neuen Variablen t möglich war, die 1. Gleichung des Systems auf ein quadratisches Standardtrinom zu reduzieren. Sie können ein Polynom lösen, indem Sie die Diskriminante ermitteln.

Der Wert der Diskriminante muss mithilfe der bekannten Formel D = b2 - 4*a*c ermittelt werden, wobei D die gewünschte Diskriminante und b, a, c die Faktoren des Polynoms sind. Im gegebenen Beispiel ist a=1, b=16, c=39, also D=100. Wenn die Diskriminante größer als Null ist, gibt es zwei Lösungen: t = -b±√D / 2*a, wenn die Diskriminante kleiner als Null ist, dann gibt es eine Lösung: x = -b / 2*a.

Die Lösung für die resultierenden Systeme wird durch die Additionsmethode gefunden.

Visuelle Methode zur Lösung von Systemen

Geeignet für 3 Gleichungssysteme. Die Methode besteht darin, Diagramme jeder im System enthaltenen Gleichung auf der Koordinatenachse zu erstellen. Die Koordinaten der Schnittpunkte der Kurven sind die allgemeine Lösung des Systems.

Die grafische Methode weist eine Reihe von Nuancen auf. Schauen wir uns einige Beispiele für die visuelle Lösung linearer Gleichungssysteme an.

Wie aus dem Beispiel ersichtlich ist, wurden für jede Linie zwei Punkte konstruiert, die Werte der Variablen x wurden willkürlich gewählt: 0 und 3. Basierend auf den Werten von x wurden die Werte für y gefunden: 3 und 0. Punkte mit den Koordinaten (0, 3) und (3, 0) wurden im Diagramm markiert und durch eine Linie verbunden.

Die Schritte müssen für die zweite Gleichung wiederholt werden. Der Schnittpunkt der Geraden ist die Lösung des Systems.

Im folgenden Beispiel muss eine grafische Lösung für ein lineares Gleichungssystem gefunden werden: 0,5x-y+2=0 und 0,5x-y-1=0.

Wie aus dem Beispiel ersichtlich ist, hat das System keine Lösung, da die Graphen parallel sind und sich nicht auf ihrer gesamten Länge schneiden.

Die Systeme aus den Beispielen 2 und 3 sind ähnlich, beim Aufbau wird jedoch deutlich, dass ihre Lösungen unterschiedlich sind. Es sollte beachtet werden, dass es nicht immer möglich ist, zu sagen, ob ein System eine Lösung hat oder nicht. Es ist immer notwendig, einen Graphen zu erstellen.

Die Matrix und ihre Varianten

Matrizen werden verwendet, um ein System linearer Gleichungen präzise zu schreiben. Eine Matrix ist eine spezielle Art von Tabelle, die mit Zahlen gefüllt ist. n*m hat n - Zeilen und m - Spalten.

Eine Matrix ist quadratisch, wenn die Anzahl der Spalten und Zeilen gleich ist. Ein Matrixvektor ist eine Matrix aus einer Spalte mit einer unendlich möglichen Anzahl von Zeilen. Eine Matrix mit Einsen entlang einer der Diagonalen und anderen Nullelementen wird Identität genannt.

Eine inverse Matrix ist eine Matrix, mit der sich die ursprüngliche Matrix in eine Einheitsmatrix verwandelt; eine solche Matrix existiert nur für die ursprüngliche quadratische Matrix.

Regeln zur Umwandlung eines Gleichungssystems in eine Matrix

Bei Gleichungssystemen werden die Koeffizienten und freien Terme der Gleichungen als Matrixzahlen geschrieben; eine Gleichung entspricht einer Zeile der Matrix.

Eine Matrixzeile heißt ungleich Null, wenn mindestens ein Element der Zeile ungleich Null ist. Wenn also in einer der Gleichungen die Anzahl der Variablen unterschiedlich ist, muss anstelle der fehlenden Unbekannten eine Null eingegeben werden.

Die Matrixspalten müssen genau den Variablen entsprechen. Das bedeutet, dass die Koeffizienten der Variablen x nur in eine Spalte geschrieben werden können, zum Beispiel die erste, der Koeffizient der Unbekannten y – nur in die zweite.

Bei der Multiplikation einer Matrix werden alle Elemente der Matrix nacheinander mit einer Zahl multipliziert.

Optionen zum Finden der inversen Matrix

Die Formel zum Ermitteln der inversen Matrix ist recht einfach: K -1 = 1 / |K|, wobei K -1 die inverse Matrix und |K| ist ist die Determinante der Matrix. |K| darf nicht gleich Null sein, dann hat das System eine Lösung.

Die Determinante lässt sich für eine Zwei-mal-Zwei-Matrix leicht berechnen; Sie müssen lediglich die Diagonalelemente miteinander multiplizieren. Für die Option „drei mal drei“ gibt es eine Formel |K|=a 1 b 2 c 3 + a 1 b 3 c 2 + a 3 b 1 c 2 + a 2 b 3 c 1 + a 2 b 1 c 3 + a 3 b 2 c 1 . Sie können die Formel verwenden oder sich merken, dass Sie aus jeder Zeile und jeder Spalte ein Element entnehmen müssen, damit sich die Anzahl der Spalten und Elementreihen in der Arbeit nicht wiederholt.

Beispiele für lineare Gleichungssysteme mit der Matrixmethode lösen

Mit der Matrixlösungsmethode können Sie umständliche Eingaben beim Lösen von Systemen mit einer großen Anzahl von Variablen und Gleichungen reduzieren.

Im Beispiel sind a nm die Koeffizienten der Gleichungen, die Matrix ist ein Vektor, x n sind Variablen und b n sind freie Terme.

Lösen von Systemen mit der Gaußschen Methode

In der höheren Mathematik wird die Gauß-Methode zusammen mit der Cramer-Methode untersucht, und der Prozess der Lösungsfindung für Systeme wird als Gauß-Cramer-Lösungsmethode bezeichnet. Diese Methoden werden verwendet, um Variablen in Systemen mit einer großen Anzahl linearer Gleichungen zu finden.

Die Gauß-Methode ähnelt stark den Lösungen durch Substitution und algebraische Addition, ist jedoch systematischer. Im Schulunterricht wird die Lösung nach der Gaußschen Methode für Systeme mit 3 und 4 Gleichungen verwendet. Ziel der Methode ist es, das System auf die Form eines umgekehrten Trapezes zu reduzieren. Durch algebraische Transformationen und Substitutionen wird der Wert einer Variablen in einer der Gleichungen des Systems ermittelt. Die zweite Gleichung ist ein Ausdruck mit 2 Unbekannten, während 3 und 4 jeweils mit 3 bzw. 4 Variablen sind.

Nachdem das System in die beschriebene Form gebracht wurde, reduziert sich die weitere Lösung auf die sequentielle Substitution bekannter Variablen in die Gleichungen des Systems.

In Schulbüchern für die 7. Klasse wird ein Beispiel für eine Lösung nach der Gauß-Methode wie folgt beschrieben:

Wie aus dem Beispiel ersichtlich ist, wurden in Schritt (3) zwei Gleichungen erhalten: 3x 3 -2x 4 =11 und 3x 3 +2x 4 =7. Wenn Sie eine der Gleichungen lösen, können Sie eine der Variablen x n herausfinden.

Der im Text erwähnte Satz 5 besagt, dass, wenn eine der Gleichungen des Systems durch eine äquivalente ersetzt wird, das resultierende System auch äquivalent zum ursprünglichen ist.

Die Gaußsche Methode ist für Schüler der Mittelstufe schwer zu verstehen, aber sie ist eine der interessantesten Möglichkeiten, den Einfallsreichtum von Kindern zu fördern, die in fortgeschrittenen Lernprogrammen im Mathematik- und Physikunterricht eingeschrieben sind.

Um die Aufzeichnung zu erleichtern, werden Berechnungen normalerweise wie folgt durchgeführt:

Die Koeffizienten der Gleichungen und freien Terme werden in Form einer Matrix geschrieben, wobei jede Zeile der Matrix einer der Gleichungen des Systems entspricht. trennt die linke Seite der Gleichung von der rechten. Römische Ziffern geben die Nummern der Gleichungen im System an.

Notieren Sie zunächst die Matrix, mit der gearbeitet werden soll, und anschließend alle Aktionen, die mit einer der Zeilen ausgeführt werden. Die resultierende Matrix wird nach dem „Pfeil“-Zeichen geschrieben und die notwendigen algebraischen Operationen werden fortgesetzt, bis das Ergebnis erreicht ist.

Das Ergebnis sollte eine Matrix sein, in der eine der Diagonalen gleich 1 ist und alle anderen Koeffizienten gleich Null sind, das heißt, die Matrix wird auf eine Einheitsform reduziert. Wir dürfen nicht vergessen, Berechnungen mit Zahlen auf beiden Seiten der Gleichung durchzuführen.

Diese Aufzeichnungsmethode ist weniger umständlich und ermöglicht es Ihnen, sich nicht durch das Auflisten zahlreicher Unbekannter ablenken zu lassen.

Der freie Einsatz jeder Lösungsmethode erfordert Sorgfalt und etwas Erfahrung. Nicht alle Methoden sind angewandter Natur. Einige Methoden zur Lösungsfindung sind in einem bestimmten Bereich menschlicher Tätigkeit vorzuziehen, während andere für Bildungszwecke existieren.