Subtrahieren natürlicher Logarithmen. Logarithmus. Definition von binärem Logarithmus, natürlichem Logarithmus, dezimalem Logarithmus; Exponentialfunktion exp(x), Zahl e. Ein loggen. Potenz- und Logarithmenformeln. Mit Logarithmus, Dezibel. Übergang zum Neuen

Die Wahrung Ihrer Privatsphäre ist uns wichtig. Aus diesem Grund haben wir eine Datenschutzrichtlinie entwickelt, die beschreibt, wie wir Ihre Daten verwenden und speichern. Bitte lesen Sie unsere Datenschutzpraktiken durch und teilen Sie uns mit, wenn Sie Fragen haben.

Erhebung und Nutzung personenbezogener Daten

Unter personenbezogenen Daten versteht man Daten, die dazu genutzt werden können, eine bestimmte Person zu identifizieren oder mit ihr in Kontakt zu treten.

Sie können jederzeit um die Angabe Ihrer persönlichen Daten gebeten werden, wenn Sie mit uns Kontakt aufnehmen.

Nachfolgend finden Sie einige Beispiele für die Arten personenbezogener Daten, die wir möglicherweise sammeln, und wie wir diese Informationen verwenden können.

Welche personenbezogenen Daten erfassen wir:

  • Wenn Sie auf der Website eine Bewerbung einreichen, erfassen wir möglicherweise verschiedene Informationen, einschließlich Ihres Namens, Ihrer Telefonnummer, Ihrer E-Mail-Adresse usw.

Wie wir Ihre persönlichen Daten verwenden:

  • Die von uns erfassten personenbezogenen Daten ermöglichen es uns, Sie mit einzigartigen Angeboten, Werbeaktionen und anderen Veranstaltungen sowie bevorstehenden Veranstaltungen zu kontaktieren.
  • Von Zeit zu Zeit können wir Ihre persönlichen Daten verwenden, um wichtige Mitteilungen und Mitteilungen zu versenden.
  • Wir können personenbezogene Daten auch für interne Zwecke verwenden, beispielsweise zur Durchführung von Audits, Datenanalysen und verschiedenen Forschungsarbeiten, um die von uns bereitgestellten Dienste zu verbessern und Ihnen Empfehlungen zu unseren Diensten zu geben.
  • Wenn Sie an einer Verlosung, einem Wettbewerb oder einer ähnlichen Aktion teilnehmen, können wir die von Ihnen bereitgestellten Informationen zur Verwaltung solcher Programme verwenden.

Weitergabe von Informationen an Dritte

Wir geben die von Ihnen erhaltenen Informationen nicht an Dritte weiter.

Ausnahmen:

  • Wenn es erforderlich ist – in Übereinstimmung mit dem Gesetz, dem Gerichtsverfahren, in Gerichtsverfahren und/oder auf der Grundlage öffentlicher Anfragen oder Anfragen von Regierungsstellen in der Russischen Föderation – Ihre personenbezogenen Daten offenzulegen. Wir können auch Informationen über Sie offenlegen, wenn wir zu dem Schluss kommen, dass eine solche Offenlegung aus Sicherheits-, Strafverfolgungs- oder anderen Gründen von öffentlicher Bedeutung notwendig oder angemessen ist.
  • Im Falle einer Umstrukturierung, Fusion oder eines Verkaufs können wir die von uns erfassten personenbezogenen Daten an den jeweiligen Nachfolger-Dritten weitergeben.

Schutz personenbezogener Daten

Wir treffen Vorkehrungen – einschließlich administrativer, technischer und physischer –, um Ihre persönlichen Daten vor Verlust, Diebstahl und Missbrauch sowie vor unbefugtem Zugriff, Offenlegung, Änderung und Zerstörung zu schützen.

Respektieren Sie Ihre Privatsphäre auf Unternehmensebene

Um sicherzustellen, dass Ihre persönlichen Daten sicher sind, kommunizieren wir Datenschutz- und Sicherheitsstandards an unsere Mitarbeiter und setzen Datenschutzpraktiken strikt durch.

Der Logarithmus einer positiven Zahl b zur Basis a (a>0, a ist ungleich 1) ist eine Zahl c mit a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       

Beachten Sie, dass der Logarithmus einer nicht positiven Zahl undefiniert ist. Außerdem muss die Basis des Logarithmus eine positive Zahl sein, die nicht gleich 1 ist. Wenn wir beispielsweise -2 quadrieren, erhalten wir die Zahl 4, aber das bedeutet nicht, dass der Logarithmus zur Basis -2 von 4 ist ist gleich 2.

Grundlegende logarithmische Identität

a log a b = b (a > 0, a ≠ 1) (2)

Es ist wichtig, dass der Definitionsbereich der rechten und linken Seite dieser Formel unterschiedlich ist. Die linke Seite ist nur für b>0, a>0 und a ≠ 1 definiert. Die rechte Seite ist für jedes b definiert und hängt überhaupt nicht von a ab. Somit kann die Anwendung der grundlegenden logarithmischen „Identität“ beim Lösen von Gleichungen und Ungleichungen zu einer Änderung der OD führen.

Zwei offensichtliche Konsequenzen der Definition des Logarithmus

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Tatsächlich erhalten wir dieselbe Zahl, wenn wir die Zahl a auf die erste Potenz erhöhen, und wenn wir sie auf die Nullpotenz erhöhen, erhalten wir eins.

Logarithmus des Produkts und Logarithmus des Quotienten

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Ich möchte Schulkinder davor warnen, diese Formeln unbedacht beim Lösen logarithmischer Gleichungen und Ungleichungen zu verwenden. Wenn man sie „von links nach rechts“ verwendet, verengt sich die ODZ, und wenn man von der Summe oder Differenz der Logarithmen zum Logarithmus des Produkts oder Quotienten übergeht, erweitert sich die ODZ.

Tatsächlich ist der Ausdruck log a (f (x) g (x)) in zwei Fällen definiert: wenn beide Funktionen streng positiv sind oder wenn f(x) und g(x) beide kleiner als Null sind.

Wenn wir diesen Ausdruck in die Summe log a f (x) + log a g (x) umwandeln, müssen wir uns nur auf den Fall beschränken, wenn f(x)>0 und g(x)>0. Es kommt zu einer Einengung des akzeptablen Wertebereichs, was grundsätzlich inakzeptabel ist, da es zum Lösungsverlust führen kann. Ein ähnliches Problem besteht für Formel (6).

Der Grad kann aus dem Vorzeichen des Logarithmus entnommen werden

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

Und noch einmal möchte ich zur Genauigkeit aufrufen. Betrachten Sie das folgende Beispiel:

Log a (f (x) 2 = 2 log a f (x)

Die linke Seite der Gleichheit ist offensichtlich für alle Werte von f(x) außer Null definiert. Die rechte Seite gilt nur für f(x)>0! Indem wir den Grad aus dem Logarithmus herausnehmen, grenzen wir die ODZ erneut ein. Das umgekehrte Vorgehen führt zu einer Erweiterung des zulässigen Wertebereichs. Alle diese Bemerkungen gelten nicht nur für Potenz 2, sondern auch für jede gerade Potenz.

Formel für den Umzug in eine neue Stiftung

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Der seltene Fall, dass sich die ODZ während der Transformation nicht ändert. Wenn Sie die Basis c mit Bedacht gewählt haben (positiv und ungleich 1), ist die Formel für den Wechsel zu einer neuen Basis völlig sicher.

Wenn wir als neue Basis c die Zahl b wählen, erhalten wir einen wichtigen Sonderfall der Formel (8):

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Einige einfache Beispiele mit Logarithmen

Beispiel 1. Berechnen Sie: log2 + log50.
Lösung. log2 + log50 = log100 = 2. Wir haben die Formel für die Summe der Logarithmen (5) und die Definition des dezimalen Logarithmus verwendet.


Beispiel 2. Berechnen Sie: lg125/lg5.
Lösung. log125/log5 = log 5 125 = 3. Wir haben die Formel für den Wechsel zu einer neuen Basis (8) verwendet.

Formeltabelle für Logarithmen

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

Wie Sie wissen, addieren sich bei der Multiplikation von Ausdrücken mit Potenzen immer deren Exponenten (a b *a c = a b+c). Dieses mathematische Gesetz wurde von Archimedes abgeleitet und später, im 8. Jahrhundert, erstellte der Mathematiker Virasen eine Tabelle ganzzahliger Exponenten. Sie dienten der weiteren Entdeckung der Logarithmen. Beispiele für die Verwendung dieser Funktion finden sich fast überall dort, wo Sie umständliche Multiplikationen durch einfache Addition vereinfachen müssen. Wenn Sie diesen Artikel 10 Minuten lang lesen, erklären wir Ihnen, was Logarithmen sind und wie man mit ihnen arbeitet. In einfacher und zugänglicher Sprache.

Definition in der Mathematik

Ein Logarithmus ist ein Ausdruck der folgenden Form: log a b=c, d. h. der Logarithmus einer beliebigen nicht negativen (d. h. positiven) Zahl „b“ zu ihrer Basis „a“ wird als Potenz „c“ betrachtet ” auf den die Basis „a“ angehoben werden muss, um letztlich den Wert „b“ zu erhalten. Lassen Sie uns den Logarithmus anhand von Beispielen analysieren. Nehmen wir an, es gibt einen Ausdruck log 2 8. Wie finde ich die Antwort? Es ist ganz einfach: Sie müssen eine solche Potenz finden, dass Sie von 2 bis zur erforderlichen Potenz 8 erhalten. Nachdem wir einige Berechnungen im Kopf durchgeführt haben, erhalten wir die Zahl 3! Und das stimmt, denn 2 hoch 3 ergibt eine 8.

Arten von Logarithmen

Für viele Schüler und Studenten erscheint dieses Thema kompliziert und unverständlich, aber tatsächlich sind Logarithmen nicht so beängstigend, die Hauptsache ist, ihre allgemeine Bedeutung zu verstehen und sich ihre Eigenschaften und einige Regeln zu merken. Es gibt drei verschiedene Arten logarithmischer Ausdrücke:

  1. Natürlicher Logarithmus ln a, wobei die Basis die Euler-Zahl (e = 2,7) ist.
  2. Dezimalzahl a, wobei die Basis 10 ist.
  3. Logarithmus einer beliebigen Zahl b zur Basis a>1.

Jeder von ihnen wird auf Standardmethode gelöst, einschließlich Vereinfachung, Reduktion und anschließender Reduktion auf einen einzelnen Logarithmus unter Verwendung logarithmischer Theoreme. Um die richtigen Werte von Logarithmen zu erhalten, sollten Sie sich beim Lösen deren Eigenschaften und die Reihenfolge der Aktionen merken.

Regeln und einige Einschränkungen

In der Mathematik gibt es mehrere Regeln und Einschränkungen, die als Axiom akzeptiert werden, das heißt, sie unterliegen keiner Diskussion und sind die Wahrheit. Beispielsweise ist es unmöglich, Zahlen durch Null zu dividieren, und es ist auch unmöglich, die gerade Wurzel negativer Zahlen zu ziehen. Logarithmen haben auch ihre eigenen Regeln, nach denen Sie leicht lernen können, auch mit langen und umfangreichen logarithmischen Ausdrücken zu arbeiten:

  • Die Basis „a“ muss immer größer als Null und nicht gleich 1 sein, sonst verliert der Ausdruck seine Bedeutung, da „1“ und „0“ in jedem Grad immer gleich ihren Werten sind;
  • Wenn a > 0, dann a b > 0, stellt sich heraus, dass „c“ ebenfalls größer als Null sein muss.

Wie löst man Logarithmen?

Zum Beispiel wird die Aufgabe gestellt, die Antwort auf die Gleichung 10 x = 100 zu finden. Das ist sehr einfach, Sie müssen eine Potenz wählen, indem Sie die Zahl zehn erhöhen, auf die wir 100 erhalten. Das ist natürlich 10 2 = 100.

Lassen Sie uns diesen Ausdruck nun in logarithmischer Form darstellen. Wir erhalten log 10 · 100 = 2. Beim Lösen von Logarithmen konvergieren praktisch alle Aktionen, um die Potenz zu finden, mit der die Basis des Logarithmus eingegeben werden muss, um eine gegebene Zahl zu erhalten.

Um den Wert eines unbekannten Grades genau zu bestimmen, müssen Sie lernen, mit einer Gradtabelle zu arbeiten. Es sieht aus wie das:

Wie Sie sehen, können einige Exponenten intuitiv erraten werden, wenn Sie über technisches Verständnis und Kenntnisse der Multiplikationstabelle verfügen. Für größere Werte benötigen Sie jedoch eine Leistungstabelle. Es kann auch von Personen verwendet werden, die überhaupt keine Ahnung von komplexen mathematischen Themen haben. Die linke Spalte enthält Zahlen (Basis a), die obere Zahlenreihe gibt den Wert der Potenz c an, mit der die Zahl a erhöht wird. Am Schnittpunkt enthalten die Zellen die Zahlenwerte, die die Antwort darstellen (a c =b). Nehmen wir zum Beispiel die allererste Zelle mit der Zahl 10 und quadrieren sie, wir erhalten den Wert 100, der am Schnittpunkt unserer beiden Zellen angezeigt wird. Alles ist so einfach und leicht, dass selbst der wahrste Humanist es verstehen wird!

Gleichungen und Ungleichungen

Es stellt sich heraus, dass unter bestimmten Bedingungen der Exponent der Logarithmus ist. Daher können alle mathematischen numerischen Ausdrücke als logarithmische Gleichheit geschrieben werden. Beispielsweise kann 3 4 =81 als Logarithmus zur Basis 3 von 81 gleich vier geschrieben werden (log 3 81 = 4). Für negative Potenzen gelten dieselben Regeln: 2 -5 = 1/32, wir schreiben es als Logarithmus, wir erhalten log 2 (1/32) = -5. Einer der faszinierendsten Bereiche der Mathematik ist das Thema „Logarithmen“. Wir werden uns unten Beispiele und Lösungen der Gleichungen ansehen, unmittelbar nachdem wir ihre Eigenschaften untersucht haben. Schauen wir uns nun an, wie Ungleichungen aussehen und wie man sie von Gleichungen unterscheidet.

Es ergibt sich folgender Ausdruck: log 2 (x-1) > 3 – es handelt sich um eine logarithmische Ungleichung, da der unbekannte Wert „x“ unter dem logarithmischen Vorzeichen steht. Und auch im Ausdruck werden zwei Größen verglichen: Der Logarithmus der gewünschten Zahl zur Basis zwei ist größer als die Zahl drei.

Der wichtigste Unterschied zwischen logarithmischen Gleichungen und Ungleichungen besteht darin, dass Gleichungen mit Logarithmen (z. B. der Logarithmus 2 x = √9) einen oder mehrere bestimmte numerische Werte in der Antwort implizieren, während bei der Lösung einer Ungleichung beide Bereiche akzeptabel sind Werte und die Punkte werden durch Brechen dieser Funktion bestimmt. Folglich handelt es sich bei der Antwort nicht um eine einfache Menge einzelner Zahlen, wie bei der Antwort auf eine Gleichung, sondern um eine kontinuierliche Reihe oder Menge von Zahlen.

Grundlegende Sätze über Logarithmen

Bei der Lösung primitiver Aufgaben zur Ermittlung der Werte des Logarithmus sind seine Eigenschaften möglicherweise nicht bekannt. Wenn es jedoch um logarithmische Gleichungen oder Ungleichungen geht, ist es zunächst notwendig, alle grundlegenden Eigenschaften von Logarithmen klar zu verstehen und in der Praxis anzuwenden. Wir werden uns später Beispiele für Gleichungen ansehen; schauen wir uns zunächst jede Eigenschaft genauer an.

  1. Die Hauptidentität sieht so aus: a logaB =B. Dies gilt nur, wenn a größer als 0, ungleich eins und B größer als Null ist.
  2. Der Logarithmus des Produkts kann in der folgenden Formel dargestellt werden: log d (s 1 * s 2) = log d s 1 + log d s 2. In diesem Fall lautet die zwingende Bedingung: d, s 1 und s 2 > 0; a≠1. Sie können einen Beweis für diese logarithmische Formel mit Beispielen und Lösung geben. Sei log a s 1 = f 1 und log a s 2 = f 2, dann a f1 = s 1, a f2 = s 2. Wir erhalten, dass s 1 * s 2 = a f1 *a f2 = a f1+f2 (Eigenschaften von Grad ), und dann per Definition: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, was bewiesen werden musste.
  3. Der Logarithmus des Quotienten sieht folgendermaßen aus: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Der Satz in Form einer Formel hat die folgende Form: log a q b n = n/q log a b.

Diese Formel wird „Eigenschaft des Logarithmusgrades“ genannt. Es ähnelt den Eigenschaften gewöhnlicher Grade, und das ist nicht überraschend, da die gesamte Mathematik auf natürlichen Postulaten basiert. Schauen wir uns den Beweis an.

Sei log a b = t, es ergibt sich a t =b. Potenzieren wir beide Teile m: a tn = b n ;

aber da a tn = (a q) nt/q = b n, also log a q b n = (n*t)/t, dann log a q b n = n/q log a b. Der Satz ist bewiesen.

Beispiele für Probleme und Ungleichheiten

Die häufigsten Arten von Logarithmenproblemen sind Beispiele für Gleichungen und Ungleichungen. Sie finden sich in fast allen Aufgabenbüchern und sind auch Pflichtbestandteil von Mathematikprüfungen. Um an einer Universität zu studieren oder Aufnahmeprüfungen in Mathematik zu bestehen, müssen Sie wissen, wie man solche Aufgaben richtig löst.

Leider gibt es keinen einheitlichen Plan oder Schema zum Lösen und Bestimmen des unbekannten Werts des Logarithmus, aber bestimmte Regeln können auf jede mathematische Ungleichung oder logarithmische Gleichung angewendet werden. Zunächst sollten Sie herausfinden, ob der Ausdruck vereinfacht oder auf eine allgemeine Form reduziert werden kann. Sie können lange logarithmische Ausdrücke vereinfachen, wenn Sie ihre Eigenschaften richtig verwenden. Lernen wir sie schnell kennen.

Beim Lösen logarithmischer Gleichungen müssen wir bestimmen, um welche Art von Logarithmus es sich handelt: Ein Beispielausdruck kann einen natürlichen Logarithmus oder einen Dezimallogarithmus enthalten.

Hier sind Beispiele ln100, ln1026. Ihre Lösung läuft darauf hinaus, dass sie die Potenz bestimmen müssen, mit der die Basis 10 gleich 100 bzw. 1026 ist. Um natürliche Logarithmen zu lösen, müssen Sie logarithmische Identitäten oder deren Eigenschaften anwenden. Schauen wir uns Beispiele für die Lösung logarithmischer Probleme verschiedener Art an.

So verwenden Sie Logarithmusformeln: Mit Beispielen und Lösungen

Schauen wir uns also Beispiele für die Verwendung der grundlegenden Sätze über Logarithmen an.

  1. Die Eigenschaft des Logarithmus eines Produkts kann bei Aufgaben verwendet werden, bei denen es notwendig ist, einen großen Wert der Zahl b in einfachere Faktoren zu zerlegen. Beispiel: log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Die Antwort ist 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 – wie Sie sehen können, ist es uns mithilfe der vierten Eigenschaft der Logarithmuspotenz gelungen, einen scheinbar komplexen und unlösbaren Ausdruck zu lösen. Sie müssen lediglich die Basis faktorisieren und dann die Exponentenwerte aus dem Vorzeichen des Logarithmus entnehmen.

Aufgaben aus dem Einheitlichen Staatsexamen

Logarithmen kommen häufig in Aufnahmeprüfungen vor, insbesondere viele logarithmische Aufgaben im Einheitlichen Staatsexamen (Staatsexamen für alle Schulabsolventen). Typischerweise sind diese Aufgaben nicht nur in Teil A (dem einfachsten Prüfungsteil der Prüfung) enthalten, sondern auch in Teil C (die komplexesten und umfangreichsten Aufgaben). Die Prüfung erfordert genaue und perfekte Kenntnisse des Themas „Natürliche Logarithmen“.

Beispiele und Problemlösungen sind den offiziellen Versionen des Einheitlichen Staatsexamens entnommen. Mal sehen, wie solche Aufgaben gelöst werden.

Gegeben sei log 2 (2x-1) = 4. Lösung:
schreiben wir den Ausdruck um und vereinfachen ihn ein wenig log 2 (2x-1) = 2 2, durch die Definition des Logarithmus erhalten wir 2x-1 = 2 4, also 2x = 17; x = 8,5.

  • Damit die Lösung nicht umständlich und unübersichtlich wird, reduziert man am besten alle Logarithmen auf die gleiche Basis.
  • Alle Ausdrücke unter dem Logarithmuszeichen werden als positiv angezeigt. Wenn daher der Exponent eines Ausdrucks, der unter dem Logarithmuszeichen steht und dessen Basis ist, als Multiplikator herausgenommen wird, muss der unter dem Logarithmus verbleibende Ausdruck positiv sein.

Logarithmuswurzel einer positiven Zahl ist gleich dem Logarithmus des Wurzelausdrucks dividiert durch den Exponenten der Wurzel:

Und tatsächlich wird bei der Arbeit mit Graden die Abhängigkeit verwendet, daher erhalten wir durch Anwendung des Satzes des Logarithmus der Grade diese Formel.

Lassen Sie es uns in die Tat umsetzen, überlegen Sie Beispiel:

Bei Lösen von Problemen, um den Logarithmus zu finden Sehr oft erweist es sich als nützlich, von Logarithmen auf eine Basis umzurechnen (z. B. A) Gehen Sie zu Logarithmen in einer anderen Basis (z. B. Mit) . In solchen Situationen wird die folgende Formel verwendet:

Das bedeutet, dass a, b Und Mit natürlich positive Zahlen, und A Und Mit sind ungleich eins.

Um diese Formel zu beweisen, werden wir sie verwenden grundlegende logarithmische Identität:

Wenn positive Zahlen gleich sind, dann sind offensichtlich auch ihre Logarithmen zur gleichen Basis gleich Mit. Deshalb:

Durch Auftragen Logarithmus des Potenzsatzes:

Somit , log a b · log c a = log c b Woher kommt es Formel zum Ändern der Basis eines Logarithmus.

Logarithmische Gleichungen. Wir betrachten weiterhin Aufgaben aus Teil B des Einheitlichen Staatsexamens in Mathematik. Lösungen zu einigen Gleichungen haben wir bereits in den Artikeln „“, „“ untersucht. In diesem Artikel betrachten wir logarithmische Gleichungen. Ich sage gleich, dass es beim Lösen solcher Gleichungen im Einheitlichen Staatsexamen keine komplexen Transformationen geben wird. Sie sind einfach.

Es reicht aus, die grundlegende logarithmische Identität zu kennen und zu verstehen, um die Eigenschaften des Logarithmus zu kennen. Bitte beachten Sie, dass Sie nach der Lösung eine Überprüfung durchführen MÜSSEN – setzen Sie den resultierenden Wert in die ursprüngliche Gleichung ein und berechnen Sie, am Ende sollten Sie die richtige Gleichung erhalten.

Definition:

Der Logarithmus einer Zahl zur Basis b ist der Exponent.auf den b erhöht werden muss, um a zu erhalten.


Zum Beispiel:

Log 3 9 = 2, da 3 2 = 9

Eigenschaften von Logarithmen:

Sonderfälle von Logarithmen:

Lasst uns Probleme lösen. Im ersten Beispiel führen wir eine Prüfung durch. Überprüfen Sie es in Zukunft selbst.

Finden Sie die Wurzel der Gleichung: log 3 (4–x) = 4

Da log b a = x b x = a, dann

3 4 = 4 – x

x = 4 – 81

x = – 77

Untersuchung:

log 3 (4–(–77)) = 4

log 3 81 = 4

3 4 = 81 Richtig.

Antwort: – 77

Entscheide dich selbst:

Finden Sie die Wurzel der Gleichung: log 2 (4 – x) = 7

Finden Sie die Wurzel der Gleichung log 5(4 + x) = 2

Wir verwenden die grundlegende logarithmische Identität.

Da log a b = x b x = a, dann

5 2 = 4 + x

x =5 2 – 4

x = 21

Untersuchung:

log 5 (4 + 21) = 2

log 5 25 = 2

5 2 = 25 Richtig.

Antwort: 21

Finden Sie die Wurzel der Gleichung log 3 (14 – x) = log 3 5.

Die folgende Eigenschaft tritt auf, ihre Bedeutung ist wie folgt: Wenn wir auf der linken und rechten Seite der Gleichung Logarithmen mit derselben Basis haben, dann können wir die Ausdrücke unter den Vorzeichen der Logarithmen gleichsetzen.

14 – x = 5

x=9

Führen Sie eine Überprüfung durch.

Antwort: 9

Entscheide dich selbst:

Finden Sie die Wurzel der Gleichung log 5 (5 – x) = log 5 3.

Finden Sie die Wurzel der Gleichung: log 4 (x + 3) = log 4 (4x – 15).

Wenn log c a = log c b, dann ist a = b

x + 3 = 4x – 15

3x = 18

x=6

Führen Sie eine Überprüfung durch.

Antwort: 6

Finden Sie die Wurzel der Gleichung log 1/8 (13 – x) = – 2.

(1/8) –2 = 13 – x

8 2 = 13 – x

x = 13 – 64

x = – 51

Führen Sie eine Überprüfung durch.

Eine kleine Ergänzung - das Grundstück wird hier genutzt

Grad ().

Antwort: – 51

Entscheide dich selbst:

Finden Sie die Wurzel der Gleichung: log 1/7 (7 – x) = – 2

Finden Sie die Wurzel der Gleichung log 2 (4 – x) = 2 log 2 5.

Lassen Sie uns die rechte Seite transformieren. Nutzen wir die Eigenschaft:

log a b m = m∙log a b

log 2 (4 – x) = log 2 5 2

Wenn log c a = log c b, dann ist a = b

4 – x = 5 2

4 – x = 25

x = – 21

Führen Sie eine Überprüfung durch.

Antwort: – 21

Entscheide dich selbst:

Finden Sie die Wurzel der Gleichung: log 5 (5 – x) = 2 log 5 3

Lösen Sie die Gleichung log 5 (x 2 + 4x) = log 5 (x 2 + 11)

Wenn log c a = log c b, dann ist a = b

x 2 + 4x = x 2 + 11

4x = 11

x = 2,75

Führen Sie eine Überprüfung durch.

Antwort: 2,75

Entscheide dich selbst:

Finden Sie die Wurzel der Gleichung log 5 (x 2 + x) = log 5 (x 2 + 10).

Lösen Sie die Gleichung log 2 (2 – x) = log 2 (2 – 3x) +1.

Es ist notwendig, einen Ausdruck der Form auf der rechten Seite der Gleichung zu erhalten:

Protokoll 2 (......)

Wir stellen 1 als Logarithmus zur Basis 2 dar:

1 = Protokoll 2 2

log c (ab) = log c a + log c b

log 2 (2 – x) = log 2 (2 – 3x) + log 2 2

Wir bekommen:

log 2 (2 – x) = log 2 2 (2 – 3x)

Wenn log c a = log c b, dann a = b, dann

2 – x = 4 – 6x

5x = 2

x = 0,4

Führen Sie eine Überprüfung durch.

Antwort: 0,4

Entscheide dich selbst: Als nächstes müssen Sie die quadratische Gleichung lösen. Übrigens,

die Wurzeln sind 6 und – 4.

Wurzel "-4“ ist keine Lösung, da die Basis des Logarithmus größer als Null sein muss, und mit „ 4" es ist gleich " 5". Die Lösung ist Root 6.Führen Sie eine Überprüfung durch.

Antwort: 6.

R Essen Sie selbst:

Lösen Sie die Gleichung log x –5 49 = 2. Wenn die Gleichung mehr als eine Wurzel hat, antworten Sie mit der kleineren.

Wie Sie gesehen haben, gibt es keine komplizierten Transformationen mit logarithmischen GleichungenNein. Es reicht aus, die Eigenschaften des Logarithmus zu kennen und anwenden zu können. Bei USE-Problemen im Zusammenhang mit der Transformation logarithmischer Ausdrücke werden schwerwiegendere Transformationen durchgeführt und es sind tiefergehende Fähigkeiten zur Lösung erforderlich. Wir werden uns solche Beispiele ansehen, verpassen Sie sie nicht!Ich wünsche Ihnen Erfolg!!!

Mit freundlichen Grüßen Alexander Krutitskikh.

P.S.: Ich wäre Ihnen dankbar, wenn Sie mir in den sozialen Netzwerken von der Seite erzählen würden.