1 6 на координатной прямой. Координатная прямая (числовая прямая), координатный луч

Координатная прямая.

Возьмем обычную прямую. Назовем ее прямая x (рис.1). Выберем на этой прямой точку отсчета O, а также стрелкой укажем положительное направление этой прямой (рис. 2). Таким образом, справа от точки O у нас будут положительные числа, а слева – отрицательные. Выберем масштаб, то есть размер отрезка прямой, равный единице. У нас получилась координатная прямая (рис. 3). Каждому числу соответствует определенная единственная точка на этой прямой. Причем это число называют координатой этой точки. Поэтому прямая и называется координатной. А точка отсчета O называется началом координат.

К примеру, на рис. 4 точка B находится на расстоянии 2 правее начала координат. Точка D находится на расстоянии 4 левее начала координат. Соответственно точка B имеет координату 2, а точка D координату -4. Сама точка O, будучи точкой отсчета, имеет координату 0 (нуль). Записывается это обычно так: O(0), B(2), D(-4). А чтобы постоянно не говорить «точка D с координатой такой-то», говорят проще: «точка 0, точка 2, точка -4». А саму точку при этом достаточно обозначить ее координатой (рис. 5).


Зная координаты двух точек координатной прямой, мы всегда можем вычислить расстояние между ними. Допустим, у нас две точки A и B с координатами a и b соответственно. Тогда расстояние между ними будет |a - b|. Запись |a - b| читается как «a минус b по модулю» или «модуль разности чисел a и b».

Что такое модуль?

Алгебраически модуль числа x – это неотрицательное число. Обозначается как |x|. Причем если x > 0, то |x| = x. Если x < 0, то |x| = -x. Если x = 0, то |x| = 0.

Геометрически модуль числа x – это расстояние между точкой и началом координат. А если есть две точки с координатами x1 и x2, то |x1 - x2| - это расстояние между этими точками.

Модуль также называют абсолютной величиной .

О чем еще мы можем сказать, когда речь идет о координатной прямой? Конечно о числовых промежутках.

Виды числовых промежутков.

Допустим у нас два числа a и b. Причем b > a (b больше a). На координатной прямой это означает, что точка b находится правее точки a. Заменим в нашем неравенстве b на переменную x. То есть x > a. Тогда x – это все числа, которые больше числа a. На координатной прямой это соответственно все точки правее точки a. Эта часть линии заштрихована (рис. 6). Такое множество точек называют открытым лучом , а данный числовой промежуток обозначают (a; +∞), где знак +∞ читается как «плюс бесконечность». Обратите внимание, что сама точка a не входит в данный промежуток и обозначается светлым кружком.

Рассмотрим также случай, когда x ≥ a. Тогда x – это все числа, которые больше или равны a. На координатной прямой это все точки правее а, а также сама точка a (на рис. 7 точка a уже обозначается темным кружком). Такое множество точек называют замкнутым лучом (или просто лучом), а данный числовой промежуток обозначают .

Координатную прямую также называют координатной осью . Или просто осью x.

Тема: “Координаты на прямой”.

  • Дать всесторонние представления о новых числах.
  • Научить читать и записывать положительные и отрицательные числа, изображать их точками на прямой.
  • Определять координаты точек, находить координату точки, отмечать на координатной прямой точку по ее координате.
  • Формировать навыки мыслительной деятельности, внимательность, культуру чтения, культуру математической речи, развивать активность учащихся.

Оборудование: демонстрационная координатная прямая, демонстрационный термометр, таблицы, инструменты (линейка с делениями), карточки.

Ход урока:

2. Устный счет. “Метод “мягкой посадки”.

Правильно ли решил примеры Незнайка?

0,2 + 0,4 = 0,6

0,3 + 0,03 = 0,06

0,7 – 0,2 = 0,5

3,1 – 0,8 = 2,3

6,4 х 10 = 0,64

Какой луч называется координатным лучом?

Имеет ли координатный луч конец? Начало?

Каким числам соответствуют точки А, Е, С, Д на координатном луче?

Каким точкам на координатном луче соответствуют числа 2, 4, 5, 8?

2. Подготовка к изучению нового материала.

Задача 1 . Белка вылезла из дупла и бегает по стволу дерева вверх и вниз.

Что нужно знать, чтобы определить положение белки на дереве? Достаточно ли знать лишь расстояние белки от дупла?

Задача 2 . “Метеор” вышел с поселка Горноправдинск и идет со скоростью 40 км/ч.

В каком месте “Метеор” будет через 2 часа?

Достаточно ли знать только расстояние? (Ответ : нет, надо знать еще и направление).

3. Изложение нового материала.

Практическая работа с классом . (Работа учащегося у доски и работа класса в тетради).

Начертить горизонтальную прямую.

Отметить на ней точку О (начало отсчета).

Выбрать единичный отрезок и отложить его вправо и влево от начала отсчета один раз, два, три и т.д. раз.

Под каждой точкой подпишите соответствующее число.

Чем неудобна эта шкала? (Одно и то же число стоит под двумя разными точками).

Как выйти из этого затруднения?

В математике принято числа, которые идут влево от начала отсчета, записывать со знаком минус “-”.

Введение понятия положительных и отрицательных чисел.

Направление вправо от начала отсчета называется положительным, и направление на прямой обозначают стрелкой. Числа, расположенные вправо от точки О, называются положительными.

Влево от точки О располагают отрицательные числа , и направление влево от точки О называется отрицательным (отрицательное направление не указывается).

Отрицательные числа пишутся со знаком “-”.

Читают: “Минус один”, “Минус два”, “Минус три” и т.д.

Число 0 – начало отсчета не является ни положительным, ни отрицательным числом. Оно отделяет положительные от отрицательных чисел.

Координатная прямая.

Определение: прямая с выбранным на ней началом отсчета, единичным отрезком и направлением называется координатной прямой.

Задание: назвать среди этих прямых прямую, которая является координатной.

Координата точки.

Определение: число, показывающее положение точки на прямой, называют координатой этой точки.

Работа по учебнику. Повторить определение координатной прямой; координаты точки.

Ввести понятие вертикальной координатной прямой.

Работа по таблице.

Говорят: “Точка А имеет координату 2”; “Точка С имеет координату – 4”.

Пишут: А (2); В (3,5); С (- 4); D (- 2).

Читают: “Точка А с координатой 2”; “Точка С с координатой – 4” и т.д.

Психологическая разгрузка: (Звучит фонограмма “шум моря”).

На фоне “шума волн” звучит фрагмент из произведения М.Горького “Песня о Соколе”:

“… Море огромное, лениво вздыхающее у берега, - уснуло и неподвижно в дали, облитой голубым сиянием луны. Мягкое и серебристое, оно слилось там синим, нежным небом и крепко спит, отражая в себе прозрачную ткань перистых облаков, неподвижных и не скрывающих собою золотых узоров звезд. Кажется, что небо все ниже наклоняется над морем, желая понять то, о чем шепчут неугомонные волны, сонно скользя на берег…”.

4. Закрепление нового материала.

Игровой момент. (Демонстрационная доска с координатной прямой).

Учитель укрепляет точку. Ученики называют ее координату.

Учитель называет число. Учащиеся укрепляют точку с данной координатой.

Практическая работа: (На столах - карточки с координатной прямой, на которой отмечены точки).

Написать координаты точек А, В, С, D, Е, К, О, М.

Игровой момент: “Найди ошибку”.

На координатной прямой отмечены точки А, В, С, D.

Незнайка записал координаты точек так: А (2), В (- 3), С (- 2), D (- 4). Верно ли он записал?

5. Итог урока.

Учащиеся отвечают на вопросы учителя:

Какая прямая называется координатной?

Какими числами является координата точек на координатной прямой справа от начала координат? Слева от начала координат?

Какую координату имеет начало отсчета?

6. Выставление оценок.

7. Домашнее задание: п. 26, №902- устно, № 903, №904.

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Отрицательные числа — это числа со знаком минус (−), например −1, −2, −3. Читается как: минус один, минус два, минус три.

Примером применения отрицательных чисел является термометр, показывающий температуру тела, воздуха, почвы или воды. В зимнее время, когда на улице очень холодно, температура бывает отрицательной (или как говорят в народе «минусовой»).

Например, −10 градусов холода:

Обычные же числа, которые мы рассматривали ранее, такие как 1, 2, 3 называют положительными. Положительные числа — это числа со знаком плюс (+).

При записи положительных чисел знак + не записывают, поэтому мы и видим привычные для нас числа 1, 2, 3. Но следует иметь ввиду, что эти положительные числа выглядят так: +1, +2, +3.

Содержание урока

Это прямая линия, на которой располагаются все числа: и отрицательные и положительные. Выглядит следующим образом:

Здесь показаны числа от −5 до 5. На самом деле координатная прямая бесконечна. На рисунке представлен лишь её небольшой фрагмент.

Числа на координатной прямой отмечают в виде точек. На рисунке жирная чёрная точка является началом отсчёта. Начало отсчёта начинается с нуля. Слева от начала отсчёта отмечают отрицательные числа, а справа — положительные.

Координатная прямая продолжается бесконечно по обе стороны. Бесконечность в математике обозначается символом ∞. Отрицательное направление будет обозначаться символом −∞, а положительное символом +∞. Тогда можно сказать, что на координатной прямой располагаются все числа от минус бесконечности до плюс бесконечности:

Каждая точка на координатной прямой имеет своё имя и координату. Имя — это любая латинская буква. Координата — это число, которое показывает положение точки на этой прямой. Проще говоря, координата это то самое число, которое мы хотим отметить на координатной прямой.

Например, точка А(2) читается как «точка А с координатой 2» и будет обозначаться на координатной прямой следующим образом:

Здесь A — это имя точки, 2 — координата точки A.

Пример 2. Точка B(4) читается как «точка B с координатой 4»

Здесь B — это имя точки, 4 — координата точки B.

Пример 3. Точка M(−3) читается как «точка M с координатой минус три» и будет обозначаться на координатной прямой так:

Здесь M — это имя точки, −3 — координата точки M.

Точки можно обозначать любыми буквами. Но общепринято обозначать их большими латинскими буквами. Более того, начало отчёта, которое по другому называют началом координат принято обозначать большой латинской буквой O

Легко заметить, что отрицательные числа лежат левее относительно начала отсчёта, а положительные числа правее.

Существуют такие словосочетания, как «чем левее, тем меньше» и «чем правее, тем больше» . Наверное, вы уже догадались о чём идёт речь. При каждом шаге влево, число будет уменьшаться в меньшую сторону. И при каждом шаге вправо число будет увеличиваться. Стрелка, направленная вправо, указывает на положительное направление отсчёта.

Сравнение отрицательных и положительных чисел

Правило 1. Любое отрицательное число меньше любого положительного числа.

Например, сравним два числа: −5 и 3. Минус пять меньше , чем три, несмотря на то, что пятёрка бросается в глаза в первую очередь, как цифра большая, чем три.

Связано это с тем, что −5 является отрицательным числом, а 3 — положительным. На координатной прямой можно увидеть, где располагаются числа −5 и 3

Видно, что −5 лежит левее, а 3 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что любое отрицательное число меньше любого положительного числа. Отсюда следует, что

−5 < 3

«Минус пять меньше, чем три»

Правило 2. Из двух отрицательных чисел меньше то, которое располагается левее на координатной прямой.

Например, сравним числа −4 и −1. Минус четыре меньше , чем минус единица.

Связано это опять же с тем, что на координатной прямой −4 располагается левее, чем −1

Видно, что −4 лежит левее, а −1 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что из двух отрицательных чисел меньше то, которое располагается левее на координатной прямой. Отсюда следует, что

Минус четыре меньше, чем минус единица

Правило 3. Ноль больше любого отрицательного числа.

Например, сравним 0 и −3. Ноль больше , чем минус три. Связано это с тем, что на координатной прямой 0 располагается правее, чем −3

Видно, что 0 лежит правее, а −3 левее. А мы говорили, что «чем правее, тем больше» . И правило говорит, что ноль больше любого отрицательного числа. Отсюда следует, что

Ноль больше, чем минус три

Правило 4. Ноль меньше любого положительного числа.

Например, сравним 0 и 4. Ноль меньше , чем 4. Это в принципе ясно и так. Но мы попробуем увидеть это воочию, опять же на координатной прямой:

Видно, что на координатной прямой 0 располагается левее, а 4 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что ноль меньше любого положительного числа. Отсюда следует, что

Ноль меньше, чем четыре

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Так единичный отрезок и его десятая, сотая и так далее доли позволяют нам попасть в точки координатной прямой, которым будут соответствовать конечные десятичные дроби (как в предыдущем примере). Однако на координатной прямой существуют точки, в которые мы не можем попасть, но к которым мы можем подойти сколь угодно близко, использую все меньшие и меньшие до бесконечно малой доли единичного отрезка. Этим точкам соответствуют бесконечные периодические и непериодические десятичные дроби. Приведем несколько примеров. Одной из таких точек на координатной прямой соответствует число 3,711711711…=3,(711) . Чтобы подойти к этой точке нужно отложить 3 единичных отрезка, 7 его десятых долей, 1 сотую долю, 1 тысячную, 7 десятитысячных долей, 1 стотысячную, 1 миллионную долю единичного отрезка и так далее. А еще одной точке координатной прямой отвечает пи (π=3,141592... ).

Так как элементами множества действительных чисел являются все числа, которые можно записать в виде конечных и бесконечных десятичных дробей, то вся вышеизложенная в этом пункте информация позволяет утверждать, что каждой точке координатной прямой мы поставили в соответствие конкретное действительное число, при этом понятно, что разным точкам соответствуют разные действительные числа.

Также достаточно очевидно, что это соответствие является взаимно однозначным. То есть, мы можем указанной точке на координатной прямой поставить в соответствие действительное число, но мы также можем по данному действительному числу указать конкретную точку на координатной прямой, которой отвечает данное действительное число. Для этого нам придется отложить от начала отсчета в нужном направлении определенное количество единичных отрезков, а также десятых, сотых и так далее долей единичного отрезка. Например, числу 703,405 отвечает точка на координатной прямой, в которую из начала отсчета можно попасть, отложив в положительном направлении 703 единичных отрезка, 4 отрезка, составляющих десятую долю единичного, и 5 отрезков, составляющих тысячную долю единичного.

Итак, каждой точке на координатной прямой отвечает действительное число, и каждое действительное число имеет свое место в виде точки на координатной прямой. Вот почему координатную прямую очень часто называют числовой прямой .

Координаты точек на координатной прямой

Число, соответствующее точке на координатной прямой, называется координатой этой точки .

В предыдущем пункте мы сказали, что каждому действительному числу соответствует единственная точка на координатной прямой, поэтому, координата точки однозначно определяет положение этой точки на координатной прямой. Иными словами, координата точки однозначно задает эту точку на координатной прямой. С другой стороны каждой точке на координатной прямой соответствует единственное действительное число – координата этой точки.

Осталось сказать лишь о принятых обозначениях. Координату точки записывают в круглых скобках справа от буквы, которой обозначена точка. Например, если точка М имеет координату -6 , то можно записать М(-6) , а запись вида означает, что точка М на координатной прямой имеет координату .

Список литературы.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика: учебник для 5 кл. общеобразовательных учреждений.
  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.