Абиотические отношения. Абиотические факторы среды. Влияние абиотических факторов

Введение

Каждый день вы, спеша по делам, ходите по улице, ежась от холода или обливаясь потом от жары. А после рабочего дня идете в магазин, покупаете продукты питания. Выйдя из магазина, спешно останавливаете проезжающую маршрутку и бессильно опускаетесь на ближайшее свободное место. Для многих это знакомый образ жизни, не так ли? А вы никогда не задумывались о том, как протекает жизнь с точки зрения экологии? Существование человека, растений и животных возможно лишь благодаря их взаимодействию. Не обходится оно и без влияния неживой природы. У каждого из этих типов воздействия есть свое обозначение. Итак, существует всего три вида влияния на окружающую среду. Это антропогенные, биотические и абиотические факторы. Давайте рассмотрим каждый из них и его воздействие на природу.

1. Антропогенные факторы - влияние на природу всех форм деятельности человека

Когда упоминается этот термин, в голову не приходит ни одной положительной мысли. Даже когда люди делают что-нибудь хорошее для животных и растений, то происходит это из-за последствий ранее сделанного плохого (к примеру, браконьерства).

Антропогенные факторы (примеры):

  • Высушивание болот.
  • Удобрение полей пестицидами.
  • Браконьерство.
  • Промышленные отходы (фото).

Вывод

Как видите, в основном человек наносит окружающей среде только вред. И из-за увеличения хозяйственного и промышленного производства даже природоохранные меры, учреждаемые редкими добровольцами (создание заповедников, экологические митинги), уже перестают помогать.

2. Биотические факторы - влияние живой природы на разнообразные организмы

Проще говоря, это взаимодействие растений и животных между собой. Оно может быть как положительным, так и отрицательным. Существует несколько видов такого взаимодействия:

1. Конкуренция - такие взаимосвязи между особями одного или разных видов, при которых использование определенного ресурса одним из них уменьшает его доступность для других. В общем, при конкуренции животные или растения борются между собой за свой кусок хлеба

2. Мутуализм - такая взаимосвязь, при которой каждый из видов получает определенную пользу. Проще говоря, когда растения и/или животные гармонично дополняют друг друга.

3. Комменсализм - такая форма симбиоза между организмами разных видов, при которой один из них использует жилище или организм хозяина как место поселения и может питаться остатками пищи или продуктами его жизнедеятельности. При этом он не приносит хозяину ни вреда, ни пользы. В общем, маленькое незаметное дополнение.

Биотические факторы (примеры):

Сосуществование рыб и коралловых полипов, жгутиковых простейших и насекомых, деревьев и птиц (например, дятлов), скворцов-майн и носорогов.

Вывод

Несмотря на то, что биотические факторы могут приносить вред животным, растениям и человеку, от них есть и очень большая польза.

3. Абиотические факторы - воздействие неживой природы на разнообразные организмы

Да, и неживая природа тоже играет немаловажную роль в жизненных процессах животных, растений и человека. Пожалуй, самым главным абиотическим фактором является погода.

Абиотические факторы: примеры

Абиотические факторы - это температура, влажность, освещенность, соленость воды и почвы, а также воздушная среда и ее газовый состав.

Вывод

Абиотические факторы могут наносить вред животным, растениям и человеку, но все-таки в основном они приносят им пользу

Итог

Единственный фактор, не приносящий никому пользы - это антропогенный. Да, человеку он тоже не приносит ничего хорошего, хотя тот уверен, что изменяет природу для своего блага, и не задумывается, во что превратится для него и его потомков это "благо" через десяток лет. Человеком уже полностью уничтожены многие виды животных и растений, которые имели свое место в мировой экосистеме. Биосфера Земли похожа на фильм, в котором нет второстепенных ролей, все они являются главными. А вот теперь представьте, что некоторые из них убрали. Что получится в фильме? Вот так и в природе: если исчезнет самая малая песчинка, рухнет великое здание Жизни.

Абиотические факторы среды (факторы неживой природы) – это комплекс условий внешней среды, оказывающих прямое или косвенное влияние на растения . Существуют также биотические факторы, действие которых обусловлено влиянием на растения деятельности других живых организмов (грибов , животных, других растений). К абиотическим относятся химические и физические (или климатические) факторы. Химическими абиотическими факторами являются газовые составляющие атмосферного воздуха, химический состав водоемов, почв. Основные физические факторы – это температура, влажность, интенсивность солнечного излучения. В отдельную группу в некоторых классификациях выделяют такие абиотические факторы, как орографические, включающие рельеф, геологические различия земной поверхности. Влияние на организм абиотических факторов разнообразно и зависит от интенсивности воздействия каждого отдельно взятого фактора и сочетания их между собой. Численность и распределение определенного вида растений в пределах данной территории обусловлены воздействием лимитирующих абиотических факторов, которые жизненно необходимы, но значения их минимальны (как отсутствие воды в пустынных местностях).

Наиболее существенно для растений влияние трех абиотических факторов – температуры, влажности и света. Рассмотрим температуру как абиотический фактор. Известно, что большинство растений приспособлены к жизни в узком температурном диапазоне. В водной среде колебания температур обычно менее выражены в сравнении с сушей, поэтому водные организмы более чувствительны к изменению этого фактора. От значения температуры внешней среды зависит интенсивность обмена веществ растения. Повышение температуры до определенного уровня ускоряет, а понижение – тормозит процессы жизнедеятельности растительного организма. Чрезмерно высокие температуры неблагоприятно влияют на растения и могут повлечь их гибель. Каждый вид растения приспособлен к существованию в определенной климатической зоне. На нашей планете есть виды, способные выдерживать длительные морозы более -50 градусов, как лиственница даурская, в то время как для многих растений в тропиках гибельно даже кратковременное понижение температуры до +4 градусов. Возможности растений регулировать температуру тела, по сравнению с теплокровными животными, ограничены. Испаряя воду в большом количестве, растения способны понижать температуру поверхности листьев до 6 градусов относительно этого показателя внешней среды. Те растения, которые могут выдерживать длительные периоды низких температур, называются холодостойкими (овес, ячмень, лен), а те, которые нуждаются в относительно высоких температурах, - теплолюбивыми (арбуз, персик, кукурузы, дыня). Для многих видов растений благоприятны перепады более низких ночных температур и более высоких дневных, так как это оказывает стимулирующее воздействие на их рост.

Влажность в некоторых местах обитания является ограничивающим абиотическим фактором для живых организмов и определяет состав флоры и фауны данной местности, например, в пустыне. Растение поглощает питательные вещества, в основном, в растворенном состоянии. Также вода необходима для осуществления других жизненных процессов растений, а для множества организмов еще и является средой обитания. По потребности в воде различают разные экологические группы растений. К водной растительности относятся растения, которые вне водной среды жить не могут (элодея, ряска). Околоводные (наземно-водные) растения произрастают вдоль побережья водоемов и могут быть частично погруженными в воду во влажных лесах, болотах (кукушкин лен, тростник, сфагнум). Эти растения существуют только при условии высокой увлажненности почвы, и даже при кратковременной нехватке воды эти растении вянут и могут погибнуть. Наземные растения произрастают на суше и могут быть засухоустойчивыми (кактус, ковыль, верблюжья колючка) или способными выдерживать недлительную засуху, произрастающими в условиях умеренной влажности (береза, рожь, дуб). Засухоустойчивые растения имеют приспособления для жизни в засушливых местах, такие как видоизмененные листья, хорошо развитая корневая система. К примеру, сочные растения-суккуленты накапливают воду в тканях своего организма, к примеру, кактусы.

Свет как абиотический фактор необходим для всех живых организмов. Для растений имеет большое значение длина волны воспринимаемого излучения, его продолжительность (длина светового дня) и интенсивность (освещенность). Так, у высших растений из-за укорочения светового дня и уменьшения интенсивности освещения происходит такое сезонное явление, как листопад. Потребность в освещенности у различных растений разная. Светолюбивые растения произрастают на открытых, хорошо освещенных местах (тюльпан, сосна, ковыль). Тенелюбивые растения можно увидеть на затененных участках (ель, плаун булавовидный). Эта группа растений приспособлена к существованию в условиях недостаточного поступления света. Такие растения улавливают рассеянный свет темно-зелеными обогащенными хлорофиллом листьями. Теневыносливые растения могут обитать как в условиях хорошего освещения, так и в затененных местах (липа, сирень).

Таким образом, на растения влияет комплекс абиотических факторов оружающей среды, наибольшее значение из которых имеют температура, увлажненность и свет. В зависимости от степени воздействия этих факторов растения делятся на группы, и у них появляются приспособленности к жизни под влиянием совокупности данных факторов.

Абиотические факторы это свойства неживой природы, которые прямо или косвенно влияют на живые организмы. На рис. 5 (см. приложение) приведена классификация абиотических факторов. Начнем рассмотрение с климатических факторов внешней среды.

Температура является наиболее важным климатическим фактором. От нее зависит интенсивность обмена веществ организмов и их географическое распространение. Любой организм способен жить в пределах определенного диапазона температур. И хотя для разных видов организмов (эвритермных и стенотермных) эти интервалы различны, для большинства из них зона оптимальных температур, при которых жизненные функции осуществляются наиболее активно и эффективно, сравнительно невелика. Диапазон температур, в которых может существовать жизнь, составляет примерно 300 С: от 200 до +100 ЬС. Но большинство видов и большая часть активности приурочены к еще более узкому диапазону температур. Определенные организмы, особенно в стадии покоя, могут существовать по крайней мере некоторое время, при очень низких температурах. Отдельные виды микроорганизмов, главным образом бактерии и водоросли, способны жить и размножаться при температурах, близких к точке кипения. Верхний предел для бактерий горячих источников составляет 88 С, для синезеленых водорослей 80 С, а для самых устойчивых рыб и насекомых около 50 С. Как правило, верхние предельные значения фактора оказываются более критическими, чем нижние, хотя многие организмы вблизи верхних пределов диапазона толерантности функционируют более эффективно.

У водных животных диапазон толерантности к температуре обычно более узок по сравнению с наземными животными, так как диапазон колебаний температуры в воде меньше, чем на суше.

Таким образом, температура является важным и очень часто лимитирующим фактором. Температурные ритмы в значительной степени контролируют сезонную и суточную активность растений и животных.

Количество осадков и влажность основные величины, измеряемые при изучении этого фактора. Количество осадков зависит в основном от путей и характера больших перемещений воздушных масс. Например, ветры, дующие с океана, оставляют большую часть влаги на обращенных к океану склонах, в результате чего за горами остается "дождевая тень", способствующая формированию пустыни. Двигаясь в глубь суши, воздух аккумулирует некоторое количество влаги, и количество осадков опять увеличивается. Пустыни, как правило, расположены за высокими горными хребтами или вдоль тех берегов, где ветры дуют из обширных внутренних сухих районов, а не с океана, например, пустыня Нами в ЮгоЗападной Африке. Распределение осадков по временам года крайне важный лимитирующий фактор для организмов.

Влажность параметр, характеризующий содержание водяного пара в воздухе. Абсолютной влажностью называют количество водяного пара в единице объема воздуха. В связи с зависимостью количества пара, удерживаемого воздухом, от температуры и давления, введено понятие относительной влажности это отношение пара, содержащегося в воздухе, к насыщающему пару при данных температуре и давлении. Так как в природе существуют суточный ритм влажности повышение ночью и снижение днем, и колебание ее по вертикали и горизонтали, этот фактор наряду со светом и температурой играет важную роль в регулировании активности организмов. Доступный живым организмам запас поверхностной воды зависит от количества осадков в данном районе, но эти величины не всегда совпадают. Так, пользуясь подземными источниками, куда вода поступает из других районов, животные и растения могут получать больше воды, чем от поступления ее с осадками. И наоборот, дождевая вода иногда сразу же становится недоступной для организмов.

Излучение Солнца представляет собой электромагнитные волны различной длины. Оно совершенно необходимо живой природе, так как является основным внешним источником энергии. Надо иметь в виду то, что спектр электромагнитного излучения Солнца весьма широк и его частотные диапазоны различным образом воздействуют на живое вещество.

Для живого вещества важны качественные признаки света длина волны, интенсивность и продолжительность воздействия.

Ионизирующее излучение выбивает электроны из атомов и присоединяет их к другим атомам с образованием пар положительных и отрицательных ионов. Его источником служат радиоактивные вещества, содержащиеся в горных породах, кроме того, оно поступает из космоса.

Разные виды живых организмов сильно отличаются по своим способностям выдерживать большие дозы радиационного облучения. Как показывают данные большей части исследований, наиболее чувствительны к облучению быстро делящиеся клетки.

У высших растений чувствительность к ионизирующему излучению прямо пропорциональна размеру клеточного ядра, а точнее объему хромосом или содержанию ДНК.

Газовый состав атмосферы также является важным климатическим фактором. Примерно 33,5 млрд лет назад атмосфера содержала азот, аммиак, водород, метан и водяной пар, а свободный кислород в ней отсутствовал. Состав атмосферы в значительной степени определялся вулканическими газами. Изза отсутствия кислорода не существовало озонового экрана, задерживающего ультрафиолетовое излучение Солнца. С течением времени за счет абиотических процессов в атмосфере планеты стал накапливаться кислород, началось формирование озонового слоя.

Ветер способен даже изменять внешний вид растений, особенно в тех местообитаниях, например в альпийских зонах, где лимитирующее воздействие оказывают другие факторы. Экспериментально показано, что в открытых горных местообитаниях ветер лимитирует рост растений: когда построили стену, защищавшую растения от ветра, высота растений увеличилась. Большое значение имеют бури, хотя их действие сугубо локально. Ураганы и обычные ветры способны переносить животных и растения на большие расстояния и тем самым изменять состав сообществ.

Атмосферное давление, повидимому, не является лимитирующим фактором непосредственного действия, однако оно имеет прямое отношение к погоде и климату, которые оказывают непосредственное лимитирующее воздействие.

Водные условия создают своеобразную среду обитания организмов, отличающуюся от наземной прежде всего плотностью и вязкостью. Плотность воды примерно в 800 раз, а вязкость примерно в 55 раз выше, чем у воздуха. Вместе с плотностью и вязкостью важнейшими физикохимическими свойствами водной среды являются: температурная стратификация, то есть изменение температуры по глубине водного объекта и периодические изменения температуры во времени, а также прозрачность воды, определяющая световой режим под ее поверхностью: от прозрачности зависит фотосинтез зеленых и пурпурных водорослей, фитопланктона, высших растений.

Как и в атмосфере, важную роль играет газовый состав водной среды. В водных местообитаниях количество кислорода, углекислого газа и других газов, растворенных в воде и потому доступных организмам, сильно варьируется во времени. В водоемах с высоким содержанием органических веществ кислород является лимитирующим фактором первостепенной важности.

Кислотность концентрация водородных ионов (рН) тесно связана с карбонатной системой. Значение рН изменяется в диапазоне от 0 рН до 14: при рН=7 среда нейтральная, при рН<7 кислая, при рН>7 щелочная. Если кислотность не приближается к крайним значениям, то сообщества способны компенсировать изменения этого фактора толерантность сообщества к диапазону рН весьма значительна. В водах с низким рН содержится мало биогенных элементов, поэтому продуктивность здесь крайне мала.

Соленость содержание карбонатов, сульфатов, хлоридов и т.д. является еще одним значимым абиотическим фактором в водных объектах. В пресных водах солей мало, из них около 80 % приходится на карбонаты. Содержание минеральных веществ в мировом океане составляет в среднем 35 г/л. Организмы открытого океана обычно стеногалинны, тогда как организмы прибрежных солоноватых вод в общем эвригалинны. Концентрация солей в жидкостях тела и тканях большинства морских организмов изотонична концентрации солей в морской воде, так что здесь не возникает проблем с осморегуляцией.

Течение не только сильно влияет на концентрацию газов и питательных веществ, но и прямо действует как лимитирующий фактор. Многие речные растения и животные морфологически и физиологически особым образом приспособлены к сохранению своего положения в потоке: у них есть вполне определенные пределы толерантности к фактору течения.

Гидростатическое давление в океане имеет большое значение. С погружением в воду на 10 м давление возрастает на 1 атм (105 Па) . В самой глубокой части океана давление достигает 1000 атм (108 Па) . Многие животные способны переносить резкие колебания давления, особенно, если у них в теле нет свободного воздуха. В противном случае возможно развитие газовой эмболии. Высокие давления, характерные для больших глубин, как правило, угнетают процессы жизнедеятельности.

Почва.

Почвой называют слой вещества, лежащий поверх горных пород земной коры. Русский ученый естествоиспытатель Василий Васильевич Докучаев в 1870 году первым рассмотрел почву как динамическую, а не инертную среду. Он доказал, что почва постоянно изменяется и развивается, а в ее активной зоне идут химические, физические и биологические процессы. Почва формируется в результате сложного взаимодействия климата, растений, животных и микроорганизмов. В состав почвы входят четыре основных структурных компонента: минеральная основа (обычно 5060 % общего состава почвы), органическое вещество (до 10 %), воздух (1525 %) и вода (2530 %).

Минеральный скелет почвы это неорганический компонент, который образовался из материнской породы в результате ее выветривания.

Органическое вещество почвы образуется при разложении мертвых организмов, их частей и экскрементов. Не полностью разложившиеся органические остатки называются подстилкой, а конечный продукт разложения аморфное вещество, в котором уже невозможно распознать первоначальный материал, называется гумусом. Благодаря своим физическим и химическим свойствам гумус улучшает структуру почвы и ее аэрацию, а также повышает способность удерживать воду и питательные вещества.

В почве обитает множество видов растительных и животных организмов, влияющих на ее физикохимические характеристики: бактерии, водоросли, грибы или простейшие одноклеточные, черви и членистоногие. Биомасса их в различных почвах равна (кг/га): бактерий 10007000, микроскопических грибов 1001000, водорослей 100300, членистоногих 1000, червей 3501000.

Главным топографическим фактором является высота над уровнем моря. С высотой снижаются средние температуры, увеличивается суточный перепад температур, возрастают количество осадков, скорость ветра и интенсивность радиации, понижаются атмосферное давление и концентрации газов. Все эти факторы влияют на растения и животных, обуславливая вертикальную зональность.

Горные цепи могут служить климатическими барьерами. Горы служат также барьерами для распространения и миграции организмов и могут играть роль лимитирующего фактора в процессах видообразования.

Еще один топографический фактор экспозиция склона. В северном полушарии склоны, обращенные на юг, получают больше солнечного света, поэтому интенсивность света и температура здесь выше, чем на дне долин и на склонах северной экспозиции. В южном полушарии имеет место обратная ситуация.

Важным фактором рельефа является также крутизна склона. Для крутых склонов характерны быстрый дренаж и смывание почв, поэтому здесь почвы маломощные и более сухие.

Для абиотических условий справедливы все рассмотренные законы воздействия экологических факторов на живые организмы. Знание этих законов позволяет ответить на вопрос: почему в разных регионах планеты сформировались разные экосистемы? Основная причина своеобразие абиотических условий каждого региона.

Ареалы распространения и численность организмов каждого вида ограничиваются не только условиями внешней неживой среды, но и их отношениями с организмами других видов. Непосредственное живое окружение организма составляет его биотическую среду, а факторы этой среды называются биотическими. Представители каждого вида способны существовать в таком окружении, где связи с другими организмами обеспечивают им нормальные условия жизни.

Рассмотрим характерные особенности отношений различных типов.

Конкуренция является в природе наиболее всеохватывающим типом отношений, при котором две популяции или две особи в борьбе за необходимые для жизни условия воздействуют друг на друга отрицательно.

Конкуренция может быть внутривидовой и межвидовой.

Внутривидовая борьба происходит между особями одного и того же вида, межвидовая конкуренция имеет место между особями разных видов. Конкурентное взаимодействие может касаться жизненного пространства, пищи или биогенных элементов, света, места укрытия и многих других жизненно важных факторов.

Межвидовая конкуренция, независимо от того, что лежит в ее основе, может привести либо к установлению равновесия между двумя видами, либо к замене популяции одного вида популяцией другого, либо к тому, что один вид вытеснит другой в иное место или же заставит его перейти на использование иных ресурсов. Установлено, что два одинаковых в экологическом отношении и потребностях вида не могут сосуществовать в одном месте и рано или поздно один конкурент вытесняет другого. Это так называемый принцип исключения или принцип Гаузе.

Поскольку в структуре экосистемы преобладают пищевые взаимодействия, наиболее характерной формой взаимодействия видов в трофических цепях является хищничество, при котором особь одного вида, называемая хищником, питается организмами (или частями организмов) другого вида, называемого жертвой, причем хищник живет отдельно от жертвы. В таких случаях говорят, что два вида вовлечены в отношения хищник жертва.

Нейтрализм это такой тип отношений, при котором ни одна из популяций не оказывает на другую никакого влияния: никак не сказывается на росте его популяций, находящихся в равновесии, и на их плотности. В действительности бывает, однако, довольно трудно при помощи наблюдений и экспериментов в природных условиях убедиться, что два вида абсолютно независимы один от другого.

Обобщая рассмотрение форм биотических отношений, можно сделать следующие выводы:

1) отношения между живыми организмами являются одним из основных регуляторов численности и пространственного распределения организмов в природе;

2) негативные взаимодействия между организмами проявляются на начальных стадиях развития сообщества или в нарушенных природных условиях; в недавно сформировавшихся или новых ассоциациях вероятность возникновения сильных отрицательных взаимодействий больше, чем в старых ассоциациях;

3) в процессе эволюции и развития экосистем обнаруживается тенденция к уменьшению роли отрицательных взаимодействий за счет положительных, повышающих выживание взаимодействующих видов.

Все эти обстоятельства человек должен учитывать при проведении мероприятий по управлению экологическими системами и отдельными популяциями с целью использования их в своих интересах, а также предвидеть косвенные последствия, которые могут при этом иметь место.

Напомним еще раз, что абиотические факторы - это свойства неживой природы, которые прямо или косвенно влияют на живые организмы. На Слайде 3 приведена классификация абиотических факторов.

Температура является наиболее важным климатическим фактором. От нее зависит интенсивность обмена веществ организмов и их географическое распространение . Любой организм способен жить в пределах определенного диапазона температур. И хотя для разных видов организмов (эвритермных и стенотермных ) эти интервалы различны, для большинства из них зона оптимальных температур, при которых жизненные функции осуществляются наиболее активно и эффективно, сравнительно невелика. Диапазон температур, в которых может существовать жизнь, составляет примерно 300 С: от -200 до +100 С. Но большинство видов и большая часть их активности приурочены к еще более узкому диапазону температур. Некоторые организмы, особенно в стадии покоя, могут существовать по крайней мере некоторое время, при очень низких температурах. Отдельные виды микроорганизмов, главным образом бактерии и водоросли, способны жить и размножаться при температурах, близких к точке кипения. Верхний предел для бактерий горячих источников составляет 88 С, для сине-зеленых водорослей - 80 С, а для самых устойчивых рыб и насекомых - около 50 С. Как правило, верхние предельные значения фактора оказываются более критическими, чем нижние, хотя многие организмы вблизи верхних пределов диапазона толерантности функционируют более эффективно.

У водных животных диапазон толерантности к температуре обычно более узок по сравнению с наземными животными, так как диапазон колебаний температуры в воде меньше, чем на суше.

С точки зрения воздействия на живые организмы крайне важна изменчивость температуры. Температура, колеблющаяся от 10 до 20 С (в среднем составляющая 15 С), не обязательно действует на организм так же, как постоянная температура 15 С. Жизнедеятельность организмов, которые в природе обычно подвергаются воздействию переменных температур, подавляется полностью или частично или замедляется под действием постоянной температуры. С помощью переменной температуры удалось ускорить развитие яиц кузнечика в среднем на 38,6 % по сравнению с их развитием при постоянной температуре. Пока не ясно, обусловлен ли ускоряющий эффект самими колебаниями температуры или усиленным ростом, вызываемым кратковременным повышением температуры и не компенсирующимся замедлением роста при ее понижении.

Таким образом, температура является важным и очень часто лимитирующим фактором. Температурные ритмы в значительной степени контролируют сезонную и суточную активность растений и животных. Температура часто создает зональность и стратификацию в водных и наземных местообитаниях.

Вода физиологически необходима для любой протоплазмы. С экологической точки зрения она служит лимитирующим фактором как в наземных местообитаниях, так и в водных, где ее количество подвержено сильным колебаниям, или там, где высокая соленость способствует потере воды организмом через осмос. Все живые организмы в зависимости от потребности их в воде, а следовательно, и от различий местообитания, подразделяются на ряд экологических групп: водные или гидрофильные - постоянно живущие в воде; гигрофильные - живущие в очень влажных местообитаниях; мезофильные - отличающиеся умеренной потребностью в воде и ксерофильные - живущие в сухих местообитаниях.

Количество осадков и влажность - основные величины, измеряемые при изучении этого фактора. Количество осадков зависит в основном от путей и характера больших перемещений воздушных масс. Например, ветры, дующие с океана, оставляют большую часть влаги на обращенных к океану склонах, в результате чего за горами остается "дождевая тень", способствующая формированию пустыни. Двигаясь в глубь суши, воздух аккумулирует некоторое количество влаги, и количество осадков опять увеличивается. Пустыни, как правило, расположены за высокими горными хребтами или вдоль тех берегов, где ветры дуют из обширных внутренних сухих районов, а не с океана, например, пустыня Нами в Юго-Западной Африке. Распределение осадков по временам года - крайне важный лимитирующий фактор для организмов. Условия, создающиеся в результате равномерного распределения осадков, совершенно иные, чем при выпадении осадков в течение одного сезона. В этом случае животным и растениям приходится переносить периоды длительной засухи. Как правило, неравномерное распределение осадков по временам года встречается в тропиках и субтропиках, где нередко хорошо выражены влажный и сухой сезоны. В тропическом поясе сезонный ритм влажности регулирует сезонную активность организмов аналогично сезонному ритму тепла и света в условиях умеренного пояса. Роса может представлять собой значительный, а в местах с малым выпадением дождей и очень важный вклад в общее количество осадков.

Влажность - параметр, характеризующий содержание водяного пара в воздухе. Абсолютной влажностью называют количество водяного пара в единице объема воздуха. В связи с зависимостью количества пара, удерживаемого воздухом, от температуры и давления, введено понятие относительной влажности - это отношение пара, содержащегося в воздухе, к насыщающему пару при данных температуре и давлении. Так как в природе существуют суточный ритм влажности - повышение ночью и снижение днем, и колебание ее по вертикали и горизонтали, этот фактор наряду со светом и температурой играет важную роль в регулировании активности организмов. Влажность изменяет эффекты высоты температуры. Например, при условиях влажности, близких к критическим, температура оказывает более важное лимитирующее влияние. Аналогично влажность играет более критическую роль, если температура близка к предельным значениям. Крупные водоемы значительно смягчают климат суши, так как для воды характерна большая скрытая теплота парообразования и таяния. Фактически существуют два основных типа климата: континентальный с крайними значениями температуры и влажности и морской, которому свойственны менее резкие колебания, что объясняется смягчающим влиянием крупных водоемов.

Доступный живым организмам запас поверхностной воды зависит от количества осадков в данном районе, но эти величины не всегда совпадают. Так, пользуясь подземными источниками, куда вода поступает из других районов, животные и растения могут получать больше воды, чем от поступления ее с осадками. И наоборот, дождевая вода иногда сразу же становится недоступной для организмов.

Излучение Солнца представляет собой электромагнитные волны различной длины. Оно совершенно необходимо живой природе, так как является основным внешним источником энергии. Спектр распределения энергии излучения Солнца за пределами земной атмосферы (рис.6) показывает, что около половины солнечной энергии излучается в инфракрасной области, 40 % - в видимой и 10 % - в ультрафиолетовой и рентгеновской областях.

Надо иметь в виду то, что спектр электромагнитного излучения Солнца весьма широк (рис. 7) и его частотные диапазоны различным образом воздействуют на живое вещество. Земная атмосфера, включая озоновый слой, селективно, то есть избирательно по частотным диапазонам, поглощает энергию электромагнитного излучения Солнца и до поверхности Земли доходит в основном излучение с длиной волны от 0,3 до 3 мкм. Более длинно и коротковолновое излучение поглощается атмосферой.

С увеличением зенитного расстояния Солнца возрастает относительное содержание инфракрасного излучения (от 50 до 72 %).

Для живого вещества важны качественные признаки света - длина волны, интенсивность и продолжительность воздействия.

Известно, что животные и растения реагируют на изменение длины волны света. Цветовое зрение распространено в разных группах животных пятнисто: оно хорошо развито у некоторых видов членистоногих, рыб, птиц и млекопитающих, но у других видов тех же групп оно может отсутствовать.

Интенсивность фотосинтеза варьируется с изменением длины волны света. Например, при прохождении света через воду красная и синяя части спектра отфильтровываются и получающийся зеленоватый свет слабо поглощается хлорофиллом. Однако красные водоросли имеют дополнительные пигменты (фикоэритрины), позволяющие им использовать эту энергию и жить на большей глубине, чем зеленые водоросли.

И у наземных, и у водных растений фотосинтез связан с интенсивностью света линейной зависимостью до оптимального уровня светового насыщения, за которым во многих случаях следует снижение интенсивности фотосинтеза при высоких интенсивностях прямого солнечного света. У некоторых растений, например у эвкалипта, фотосинтез не ингибируется прямым солнечным светом. В данном случае имеет место компенсация факторов, так как отдельные растения и целые сообщества приспосабливаются к различным интенсивностям света, становясь адаптированными к тени (диатомовые, фитопланктон) или к прямому солнечному свету.

Продолжительность светового дня, или фотопериод, является "реле времени" или пусковым механизмом, включающим последовательность физиологических процессов, приводящих к росту, цветению многих растений, линьке и накоплению жира, миграции и размножению у птиц и млекопитающих и к наступлению диапаузы у насекомых. Некоторые высшие растения цветут при увеличении длины дня (растения длинного дня), другие зацветают при сокращении дня (растения короткого дня). У многих организмов, чувствительных к фотопериоду, настройку биологических часов можно изменить экспериментальным изменением фотопериода.

Ионизирующее излучение выбивает электроны из атомов и присоединяет их к другим атомам с образованием пар положительных и отрицательных ионов. Его источником служат радиоактивные вещества, содержащиеся в горных породах, кроме того, оно поступает из космоса.

Разные виды живых организмов сильно отличаются по своим способностям выдерживать большие дозы радиационного облучения. Например, доза 2 Зв (зивера) – вызывает гибель зародышей некоторых насекомых на стадии дробления, доза 5 Зв приводит к стерильности некоторых видов насекомых, доза 10 Зв абсолютно смертельна для млекопитающих. Как показывают данные большей части исследований, наиболее чувствительны к облучению быстро делящиеся клетки.

Воздействие малых доз радиации оценить сложнее, так как они могут вызвать отдаленные генетические и соматические последствия. Например, облучение сосны дозой 0,01 Зв в сутки на протяжении 10 лет вызвало замедление скорости роста, аналогичное однократной дозе 0,6 Зв. Повышение уровня излучения в среде над фоновым приводит к повышению частоты вредных мутаций.

У высших растений чувствительность к ионизирующему излучению прямо пропорциональна размеру клеточного ядра, а точнее объему хромосом или содержанию ДНК.

У высших животных не обнаружено такой простой зависимости между чувствительностью и строением клеток; для них более важное значение имеет чувствительность отдельных систем органов. Так, млекопитающие очень чувствительны даже к низким дозам радиации вследствие легкой повреждаемости облучением быстро делящейся кроветворной ткани костного мозга. Даже очень низкие уровни хронически действующего ионизирующего излучения могут вызвать в костях и в других чувствительных тканях рост опухолевых клеток, что может проявиться лишь через много лет после облучения.

Газовый состав атмосферы также является важным климатическим фактором (рис. 8). Примерно 3-3,5 млрд лет назад атмосфера содержала азот, аммиак, водород, метан и водяной пар, а свободный кислород в ней отсутствовал. Состав атмосферы в значительной степени определялся вулканическими газами. Из-за отсутствия кислорода не существовало озонового экрана, задерживающего ультрафиолетовое излучение Солнца. С течением времени за счет абиотических процессов в атмосфере планеты стал накапливаться кислород, началось формирование озонового слоя. Примерно в середине палеозоя потребление кислорода сравнялось с его образованием, в этот период содержание О2 в атмосфере было близко к современному - около 20 % . Далее, с середины девона, наблюдаются колебания в содержании кислорода. В конце палеозоя произошло заметное, примерно до 5 % современного уровня, снижение содержания кислорода и повышение содержания углекислого газа, приведшие к изменению климата и, по-видимому, послужившие толчком к обильному "автотрофному" цветению, создавшему запасы ископаемого углеводородного топлива. Затем последовало постепенное возвращение к атмосфере с низким содержанием углекислого газа и высоким содержанием кислорода, после чего отношение О2/СО2 остается в состоянии так называемого колебательного стационарного равновесия.

В настоящее время атмосфера Земли имеет следующий состав: кислород ~21 %, азот ~78 %, углекислый газ ~0,03 %, инертные газы и примеси ~0,97 % . Интересно, что концентрации кислорода и углекислого газа являются лимитирующими для многих высших растений. У многих растений удается повысить эффективность фотосинтеза, повысив концентрацию углекислого газа, однако малоизвестно, что снижение концентрации кислорода также может приводить к увеличению фотосинтеза. В опытах на бобовых и многих других растениях было показано, что понижение содержания кислорода в воздухе до 5 % повышает интенсивность фотосинтеза на 50 % . Крайне важную роль играет также азот. Это важнейший биогенный элемент, участвующий в образовании белковых структур организмов. Ветер оказывает лимитирующее воздействие на активность и распространение организмов.

Ветер способен даже изменять внешний вид растений, особенно в тех местообитаниях, например в альпийских зонах, где лимитирующее воздействие оказывают другие факторы. Экспериментально показано, что в открытых горных местообитаниях ветер лимитирует рост растений: когда построили стену, защищавшую растения от ветра, высота растений увеличилась. Большое значение имеют бури, хотя их действие сугубо локально. Ураганы и обычные ветры способны переносить животных и растения на большие расстояния и тем самым изменять состав сообществ.

Атмосферное давление , по-видимому, не является лимитирующим фактором непосредственного действия, однако оно имеет прямое отношение к погоде и климату, которые оказывают непосредственное лимитирующее воздействие.

Водные условия создают своеобразную среду обитания организмов, отличающуюся от наземной прежде всего плотностью и вязкостью. Плотность воды примерно в 800 раз, а вязкость примерно в 55 раз выше, чем у воздуха. Вместе с плотностью и вязкостью важнейшими физико-химическими свойствами водной среды являются: температурная стратификация, то есть изменение температуры по глубине водного объекта и периодические изменения температуры во времени, а также прозрачность воды, определяющая световой режим под ее поверхностью: от прозрачности зависит фотосинтез зеленых и пурпурных водорослей, фитопланктона, высших растений.

Как и в атмосфере, важную роль играет газовый состав водной среды. В водных местообитаниях количество кислорода, углекислого газа и других газов, растворенных в воде и потому доступных организмам, сильно варьируется во времени. В водоемах с высоким содержанием органических веществ кислород является лимитирующим фактором первостепенной важности. Несмотря на лучшую растворимость кислорода в воде по сравнению с азотом, даже в самом благоприятном случае в воде содержится меньше кислорода, чем в воздухе, примерно 1 % по объему. На растворимость влияют температура воды и количество растворенных солей: при понижении температуры растворимость кислорода растет, при повышении солености - снижается. Запас кислорода в воде пополняется благодаря диффузии из воздуха и фотосинтезу водных растений. Кислород диффундирует в воду очень медленно, диффузии способствует ветер и движение воды. Как уже упоминалось, важнейшим фактором, обеспечивающим фотосинтетическую продукцию кислорода, является свет, проникающий в толщу воды. Таким образом, содержание кислорода меняется в воде в зависимости от времени суток, времени года и местоположения.

Содержание углекислого газа в воде также может сильно варьироваться, но по своему поведению углекислый газ отличается от кислорода, а его экологическая роль мало изучена. Углекислый газ хорошо растворяется в воде, кроме того, в воду поступает СО2, образующийся при дыхании и разложении, а также из почвы или подземных источников. В отличие от кислорода углекислый газ вступает в реакцию с водой:

с образованием угольной кислоты, которая реагирует с известью, образуя карбонаты СО22- и гидрокарбонаты НСО3-. Эти соединения поддерживают концентрацию водородных ионов на уровне, близком к нейтральному значению. Небольшое количество углекислого газа в воде повышает интенсивность фотосинтеза и стимулирует процессы развития многих организмов. Высокая же концентрация углекислого газа является лимитирующим фактором для животных, так как она сопровождается низким содержанием кислорода. Например, при слишком высоком содержании свободного углекислого газа в воде погибают многие рыбы.

Кислотность - концентрация водородных ионов (рН) - тесно связана с карбонатной системой. Значение рН изменяется в диапазоне 0 ? рН? 14: при рН=7 среда нейтральная, при рН<7 - кислая, при рН>7 - щелочная. Если кислотность не приближается к крайним значениям, то сообщества способны компенсировать изменения этого фактора - толерантность сообщества к диапазону рН весьма значительна. Кислотность может служить индикатором скорости общего метаболизма сообщества. В водах с низким рН содержится мало биогенных элементов, поэтому продуктивность здесь крайне мала.

Соленость - содержание карбонатов, сульфатов, хлоридов и т.д. - является еще одним значимым абиотическим фактором в водных объектах. В пресных водах солей мало, из них около 80 % приходится на карбонаты. Содержание минеральных веществ в мировом океане составляет в среднем 35 г/л. Организмы открытого океана обычно стеногалинны, тогда как организмы прибрежных солоноватых вод в общем эвригалинны. Концентрация солей в жидкостях тела и тканях большинства морских организмов изотонична концентрации солей в морской воде, так что здесь не возникает проблем с осморегуляцией.

Течение не только сильно влияет на концентрацию газов и питательных веществ, но и прямо действует как лимитирующий фактор. Многие речные растения и животные морфологически и физиологически особым образом приспособлены к сохранению своего положения в потоке: у них есть вполне определенные пределы толерантности к фактору течения.

Гидростатическое давление в океане имеет большое значение. С погружением в воду на 10 м давление возрастает на 1 атм (105 Па) . В самой глубокой части океана давление достигает 1000 атм (108 Па) . Многие животные способны переносить резкие колебания давления, особенно, если у них в теле нет свободного воздуха. В противном случае возможно развитие газовой эмболии. Высокие давления, характерные для больших глубин, как правило, угнетают процессы жизнедеятельности.

Почвой называют слой вещества, лежащий поверх горных пород земной коры. Русский ученый - естествоиспытатель Василий Васильевич Докучаев в 1870 году первым рассмотрел почву как динамическую, а не инертную среду. Он доказал, что почва постоянно изменяется и развивается, а в ее активной зоне идут химические, физические и биологические процессы. Почва формируется в результате сложного взаимодействия климата, растений, животных и микроорганизмов. Советский академик почвовед Василий Робертович Вильямс дал еще одно определение почвы - это рыхлый поверхностный горизонт суши, способный производить урожай растений. Рост растений зависит от содержания необходимых питательных веществ в почве и от ее структуры.

В состав почвы входят четыре основных структурных компонента: минеральная основа (обычно 50-60 % общего состава почвы), органическое вещество (до 10 %), воздух (15-25 %) и вода (25-30 %).

Минеральный скелет почвы - это неорганический компонент, который образовался из материнской породы в результате ее выветривания.

Свыше 50 % минерального состава почвы занимает кремнезем SiO2, от 1 до 25 % приходится на глинозем Al2О3, от 1 до 10 % - на оксиды железа Fe2О3, от 0,1 до 5 % - на оксиды магния, калия, фосфора, кальция. Минеральные элементы, образующие вещество почвенного скелета, различны по размерам: от валунов и камней до песчаных крупинок - частиц диаметром 0,02-2 мм, ила - частиц диаметром 0,002-0,02 мм и мельчайших частиц глины размером менее 0,002 мм в диаметре. Их соотношение определяет механическую структуру почвы . Она имеет большое значение для сельского хозяйства. Глины и суглинки, содержащие примерно равное количество глины и песка, обычно пригодны для роста растений, так как содержат достаточно питательных веществ и способны удерживать влагу. Песчаные почвы быстрее дренируются и теряют питательные вещества из-за выщелачивания, но их выгоднее использовать для получения ранних урожаев, так как их поверхность высыхает весной быстрее, чем у глинистых почв, что приводит к лучшему прогреванию. С увеличением каменистости почвы уменьшается ее способность удерживать воду.

Органическое вещество почвы образуется при разложении мертвых организмов, их частей и экскрементов. Не полностью разложившиеся органические остатки называются подстилкой, а конечный продукт разложения - аморфное вещество, в котором уже невозможно распознать первоначальный материал, - называется гумусом. Благодаря своим физическим и химическим свойствам гумус улучшает структуру почвы и ее аэрацию, а также повышает способность удерживать воду и питательные вещества.

Одновременно с процессом гумификации жизненно важные элементы переходят их органических соединений в неорганические, например: азот - в ионы аммония NH4+, фосфор - в ортофосфатионы H2PO4-, сера - в сульфатионы SO42-. Этот процесс называется минерализацией.

Почвенный воздух так же как и почвенная вода, находится в порах между частицами почвы. Порозность возрастает от глин к суглинкам и пескам. Между почвой и атмосферой происходит свободный газообмен, в результате чего газовый состав обеих сред имеет сходный состав. Обычно в воздухе почвы из-за дыхания населяющих ее организмов несколько меньше кислорода и больше углекислого газа, чем в атмосферном воздухе. Кислород необходим для корней растений, почвенных животных и организмов-редуцентов, разлагающих органическое вещество на неорганические составляющие. Если идет процесс заболачивания, то почвенный воздух вытесняется водой и условия становятся анаэробными. Почва постепенно становится кислой, так как анаэробные организмы продолжают вырабатывать углекислый газ. Почва, если она небогата основаниями, может стать чрезвычайно кислой, а это наряду с истощением запасов кислорода неблагоприятно воздействует на почвенные микроорганизмы. Длительные анаэробные условия ведут к отмиранию растений.

Почвенные частицы удерживают вокруг себя некоторое количество воды, определяющей влажность почвы. Часть ее, называемая гравитационной водой, может свободно просачиваться в глубь почвы. Это ведет к вымыванию из почвы различных минеральных веществ, в том числе азота. Вода может также удерживаться вокруг отдельных коллоидных частиц в виде тонкой прочной связанной пленки. Эту воду называют гигроскопической. Она адсорбируется на поверхности частиц за счет водородных связей. Эта вода наименее доступна для корней растений и именно она последней удерживается в очень сухих почвах. Количество гигроскопической воды зависит от содержания в почве коллоидных частиц, поэтому в глинистых почвах ее намного больше - примерно 15 % массы почвы, чем в песчанистых - примерно 0,5 % . По мере того, как накапливаются слои воды вокруг почвенных частиц, она начинает заполнять сначала узкие поры между этими частицами, а затем распространяется во все более широкие поры. Гигроскопическая вода постепенно переходит в капиллярную, которая удерживается вокруг почвенных частиц силами поверхностного натяжения. Капиллярная вода может подниматься по узким порам и канальцам от уровня грунтовых вод. Растения легко поглощают капиллярную воду, которая играет наибольшую роль в регулярном снабжении их водой. В отличие от гигроскопической влаги эта вода легко испаряется. Тонкоструктурные почвы, например глины, удерживают больше капиллярной воды, чем грубоструктурные, такие, как пески.

Вода необходима всем почвенным организмам. Она поступает в живые клетки путем осмоса.

Вода также важна как растворитель для питательных веществ и газов, поглощаемых из водного раствора корнями растений. Она принимает участие в разрушении материнской породы, подстилающей почву, и в процессе почвообразовния.

Химические свойства почвы зависят от содержания минеральных веществ, которые находятся в ней в виде растворенных ионов. Некоторые ионы являются для растений ядом, другие - жизненно не-обходимы. Концентрация в почве ионов водорода (кислотность) рН>7, то есть в среднем близка к нейтральному значению. Флора таких почв особенно богата видами. Известковые и засоленные почвы имеют рН = 8...9, а торфяные - до 4. На этих почвах развивается специфическая растительность.

В почве обитает множество видов растительных и животных организмов, влияющих на ее физико-химические характеристики: бактерии, водоросли, грибы или простейшие одноклеточные, черви и членистоногие. Биомасса их в различных почвах равна (кг/га): бактерий 1000-7000, микроскопических грибов - 100-1000, водорослей 100-300, членистоногих - 1000, червей 350-1000.

В почве осуществляются процессы синтеза, биосинтеза, протекают различные химические реакции преобразования веществ, связанные с жизнедеятельностью бактерий. При отсутствии в почве специализированных групп бактерий их роль выполняют почвенные животные, которые переводят крупные растительные остатки в микроскопические частицы и таким образом делают органические вещества доступными для микроорганизмов.

Органические вещества вырабатываются растениями при использовании минеральных солей, солнечной энергии и воды. Таким образом, почва теряет минеральные вещества, которые растения взяли из нее. В лесах часть питательных веществ вновь возвращается в почву через листопад. Культурные растения за какой-то период времени изымают из почвы значительно больше биогенных веществ, чем возвращают в нее. Обычно потери питательных веществ восполняются внесением минеральных удобрений, которые в основном прямо не мо-гут быть использованы растениями и должны быть трансформированы микроорганизмами в биологически доступную форму. При отсутствии таких микроорганизмов почва теряет плодородие.

Основные биохимические процессы протекают в верхнем слое почвы толщиной до 40 см, так как в нем обитает наибольшее количество микроорганизмов. Одни бактерии участвуют в цикле превращения только одного элемента, другие - в циклах превращения многих элементов. Если бактерии минерализуют органическое вещество - разлагают органическое вещество на неорганические соединения, то простейшие уничтожают избыточное количество бактерий. Дождевые черви, личинки жуков, клещи разрыхляют почву и этим способствуют ее аэрации. Кроме того, они перерабатывают трудно расщепляемые органические вещества.

К абиотическим факторам среды обитания живых организмов относятся также факторы рельефа (топография) . Влияние топографии тесно связано с другими абиотическими факторами, так как она может сильно сказываться на местном климате и развитии почвы.

Главным топографическим фактором является высота над уровнем моря. С высотой снижаются средние температуры, увеличивается суточный перепад температур, возрастают количество осадков, скорость ветра и интенсивность радиации, понижаются атмосферное давление и концентрации газов. Все эти факторы влияют на растения и животных, обуславливая вертикальную зональность.

Горные цепи могут служить климатическими барьерами. Горы служат также барьерами для распространения и миграции организмов и могут играть роль лимитирующего фактора в процессах видообразования.

Еще один топографический фактор - экспозиция склона . В северном полушарии склоны, обращенные на юг, получают больше солнечного света, поэтому интенсивность света и температура здесь выше, чем на дне долин и на склонах северной экспозиции. В южном полушарии имеет место обратная ситуация.

Важным фактором рельефа является также крутизна склона . Для крутых склонов характерны быстрый дренаж и смывание почв, поэтому здесь почвы маломощные и более сухие. Если уклон превышает 35Ь, почва и растительность обычно не образуются, а создаются осыпи из рыхлого материала.

Среди абиотических факторов особого внимания заслуживает огонь или пожар . В настоящее время экологи пришли к однозначному мнению, что пожар надо рассматривать как один из естественных абиотических факторов наряду с климатическими, эдафическими и другими факторами.

Пожары как экологический фактор бывают различных типов и оставляют после себя различные последствия. Верховые или дикие пожары, то есть очень интенсивные и не поддающиеся сдерживанию, разрушают всю растительность и всю органику почвы, последствия же низовых пожаров совершенно иные. Верховые пожары оказывают лимитирующее действие на большинство организмов - биотическому сообществу приходится начинать все сначала, с того немногого, что осталось, и должно пройти много лет, пока участок снова станет продуктивным. Низовые пожары, напротив, обладают избирательным действием: для одних организмов они оказываются более лимитирующим, для других - менее лимитирующим фактором и таким образом способствуют развитию организмов с высокой толерантностью к пожарам. Кроме того, небольшие низовые пожары дополняют действие бактерий, разлагая умершие растения и ускоряя превращение минеральных элементов питания в форму, пригодную для использования новыми поколениями растений.

Если низовые пожары случаются регулярно раз в несколько лет, на земле остается мало валежника, это снижает вероятность возгорания крон. В лесах, не горевших более 60 лет, накапливается столько горючей подстилки и отмершей древесины, что при ее воспламенении верховой пожар почти неизбежен.

Растения выработали специальные адаптации к пожару, так же, как они сделали по отношению к другим абиотическим факторам. В частности, почки злаков и сосен скрыты от огня в глубине пучков листьев или хвоинок. В периодически выгорающих местообитаниях эти виды растений получают преимущества, так как огонь способствует их сохранению, избирательно содействуя их процветанию. Широколиственные же породы лишены защитных приспособлений от огня, он для них губителен.

Таким образом, пожары поддерживают устойчивость лишь некоторых экосистем. Листопадным и влажным тропическим лесам, равновесие которых складывалось без влияния огня, даже низовой пожар может причинить большой ущерб, разрушив богатый гумусом верхний горизонт почвы, приведя к эрозии и вымыванию из нее биогенных веществ.

Вопрос "жечь или не жечь" непривычен для нас. Последствия выжигания могут быть очень разными в зависимости от времени и интенсивности. По своей неосторожности человек нередко бывает причиной увеличения частоты диких пожаров, поэтому необходимо активно бороться за пожарную безопасность в лесах и зонах отдыха. Частное лицо ни в коем случае не имеет права намеренно или случайно вызывать пожар в природе. Вместе с тем необходимо знать, что использование огня специально обученными людьми является частью правильного землепользования.

Для абиотических условий справедливы все рассмотренные законы воздействия экологических факторов на живые организмы. Знание этих законов позволяет ответить на вопрос: почему в разных регионах планеты сформировались разные экосистемы? Основная причина - своеобразие абиотических условий каждого региона.

Популяции концентрируются на определенной территории и не могут быть распространены повсюду с одинаковой плотностью, поскольку имеют ограниченный диапазон толерантности по отношению к факторам окружающей среды. Следовательно, для каждого сочетания абиотических факторов характерны свои виды живых организмов. Множество вариантов сочетаний абиотических факторов и приспособленных к ним видов живых организмов обуславливают разнообразие экосистем на планете.

  • Наземно – воздушная среда жизни и ее особенности. Адаптации организмов к обитанию в наземно-воздушной среде
  • Водная среда жизни. Адаптации организмов к водной среде
  • Введение

    Каждый день вы, спеша по делам, ходите по улице, ежась от холода или обливаясь потом от жары. А после рабочего дня идете в магазин, покупаете продукты питания. Выйдя из магазина, спешно останавливаете проезжающую маршрутку и бессильно опускаетесь на ближайшее свободное место. Для многих это знакомый образ жизни, не так ли? А вы никогда не задумывались о том, как протекает жизнь с точки зрения экологии? Существование человека, растений и животных возможно лишь благодаря их взаимодействию. Не обходится оно и без влияния неживой природы. У каждого из этих типов воздействия есть свое обозначение. Итак, существует всего три вида влияния на окружающую среду. Это антропогенные, биотические и абиотические факторы. Давайте рассмотрим каждый из них и его воздействие на природу.

    1. Антропогенные факторы - влияние на природу всех форм деятельности человека

    Когда упоминается этот термин, в голову не приходит ни одной положительной мысли. Даже когда люди делают что-нибудь хорошее для животных и растений, то происходит это из-за последствий ранее сделанного плохого (к примеру, браконьерства).

    Антропогенные факторы (примеры):

    • Высушивание болот.
    • Удобрение полей пестицидами.
    • Браконьерство.
    • Промышленные отходы (фото).

    Вывод

    Как видите, в основном человек наносит окружающей среде только вред. И из-за увеличения хозяйственного и промышленного производства даже природоохранные меры, учреждаемые редкими добровольцами (создание заповедников, экологические митинги), уже перестают помогать.

    2. Биотические факторы - влияние живой природы на разнообразные организмы

    Проще говоря, это взаимодействие растений и животных между собой. Оно может быть как положительным, так и отрицательным. Существует несколько видов такого взаимодействия:

    1. Конкуренция - такие взаимосвязи между особями одного или разных видов, при которых использование определенного ресурса одним из них уменьшает его доступность для других. В общем, при конкуренции животные или растения борются между собой за свой кусок хлеба

    2. Мутуализм - такая взаимосвязь, при которой каждый из видов получает определенную пользу. Проще говоря, когда растения и/или животные гармонично дополняют друг друга.

    3. Комменсализм - такая форма симбиоза между организмами разных видов, при которой один из них использует жилище или организм хозяина как место поселения и может питаться остатками пищи или продуктами его жизнедеятельности. При этом он не приносит хозяину ни вреда, ни пользы. В общем, маленькое незаметное дополнение.

    Биотические факторы (примеры):

    Сосуществование рыб и коралловых полипов, жгутиковых простейших и насекомых, деревьев и птиц (например, дятлов), скворцов-майн и носорогов.

    Вывод

    Несмотря на то, что биотические факторы могут приносить вред животным, растениям и человеку, от них есть и очень большая польза.

    3. Абиотические факторы - воздействие неживой природы на разнообразные организмы

    Да, и неживая природа тоже играет немаловажную роль в жизненных процессах животных, растений и человека. Пожалуй, самым главным абиотическим фактором является погода.

    Абиотические факторы: примеры

    Абиотические факторы - это температура, влажность, освещенность, соленость воды и почвы, а также воздушная среда и ее газовый состав.

    Вывод

    Абиотические факторы могут наносить вред животным, растениям и человеку, но все-таки в основном они приносят им пользу

    Итог

    Единственный фактор, не приносящий никому пользы - это антропогенный. Да, человеку он тоже не приносит ничего хорошего, хотя тот уверен, что изменяет природу для своего блага, и не задумывается, во что превратится для него и его потомков это "благо" через десяток лет. Человеком уже полностью уничтожены многие виды животных и растений, которые имели свое место в мировой экосистеме. Биосфера Земли похожа на фильм, в котором нет второстепенных ролей, все они являются главными. А вот теперь представьте, что некоторые из них убрали. Что получится в фильме? Вот так и в природе: если исчезнет самая малая песчинка, рухнет великое здание Жизни.