Древние и новейшие тектонические движения. Новейшие тектонические движения

Неотектоника – учение о различных тектонических процессах и обусловленных ими структурных формах, образовавшихся в неоген-четвертичное время (около 30 млн.лет) о определяющих основные черты современного рельефа поверхности земного шара. Рельефообразующая роль новейших тектонических движений проявилась, прежде всего, в деформации топографической поверхности, в создании положительных и отрицательных форм рельефа разного порядка. Там, где они слабо проявлялись, в рельефе выражены равнины, плато и плоскогорья, где интенсивность их была значительной, в областях погружений образовались низменные равнины, а в областях поднятий – горы.

Эти движения вызывают упругие деформации в зависимости от природы «возбуждающих явлений». К ним относятся суточные и сезонные колебания температуры, изменения атмосферного давления и явления приливов в «твердой Земле», вызываемые притяжением космических тел, аналогичные приливам и отливам в океане. Величина таких деформаций составляет первые десятки сантиметров. Более значительные величины деформаций связаны с такими большими нагрузками как материковое оледенение. Общая величина упругих деформаций для послеледникового поднятия Скандинавии и Сев. Америки 50-100м. Упругие деформации охватывают только поверхностные части земной коры. К таким же поверхностно проявляющимся движениям относится и эндолитогенный компонент. Замечено, что в больших городах, портовых сооружениях высотные отметки имеют тенденцию к снижению на сантиметры в год. Там, где в разрезе отложений имеются мощные толщи соли и где наблюдаются интенсивные восходящие движения земной коры проявляются пластические деформации. Соли приподнимаются и образуются куполовидные структуры, т.н. соляная тектоника (Поволжье, Башкирия и др.).

Наиболее общей особенностью проявления новейших тектонических движений является ритмичность. За неотектонический этап хорошо выявляются три фазы, отражающие крупную ритмичность: конец палеогена-начало неогена – преобладали поднятия; плиоцен(12 млн. лет) – преобладали нисходящие движения и четвертичный период (около 2 млн. лет) – общее поднятие. Эта ритмичность находит свое отражение в формировании поверхностей выравнивания и перемещении береговой линии моря, в усилении и ослаблении процессов денудации и аккумуляции, в образовании речных террас, в изменении климатических условий, а значит и экзогенных процессов и в явлениях оледенения. То есть эти ритмы определяли фазы развития и перестройки рельефа.

На крупные колебания накладывались движения меньших размеров, но то же отразившихся в формировании элементов рельефа. Эти движения накладывались друг на друга и на более древние. Поэтому говорить об амплитуде движений каждого типа сложно.



Исследования в разных районах позволили установить три типа режима проявления новейших тектонических движений за неотектонический этап развития:

- колебательный – положительные движения разной амплитуды сменяются компенсирующими их отрицательными движениями (ЕТС, Зап. Сибирь и др.)

- отрицательно направленыый – преобладали устойчивые опускания. Сопровождается формированием равнинного пониженного рельефа и накоплением мощных толщ новейших отложений (Прикаспийская низменность, большая часть Туранской низменности и др)

Положительно направленный – преобладали устойчивые поднятия. Образуются положительные формы рельефа и усиливается денудация (возвышенность Путорана, эпиплатформенные горы и др.). Изменения в пространстве амплитуды движений приводит к проявлению разных типов деформаций: сводовых, блоковых, складчатых, разрывных.

Суммарный размах движений за неоген-четвертичное время дается приблизительно, так как это результат движений разного знака. Интенсивные движения испытывают области альпийской складчатости и современные геосинклинальные области. Альпы, Памир, Гималаи и другие горы поднялись за неоген-четвертичное время на несколько км. Отдельные участки в этих областях испытывают погружения. Например, Большой и Малый Кавказ поднимаются, а Куро-Араксинская низменность опускается.

Применение инструментальных методов дает возможность производить оценку скорости движений за исторический отрезок времени (за последние 200 лет). В областях слабого проявления неотектоники скорость современных движений оценивается в 1-3мм в год, максимальных значений (до 10мм в год) поднятия достигают, например, в Фенноскандии, в районе Гудзонова залива)

Неотектонические движения изучаются разными методами: геологическими, геофизическими и геоморфологическими. Среди геоморфологических методов выделим некоторые:

- анализ морфометрических данных . В комплексе с данными геологического строения территории можно не только выявить тектонические движения, но и наметить контуры локальных новейших структур. Например, участки поднимающиеся характеризуются увеличением густоты и глубины эрозионного расчленения по сравнению со стабильными территориями или погружающимися.

- изучение речных долин . Наиблее важные результаты получают при анализе продольного профиля речных террас. Погребенные террасы указывают на опускание, эрозионные – на поднятие. Увеличение разности высот отдельных террас и появление дополнительных террасовых уровней указывает на поднятие.

- изучение гидрографической сети и истории ее развития. Например, отсутствие меандр дает основание говорить о поднятии данного участка долины, изгибы речных долин часто объясняются растущими антиклинальными структурами. Прямолинейные участки речных долин отражают структурные линии – разломы.

- наблюдения над деформациями древних поверхностей выравнивания . Теоретичнски считается, что выработка этих поверхностей происходила в условиях относительного тектонического покоя. По положению поверхности выравнивания в рельефе можно оценить общую амплитуду поднятия территории со времени образования данной поверхности.

В предыдущих главах речь шла об отражении геологических структур в рельефе и о влиянии на рельеф различных типов тектонических движений безотносительно ко времени проявления этих движений. В настоящее время установлено, что главная роль в формировании основных черт современного рельефа эндогенного происхождения принадлежит так называемым новейшим тектоническим движениям, под которыми исследователи чаще всего понимают движения, имевшие место в неоген-четвертичное время. Об этом убедительно свидетельствует, например, сопоставление крупных черт рельефа на гипсометрической карте бывшего СССР и карты новейших тектонических движений на ту же территорию (рис. 5.6). Так, областям со слабовы- раженными вертикальными положительными тектоническими движениями в рельефе соответствуют равнины, невысокие плато и плоскогорья с тонким чехлом четвертичных отложений: Восточно-Европейская равнина, значительная часть Западно-Сибирской равнины, плато Устюрт, Среднесибирское плоскогорье.

Рис. 5.6.

упрощена):

  • 1 - области весьма слабо выраженных положительных движений;
  • 2 - области слабо выраженных линейных положительных движений;
  • 3 - области интенсивных сводовых поднятий; 4 - области слабо выраженных линейных поднятий и опусканий; 5 - области интенсивных линейных поднятий с большими (а) и значительными (б) градиентами вертикальных движений;
  • 6 - области намечающихся (а) и преобладающих (б) опусканий; 7 - граница областей сильных землетрясений (7 баллов и более); 8 - граница проявления неоген-четвертичного вулканизма; 9 - граница распространения действующих

вулканов

Областям интенсивных тектонических погружений, как правило, соответствуют низменные равнины с мощной толщей осадков неоген- четвертичного возраста: Прикаспийская низменность, значительная часть Туранской низменности, северная часть Западно-Сибирской равнины, Колымская низменность и др. Областям интенсивных, преимущественно положительных тектонических движений соответствуют горы: Кавказ, Памир, Тянь-Шань, горы Прибайкалья и Забайкалья и др.

Следовательно, рельефообразующая роль новейших тектонических движений проявилась, прежде всего, в деформации топографической поверхности, в создании положительных и отрицательных форм рельефа разного порядка. Через дифференциацию топографической поверхности новейшие тектонические движения «контролируют» расположение на поверхности Земли областей сноса и аккумуляции и, как следствие этого, областей с преобладанием денудационного (выработанного) и аккумулятивного рельефа. Скорость, амплитуда и контрастность новейших движений существенным образом влияют на интенсивность проявления экзогенных процессов и также находят отражение в морфологии и морфометрии рельефа.

Выражение в современном рельефе геологических структур зависит от типа и характера неотектонических движений, литологии слагающих их пород и конкретных физико-географических условий. Одни структуры находят прямое отражение в рельефе, на месте других формируется обращенный рельеф (о чем говорилось выше), на месте третьих - различные типы переходных форм от прямого рельефа к обращенному. Разнообразие соотношений между рельефом и геологическими структурами особенно характерно для мелких структур, крупные структуры, как правило, находят прямое выражение в рельефе.

Формы рельефа земной поверхности, в образовании которых главная роль принадлежит эндогенным процессам и в морфологии которых четко отражаются геологические структуры, называют морфострукту- рами. Это понятие было введено в 1946 г. И. П. Герасимовым. Однако до настоящего времени среди исследователей нет единого мнения в толковании понятия «морфоструктура» ни в отношении масштаба форм, ни в отношении характера соответствия между структурой и ее выражением в рельефе. Одни исследователи понимают под мор- фоструктурами и прямой, и обращенный, и любой иной рельеф, возникший на месте геологической структуры, другие - только прямой рельеф. Некоторые исследователи относят к морфоструктурам только активные геологические структуры, а отпрепарированные, пассивные структуры называют литоморфоструктурами.

Данные, которыми располагают в настоящее время геология и геоморфология, свидетельствуют о том, что земная кора испытывает деформации практически всюду и разного характера. Так, в настоящее время поднятие испытывают территория Фенноскандии и значительная часть территории Северной Америки, примыкающей к Гудзонову заливу. Скорости поднятий этих территорий весьма значительны. В Фенноскандии сразу после таяния ледника они составляли 10-13 см/год, в настоящее время - около 10 мм/год (метки уровня моря, сделанные в XVIII в. на берегах Ботнического залива, приподняты над современным уровнем на 1,5-2,0 м) (рис. 5.7). Берега Северного моря в пределах Голландии и соседних с ней областей опускаются, вынуждая жителей строить плотины для защиты территории от наступания моря.

Интенсивные тектонические движения испытывают области альпийской складчатости и современных геосинклинальных поясов. По имеющимся данным, Альпы, Гималаи и Памир за неоген-четвер- тичное время поднялись на несколько километров. На фоне поднятий отдельные участки в пределах областей альпийской складчатости испытывают интенсивные погружения. Так, на фоне поднятия Большого и Малого Кавказа заключенная между ними Кура-Араксинская низменность испытывает интенсивное погружение. Свидетельством существующих здесь разнонаправленных движений служит положение береговых линий древних морей, предшественников современного Каспийского моря. Прибрежные осадки одного из таких морей - позднебакинского, уровень которого располагается на абсолютной высоте 10-12 м, в настоящее время прослеживаются в пределах юго-восточной периклинали Большого Кавказа и на склонах Талышских гор на абсолютных отметках соответственно +300 и +200 м, а в пределах Кура-Араксинской низменности вскрыты скважинами на абсолютных отметках -250-300 м.

Рис. 5.7.

1 - изогипсы (м); 2 - граница каледонид; 3 - граница Балтийского щита

О проявлении неотектонических движений можно судить по многочисленным и весьма разнообразным геоморфологическим признакам:

  • 1) наличие морских и речных террас, образование которых не связано с воздействием изменения климата или каких-либо других причин;
  • 2) деформации морских и речных террас и древних поверхностей денудационного выравнивания; 3) глубоко погруженные или высоко приподнятые над уровнем моря коралловые рифы; 4) затопленные морские береговые формы и некоторые подводные карстовые источники, положение которых нельзя объяснить эвстатическими колебаниями уровня Мирового океана или другими причинами; 5) антецедентные долины, образующиеся в результате пропиливания рекой возникающего на ее пути тектонического повышения - антиклинальной складки или воздымающегося блока, образованного разрывными нарушениями (рис. 5.8).

Рис. 5.8.

О проявлении неотектонических движений можно судить и по ряду косвенных признаков. Чутко реагируют на них флювиальные формы рельефа. Так, участки, испытывающие тектонические поднятия, обычно характеризуются увеличением густоты и глубины эрозионного расчленения по сравнению с территориями, стабильными в тектоническом отношении или испытывающими погружение. На таких участках меняется и морфологический облик эрозионных форм: долины обычно становятся уже, склоны круче, наблюдаются изменение продольного профиля рек и резкие изменения направления их течения в плане, не объяснимые другими причинами, и т.д. Все эти (и ряд других) признаки позволяют использовать геоморфологический метод для выявления положительных тектонических структур, в частности при поиске нефтегазовых месторождений.

В зависимости от соотношения скоростей тектонических движений (Т) и денудационных процессов (Д) рельеф может развиваться по восходящему или нисходящему типу. Если Т > Д, рельеф развивается по восходящему типу. В этом случае увеличиваются абсолютные высоты территории, испытывающей поднятия, что стимулирует усиление глубинной эрозии постоянных и временных водотоков и приводит к увеличению относительных высот. Формируются долины рек типа теснин, ущелий и каньонов, характеризующихся крутыми или даже отвесными склонами, что, в свою очередь, ведет к интенсивному развитию оползневых (при благоприятных гидрогеологических условиях) и обвально-осыпных процессов. Вследствие резкого преобладания глубинной эрозии над боковой в долинах рек слабо развиты или совсем отсутствуют поймы и речные террасы. Продольные профили рек характеризуются большими уклонами и невыработанностью: более или менее пологие уклоны на участках выхода легко размываемых пород чередуются с порогами и уступами на местах выхода устойчивых к размыву пород. Усиление интенсивности денудационных процессов способствует быстрому удалению рыхлых продуктов разрушения горных пород, результатом чего является хорошая обнаженность «свежих», еще не подвергшихся разрушению пород, препарирование более стойких пород и как результат - четкое отражение геологических структур в рельефе (структурность рельефа ), особенно в условиях аридного климата. Увеличение абсолютных высот, длины и крутизны склонов приводит не только к интенсификации ранее действовавших рельефообразующих процессов, но и к появлению новых: снежных лавин и селей, а при подъеме территории выше климатической снеговой границы - к процессам, связанным с деятельностью льда и снега. В результате в верхней части гор формируется новый тип рельефа - альпийский, характеристика которого была дана выше. Таким образом, изменение количественных характеристик - увеличение абсолютных и относительных высот, длины и крутизны склонов - приводит к качественным изменениям всего комплекса рельефообразующих процессов. Эти изменения находят отражение и на территориях, прилегающих к воздымающимся горам: здесь изменяется характер коррелятных отложений. По мере роста гор увеличиваются количество и крупность обломочного материала, выносимого постоянными и временными водотоками.

Отмеченная связь между изменением рельефообразующих процессов на территориях, испытывающих поднятие, и характером коррелятных отложений, накапливающихся в области опускания, позволяет использовать коррелятные отложения для палеогеографических реконструкций: определения интенсивности тектонических движений прошлых геологических эпох, местоположения областей сноса, определения возраста проявления тектонических движений и формирования денудационного рельефа. Вот почему геоморфологи изучают не только сам рельеф, но и слагающие его породы, в частности коррелятные отложения.

Таким образом, существует тесная связь между характером и интенсивностью новейших тектонических движений, морфологией рельефа на разных стадиях его развития и коррелятными отложениями. Эта связь позволяет широко использовать геоморфологические методы при изучении неотектонических движений и геологической структуры земной коры.

Кроме новейших тектонических движений, различают так называемые современные движения, под которыми понимают движения, проявившиеся в историческое время и проявляющиеся сейчас. О существовании таких движений свидетельствуют многие историко-археологические данные, а также данные повторных нивелировок. Отмеченные в ряде случаев большие скорости этих движений (до 10 см в год и более) диктуют необходимость их учета при строительстве долговременных сооружений - каналов, нефте- и газопроводов, железных дорог и др.

При комплексном изучении современных тектонических движений в пределах горных и равнинных областей Западной Сибири применялись геолого-геофизические, геоморфологические методы. Большое внимание уделялось дешифрированию аэрокосмических материалов с целью изучения характера выраженности в современном рельефе разрывных нарушений и выявления по ним современных тектонических движений в пределах районов сопряжения Алтае- Саянской горной области с Байкальской рифтовой зоной. Дешифрирование космических снимков позволило выявить наибольшую активизацию современных тектонических движений в районах стыков разнонаправленных глубинных разломов. Эти движения как бы способствуют «выклиниванию», «выпиранию» тектонических блоковых поднятий Алтае-Саянской горной области, четко выделяемых на космических снимках. Последовательность разработки морфоструктур- но-геологического метода составления карт современных вертикальных движений с использованием материалов космической съемки следующая.

Первый этап - разработка приемов и методов, позволяющих отличить на снимках районы современных подвижек различной интенсивности.

Так, методом радиотеплолокации выполняется районирование по мощности охвата слоев земной коры тектоническими движениями, которое станет индикатором глубинности проникновения современных процессов.

По данным цветной инфракрасной съемки (ИК-съемки) и спектральному излучению, т. е. по температурному показателю, можно определить интенсивность тектонических подвижек.

Цветные многозональные снимки позволяют выявить разнообразие отложений, а по ним различную степень активности современных процессов. В качестве индикаторов поднятий и опусканий следует использовать рельеф земной поверхности, гидрографическую сеть, растительность, почвы и другие показатели. Так, выделение зон современных тектонических подвижек осуществляется по прямым признакам (структура рисунка фотоизображения и геометрические очертания зон) и косвенным (рельеф, литолого-петрографические свойства пород, ландшафты). Замечено, что зоны повышенных поднятий отличаются более темным тоном изображения, чем области опусканий. Этот эффект связывают с наличием в зонах поднятия микрорасчленений в рельефе. Последние дают больше теней, поэтому и на космических снимках разрозненные отдельные тени создают общее потемнение зоны поднятия. Различная насыщенность слоев земной поверхности водой, различная плотность пород, обладающих разной тепловой интенсивностью, также отражаются фотоаномалиями изображений на снимке и могут быть использованы в качестве индикаторов зон поднятия и опускания.

На снимках ИК-съемки линеаменты изображающиеся светлыми (теплыми) линиями, указывают на интенсивность теплообмена и активность тектонических движений по разлому в настоящее время. Более древние, залеченные разломы, выраженные в рельефе развитием гидросети и подчеркнутые интенсивностью растительного покрова, создающего тени, отражаются темными (холодными) линиями, указывающими на понижение температуры в этих зонах.

Второй этап - дешифрирование космических снимков для изучения современных движений земной коры исследуемого района - включает сопоставление результатов дешифрирования различных изображений между собой. Совместное использование геодезических материалов и данных дешифрирования космических снимков существенно повысит полноту и надежность составляемых карт, позволит достоверно зафиксировать зоны разломов, активных на современном этапе развития. Особое внимание при структурно-геоморфологическом дешифрировании космических материалов следует уделять активным зонам проявления современных тектонических движений, для чего требуется периодическое поступление информации, которую необходимо учитывать при выявлении сейсмически опасных районов.

Как известно, на сейсмотектонические особенности Алтае- Саянской горной области большое влияние оказывает близость сейсмически активной Байкальской внутриконтинентальной рифтовой зоны, о чем свидетельствует активное проявление новейших тектонических движений в районах распространения глубинных разломов. Излияние четвертичных базальтов, землетрясения, перестройка древних структурных планов указывают на продолжение горообразовательных процессов, изучение которых требует привлечения геолого-геофизических материалов при дешифрировании космических снимков.

Зоны глубинных разломов являются долгоживущими. Они зало- жились еще в начальные этапы геосинклинального развития. Большинство разломов сохраняют свою подвижность и в кайнозое, поэтому они хорошо выражены в современном рельефе как зоны проявления неотек- тонических и современных глыбовых поднятий и как зоны, вдоль которых формируются современные межгорные впадины. На космических снимках отчетливо различаются морфологически зоны глубинных разломов, отличающиеся по тектоническому положению, длительности развития, сложности проявления тектонических движений.

Существует несколько классификаций тектонических движений. Согласно одной из них эти движения можно подразделить на два типа: вертикальные и горизонтальные. В первом типе движений напряжения передаются в направлении, близком к радиусу Земли, во втором — по касательной к поверхности оболочек земной коры. Очень часто эти движения бывают взаимосвязаны или один тип движений порождает другой.

В разные периоды развития Земли направленность вертикальных движений может быть различной, но результирующая их составляющих направлена либо вниз, либо вверх. Движения, направленные вниз и ведущие к опусканию земной коры, именуются нисходящими, или отрицательными; движения, направленные вверх и ведущие к подъему, — восходящими, или положительными. Опускание земной коры влечет за собой перемещение береговой линии в сторону суши - трансгрессию, или наступление моря. При поднятии, когда море отступает, говорят о его регрессии.

Исходя из места проявления тектонические движения подразделяют на поверхностные, коровые и глубинные. Существует также деление тектонических движений на колебательные и дислокационные.

Колебательные тектонические движения

Колебательные, или эпейрогенические, тектонические движения (от греч. эпейрогенез — рождение материков) являются преимущественно вертикальными, обще коровы ми или глубинными. Их проявление не сопровождается резким изменением первоначального залегания горных пород. На поверхности Земли нет участков, которые бы не испытывали этого типа тектонических движений. Скорость и знак (поднятие-опускание) колебательных движений меняются и в пространстве, и во времени. В их последовательности наблюдается цикличность с интервалами от многих миллионов лет до нескольких столетий.

Колебательные движения неогена и четвертичного периода получили название новейших, или неотектонических. Амплитуда неотектонических движений может быть достаточно большой, например, в горах Тянь-Шаня она составила 12-15 км. На равнинах амплитуда неотектонических движений намного меньше, но и здесь многие формы рельефа — возвышенности и низменности, положение водоразделов и речных долин — связаны с неотектоникой.

Новейшая тектоника проявляется и в настоящее время. Скорость современных тектонических движений измеряется миллиметрами и, реже, первыми сантиметрами (в горах). Например, на Русской равнине максимальные скорости поднятия — до 10 мм в год — установлены для Донбасса и северо-востока Приднепровской возвышенности, а максимальные опускания — до 11,8 мм в год — для Печорской низменности.

Устойчивые опускания за историческое время свойственны территории Нидерландов, где человек уже много столетий борется с наступающими водами Северного моря путем создания дамб. Почти половину этой страны занимают польдеры — возделанные низменные равнины, лежащие ниже уровня Северного моря, остановленного дамбами.

Дислокационные тектонические движения

К дислокационным движениям (от лат. дислокатиос - смещение) относятся тектонические движения различной направленности, в основном внутрикоровые, сопровождающиеся тектоническими нарушениями (деформациями), т. е. изменениями первичного залегания горных пород.

Выделяют следующие виды тектонических деформаций (рис. 1):

  • деформации крупных прогибов и поднятий (вызваны радиальными движениями и выражаются в пологих поднятиях и прогибах земной коры, чаще всего большого радиуса);
  • складчатые деформации (образуются вследствие горизонтальных движений, которые не нарушают сплошности слоев, а лишь изгибают их; выражаются в виде длинных или широких, иногда коротких, быстро затухающих складок);
  • разрывные деформации (характеризуются образованием разрывов в земной коре и перемещением отдельных участков вдоль трещин).

Рис. 1. Виды тектонических деформаций: а-в — горные породы

Складки образуются в породах, обладающих некоторой пластичностью.

Простейший вид складок — это антиклиналь — выпуклая складка, в ядре которой залегают наиболее древние породы — и синклиналь — вогнутая складка с молодым ядром.

В земной коре антиклинали всегда переходят в синклинали, и поэтому эти складки всегда имеют общее крыло. В этом крыле все слои примерно одинаково наклонены к горизонту. Это моноклинальное окончание складок.

Разлом земной коры происходит в том случае, если породы потеряли пластичность (приобрели жесткость) и части слоев смешаются по плоскости разлома. При смещении вниз образуется сброс, вверх - взброс , при смешении под очень малым углом наклона к горизонту - поддвиг и надвиг. В потерявших пластичность жестких породах тектонические движения создают разрывные структуры, простейшими из которых являются горсты и грабены.

Складчатые структуры после потери пластичности слагающими их горными породами могут быть разорваны сбросами (взбросами). В результате в земной коре возникают антиклинальные и синклинальные нарушенные структуры.

В отличие от колебательных движений дислокационные движения не являются повсеместными. Они характерны для геосинклинальных областей и слабо представлены или совсем отсутствуют на платформах.

Геосинклинальные области и платформы — главнейшие тектонические структуры, находящие отчетливое выражение в современном рельефе.

Тектонические структуры — закономерно повторяющиеся в земной коре формы залегания горных пород.

Геосинклинали — подвижные линейно вытянутые области земной коры, характеризующиеся разнонаправленными тектоническими движениями высокой интенсивности, энергичными явлениями магматизма, включая вулканизм, частыми и сильными землетрясениями.

На ранней стадии развития в них наблюдаются общее погружение и накопление мощных толщ горных пород. На средней стадии , когда в геосинклиналях накапливается толща осадочно-вулканических пород мощностью 8-15 км, процессы погружения сменяются постепенным поднятием, осадочные породы подвергаются складкообразованию, а на больших глубинах — метаморфизации, по трещинам и разрывам, пронизывающим их, внедряется и застывает магма. В позднюю стадию развития на месте геосинклинали под влиянием общего поднятия поверхности возникают высокие складчатые горы, увенчанные активными вулканами; впадины заполняются континентальными отложениями, мощность которых может достигать 10 км и более.

Тектонические движения, ведущие к образованию гор, называются орогеническими (горообразовательными), а процесс горообразования - орогенезом. На протяжении геологической истории Земли наблюдался ряд эпох интенсивного складчатого горообразования (табл. 9, 10). Их называют орогеническими фазами или эпохами горообразования. Наиболее древние из них относятся к докембрийскому времени, затем следуют байкальская (конец протерозоя — начало кембрия), каледонская (кембрий, ордовик, силур, начало девона), герцинская (карбон, пермь, триас), мезозойская, альпийская (конец мезозоя — кайнозой).

Таблица 9. Распределение геоструктур различного возраста по материкам и частям света

Геоструктуры

Материки и части с пета

Северная Америка

Южная Америка

Австралия

Антарктида

Кайнозойские

Мезозойские

Герцинские

Каледонские

Байкальские

Добайкальские

Таблица 10. Типы геоструктур и их отражение в рельефе

Типы геоструктур

Формы рельефа

Мегантиклинории, антиклинории

Высокие глыбово-складчатые, иногда с альпийскими формами рельефа и вулканами, реже средние складчато-глыбовые горы

Предгорные и межгорные прогибы

незаполненные

Низкие равнины

заполненные и приподнятые

Высокие равнины, плато, плоскогорья

Срединные массивы

опущенные

Низкие равнины, впадины внутренних морей

приподнятые

Плато, плоскогорья, нагорья

Выходы на поверхность складчатого основания

Низкие, реже средние складчато-глыбовые горы с выровненными вершинами и нередко крутыми тектоническими склонами

приподнятые части

Гряды, плато, плоскогорья

опущенные части

Низкие равнины, озерные котловины, прибрежные части морей

с антеклизами

Возвышенности, плато, низкие складчато-глыбовые горы

с синеклизами

Низкие равнины, прибрежные части морей

Самые древние горные системы, существующие сейчас на Земле, сформированы в каледонскую эпоху складчатости.

С прекращением процессов поднятия высокие горы медленно, но неуклонно разрушаются, пока на их месте не образуется холмистая равнина. Гсосинклинальный цикл достаточно длителен. Он не укладывается даже в рамки одного геологического периода.

Пройдя геосинклинальный цикл развития, земная кора утолщается, становится устойчивой и жесткой, не способной к новому складкообразованию. Геосинклиналь переходит в иной качественный блок земной коры — платформу.

ТЕКТОНИЧЕСКИЕ ДВИЖЕНИЯ (а. tectonic movements, diastrophic movements, diastrophism; н. Tektonische Bewegung; ф. mouvements tectoniques, mouvements geologiques, diastrophisme terrestre; и. movimientos tectoniсоs) — движения земной коры , вызванные процессами, происходящими в её . Основной причиной тектонических движений считаются конвективные течения в мантии, возбуждаемые теплом распада естественно-радиоактивных элементов и гравитационной дифференциацией её вещества (относительная их роль является спорной), в сочетании с действием силы тяжести и стремлением литосферы к гравитационному равновесию по отношению к поверхности астеносферы (см. ). Над восходящими ветвями конвективных течений литосфера испытывает подъём и растяжение, приводящее к раздвигу плит в возникающих рифтовых зонах. С удалением от срединно-океанических рифтов литосфера уплотняется, тяжелеет, поверхность её опускается, что объясняет увеличение глубины океана , и в конечном счёте погружается в глубоководных желобах. В континентальных рифтах затухание восходящих потоков разогретой мантии ведёт к охлаждению и погружению литосферы с образованием бассейнов, заполняемых осадками. Под нагрузкой осадков основание бассейнов испытывает дополнительное погружение. Аналогичный процесс происходит на окраинах континентов , когда континентальный рифтогенез переходит в океанский (см. ). В зонах схождения и столкновения плит кора и литосфера испытывают сжатие, мощность коры возрастает и, в силу стремления её к изостатическому равновесию, начинаются интенсивные восходящие движения, ведущие к горообразованию. Дополнительный фактор, вызывающий поднятие отдельных участков земной коры, — инверсия плотностей на разных уровнях в коре, выражающаяся в залегании пород меньшей плотности под породами большей плотности. Такие условия возникают в случае залегания в осадочном слое коры соленосных толщ или в случае достижения породами на глубине уровня регионального метаморфизма амфиболитовой фации и гранитизации , ведущих к разуплотнению пород. В первом случае образуются соляные купола (см. ), во втором — гранитогнейсовые купола (см. ). Тектонические движения могут стимулироваться также фазовыми превращениями в мантии Земли , периодическими изменениями скорости вращения Земли и твёрдыми приливами, вызываемыми притяжением Луны и Солнца; последние могли иметь существенное значение на ранних стадиях развития Земли.

Современные тектонические движения изучаются геодезическими методами (повторное нивелирование, триангуляция , трилатерация , лазерные измерения, методы космической геодезии), показывающими, что они происходят непрерывно и повсеместно. Скорость вертикальных движений составляет от долей до первых десятков миллиметров, горизонтальных на порядок выше — от долей до первых десятков сантиметров в год. Новейшие движения изучаются преимущественно геоморфологическими методами, поскольку именно они ответственны за создание основных черт современного рельефа земной поверхности. В то же время в областях нисходящих вертикальных движений, в пределах внутренних и краевых морей и подводных окраин континентов, об амплитуде скорости этих движений можно судить по мощности (толщине слоя) накапливающихся осадочных отложений. При изучении доолигоценовых вертикальных, а отчасти и горизонтальных движений метод анализа распределения фаций и мощностей осадочных и вулканогенных отложений становится ведущим, поскольку доолигоценовый рельеф сохраняется лишь на ограниченных участках, обычно в погребённом виде. Большое значение для восстановления крупномасштабных перемещений литосферных плит имеют данные палеомагнитных исследований, а для последних 180-160 млн. лет (времени существования современных океанов) — картирование линейных магнитных аномалий, отвечающих изохронам океанского ложа (расстояние между ними даёт возможность рассчитать скорость расширения океана).