Элементы и объект технической системы. Механизм образования системных свойств. Критерии развития технических объектов

Техническим объектом называют созданные человеком реально существующие устройство, способ, материал, предназначенные для удовлетворения определенных потребностей.

Все технические объекты состоят из элементов, представляющих собой неделимые части целого. Если функционирование одного элемента технического объекта влияет на функционирование другого элемента, то такие технические объекты (в отличие от агрегатов) принято называть техническими системами (ТС).

Техническая система – это совокупность взаимосвязанных элементов технического объекта, объединенных для выполнения определенной функции, обладающая при этом свойствами, не сводящимися к сумме свойств отдельных элементов.

Типы технических систем.

Элементы, образующие техническую систему, только относительно неделимые части целого. Например, деревообрабатывающий станок включает много сложных частей: станину, механизмы главного движения, подачи, базирования, регулирования, настройки, управления и приводы. В то же время в системе ″деревообрабатывающий цех″ с большим количеством разнообразных станков отдельный станок можно считать элементом, т. е. неделимым целым. В связи с этим по отношению к системе ″станок″ ″деревообрабатывающий цех″ называют надсистемой , а выше перечисленные части станка – подсистемами. Для любой системы можно выделить подсистему и надсистему. Для системы ″механизм главного движения станка″ части корпус подшипников, вал, режущий инструмент будут подсистемами, а станок – надсистемой. Некоторые системы выполняют по отношению к данной системе противоположные функции. Их называют антисистемами. Например, надводный корабль и подводная лодка, двигатель и тормоз – это объекты, функционирующие наоборот.

Идеал технических систем.

Технические системы развиваются по закону прогрессивной эволюции. Это значит, что в системе каждого поколения улучшаются критерии развития до приближения их к глобальному экстремуму. Каждая техническая система стремится к своему идеалу, когда ее параметры веса, объема, площади и т.п. приближаются к экстремальным. Идеальная техническая система та, которой как бы нет, а функции ее выполняются в полном объеме сами по себе. Закономерность идеальности ценна тем, что она подсказывает, в каком направлении должна развиваться эффективная техническая система. Принято считать систему идеальной, если она имеет одно или несколько из следующих свойств:

1. Размеры системы приближаются или совпадают с размерами обрабатываемого или транспортируемого объекта, а масса системы намного меньше массы объекта. Например, в древности сыпучие материалы хранили и транспортировали в глиняных сосудах, сейчас в мешках.

2. Масса и размеры технической системы или ее главных функциональных элементов должны приближаться к нулю, а в предельном случае равны нулю, когда устройства нет, а необходимая функция выполняется. Например, деление древесины на части выполняется пилой. Но вот появились лазерные установки для этих целей. Режущего инструмента как бы нет, но функции его выполняются.

3. Время обработки объекта стремится или равно нулю (результат получается сразу или мгновенно). Основной путь реализации этого свойства – интенсификация процессов, сокращение числа операций, совмещение их в пространстве и во времени.

4. КПД идеальной системы стремится к единице, а расход энергии – к нулю.

5. Все части идеальной системы выполняют без простоев полезную работу в полной мере своих расчетных возможностей.

6. Система функционирует бесконечно длительное время без простоев и ремонта.

7. Система функционирует без участия человека.

8. Идеальная система не оказывает вредного влияния на человека и окружающую среду

Техническая система – это искусственно созданные объекты, предназначенные для удовлетворения определенной потребности, которым присущи возможность выполнения не менее одной функции, многоэлементность, иерархичность строения, множественность связей между элементами, многократность изменения состояний и многообразие потребительских качеств. К техническим системам относятся отдельные машины, аппараты, приборы, сооружения, ручные орудия, их элементы в виде узлов, блоков, агрегатов и др. сборочных единиц, а также сложные комплексы взаимосвязанных машин, аппаратов, сооружений и т.п.

Техническая система относятся к самому большому классу технических объектов. Техническая система существует в трех модусах (проявлениях): 1) как изделие производства; 2) как устройство, потенциально готовое совершить полезный эффект; 3) как процесс взаимодействия с компонентами окружающей среды (источником внешней энергии, потребителем и т.д.), в результате которого и происходит эксплуатация (функционирование) технической системы и образуется полезный эффект. 1-й модус раскрывается в предметной декомпозиции технической системы, в выявлении всех ее неделимых, условно монолитных деталей и сборочных единиц; 2-й - в функциональной декомпозиции, в выявлении одно- и многофункциональных элементов; 3-е, рабочее состояние технической системы раскрывается в генерируемых процессах (сменах состояний) и рабочих циклах, включающих взаимосвязанные процессы. Ни один из функциональных элементов не может быть воспроизведен непосредственно, а существует благодаря деталям и сборочным единицам, которые по отношению к ним выступают в качестве предметов-носителей. Устройства, непосредственно участвующие в создании полезного эффекта технической системы, ответственны за степень совершенства рабочего процесса и ресурс работы. Для обеспечения ресурса часто используются спец. элементы, демпфирующие колебания, устройства охлаждения, разъемы, причем последние, повышая технологичность конструкции технической системы, требуют устройства крепления деталей, состояние которого во время эксплуатации технической системы сказывается на ее надежности.

При всем разнообразии технической системы смысловая нагрузка любого функционального элемента состоит в том, чтобы изменять или сохранять движение связанного с элементом объекта; изменять пространственные характеристики и время существования технической системы, а также изменять энергию как меру той или иной формы движения. Строение технической системы и параметры среды, с которой она взаимодействует, предопределяют все параметры и показатели функционирования технической системы, проявления ее состояния, характеристики и качества.

Функционирование технической системы раскрывается через средства (процессы) достижения полезного эффекта и управления этими процессами. Создание полезного эффекта обусловлено составом и порядком действия основных функциональных элементов, от которых зависит рабочий цикл технической системы; на фактический результат влияют затраты энергии от внешнего источника и свойства др. компонентов среды. Под управлением происходящими в технической системе процессами подразумевается преднамеренное изменение или сохранение характера и интенсивности с компонентами среды и поддержание параметров внешнего состояния всех элементов технической системы в пределах, обеспечивающих безопасность людей и сохранение материальных ценностей. При полном раскрытии характеристик технической системы речь идет как о связях между входными и выходными параметрами функционирования (напр., связь тяги и расхода топлива авиационного двигателя и условий полета самолета), так и о показателях, позволяющих отличить анализируемую техническую систему от других, о признаках принадлежности технической системы к определенному типу как категории, объединяющей технической системой одного назначения с одинаковым принципом действия, и о признаках отличий в строении. Об уровне технической системы свидетельствуют максимально достижимые значения ее потребительских качеств (выходных параметров).


Техническая система -- это целостная совокупность конечного числа взаимосвязанных материальных объектов, имеющая последовательно взаимодействующие сенсорную и исполнительную функциональные части, модель их предопределенного поведения в пространстве равновесных устойчивых состояний и способность, при нахождении хотя бы в одном из них (целевом состоянии), самостоятельно выполнять в штатных условиях предусмотренные её конструкцией потребительские функции

Смысл системного подхода при исследовании процессов развития в технике заключается в рассмотрении любого технического объекта как системы взаимосвязанных элементов, образующих единое целое. Линия развития представляет собой совокупность нескольких узловых точек - технических систем, резко отличающихся друг от друга (если их сравнивать только между собой); между узловыми точками лежит множество промежуточных технических решений - технических систем с небольшими изменениями по сравнению с предшествующим шагом развития. Системы как бы "перетекают" одна в другую, медленно эволюционируя, отодвигаясь все дальше от исходной системы, преображаясь иногда до неузнаваемости. Мелкие изменения накапливаются и становятся причиной крупных качественных преобразований. Чтобы познать эти закономерности, необходимо определить, что такое техническая система, из каких элементов она состоит, как возникают и функционируют связи между частями, каковы последствия от действия внешних и внутренних факторов, и т.д. Несмотря на огромное разнообразие, технические системы обладают рядом общих свойств, признаков и структурных особенностей, что позволяет считать их единой группой объектов.

Каковы основные признаки технических систем? К ним можно отнести следующие:

системы состоят из частей, элементов, то есть имеют структуру,

системы созданы для каких-то целей, то есть выполняют полезные функции;

элементы (части) системы имеют связи друг с другом, соединены определенным образом, организованы в пространстве и времени;

каждая система в целом обладает каким-то особым качеством, неравным простой сумме свойств составляющих ее элементов, иначе пропадает смысл в создании системы (цельной, функционирующей, организованной).

Поясним это простым примером. Допустим, необходимо составить фоторобот преступника. Перед свидетелем поставлена четкая цель: составить систему (фотопортрет) из отдельных частей (элементов), система предназначается для выполнения весьма полезной функции. Естественно, что части будущей системы не соединяются как попало, они должны дополнять друг друга. Поэтому идет длительный процесс подбора элементов таким образом, чтобы каждый элемент, входящий в систему, дополнял предыдущий, а вместе они увеличивали бы полезную функцию системы, то есть усиливали бы похожесть портрета на оригинал. И вдруг, в какой-то момент, происходит чудо - качественный скачок! - совпадение фоторобота с обликом преступника. Здесь элементы организованы в пространстве строго определенным образом (невозможно переставить их), взаимосвязаны, вместе дают новое качество. Даже если свидетель абсолютно точно идентифицирует по отдельности глаза, нос и т.д. с фотомоделями, то эта сумма "кусочков лица" (каждый из которых правильный!) ничего не дает - это будет простая сумма свойств элементов. Только функционально точно соединенные элементы дают главное качество системы (и оправдывают ее существование). Точно так же набор букв (например, А, Л, К, Е), соединившись только определенным образом дает новое качество (например, ЕЛКА).

ТЕХНИЧЕСКАЯ СИСТЕМА - это совокупность упорядоченно взаимодействующих элементов, обладающая свойствами, не сводящимися к свойствам отдельных элементов, и предназначенная для выполнения определенных полезных функций.

Таким образом, техническая система имеет 4 главных (фундаментальных) признака:

функциональность,

целостность (структура),

организация,

системное качество.

Отсутствие хотя бы одного признака не позволяет считать объект технической системой.

Функционирование это изменение свойств, характеристик и качеств системы в пространстве и времени.

Функция - это способность ТС проявлять свое свойство (качество, полезность) при определенных условиях и преобразовывать предмет труда (изделие) в требуемую форму или величину.

Совокупность (целостность) элементов и свойств неотъемлемый признак системы. Соединение элементов в единое целое нужно для получения (образования, синтеза) полезной функции, т.е. для достижения поставленной цели.

Если определение функции (цели) системы в какой-то мере зависит от человека, то структура - наиболее объективный признак системы, она зависит только от вида и материального состава используемых в ТС элементов, а также от общих законов мира, диктующих определенные способы соединения, виды связи и режимы функционирования элементов в структуре. В этом смысле структура это способ взаимного соединения элементов в системе. Составление структуры - это программирование системы, задание поведения ТС с целью получения в результате полезной функции. Требуемая функция и выбранный физический принцип ее осуществления однозначно задают структуру.

Структура - это совокупность элементов и связей между ними, которые определяются физическим принципом осуществления требуемой полезной функции.

"Формула" системы:

Иерархический принцип организации структуры возможен только в многоуровневых системах (это большой класс современных технических систем) и заключается в упорядочении взаимодействий между уровнями в порядке от высшего к нижнему. Каждый уровень выступает как управляющий по отношению ко всем нижележащим и как управляемый, подчиненный, по отношению к вышележащему. Каждый уровень специализируется также на выполнении определенной функции (ГПФ уровня). Абсолютно жестких иерархий не бывает, часть систем нижних уровней обладает меньшей или большей автономией по отношению к вышележащим уровням. В пределах уровня отношения элементов равны между собой, взаимно дополняют друг друга, им присущи черты самоорганизации (закладываются при формировании структуры).

"Под идеальной системой понимается такая система, затраты на получение полезного эффекта в которой равны нулю. При этом под затратами понимается самый широкий круг понятий - энергия, материалы, занимаемое пространство... Понятие идеальной технической системы было выдвинуто Г.С. Альтшуллером. Образ идеальной системы позволяет сконцентрировать внимание разработчика только на ожидаемом полезном эффекте, лучше осознать, что требуется потребителю. Оценим, насколько эффективным может быть использование такого подхода к определению цели в практической деятельности.

Функциональный состав и свойства объектов таксона «технические системы». техническая система изобретательский творческий инженерный

В каждой ТС существует функциональная часть -- объект управления (ОУ). Функции ОУ в ТС заключаются в восприятии управляющих воздействий (УВ) и в изменении в соответствии с ними своего состояния. ОУ в ТС не выполняет функций принятия решений, то есть не формирует и не выбирает альтернативы своего поведения, а только реагирует на внешние (управляющие и возмущающие) воздействия, изменяя свои состояния предопределенным его конструкцией образом.

В объекте управления всегда могут быть выделены две функциональные части -- сенсорная и исполнительная.

Сенсорная часть образована совокупностью технических устройств, непосредственной причиной изменения состояний каждого из которых является соответствующие ему и предназначенные для этого управляющие воздействия. Примеры сенсорных устройств: выключатели, переключатели, задвижки, заслонки, датчики и другие подобные им по функциональному назначению устройства управления техническими системами.

Исполнительная часть образована совокупностью материальных объектов, все или отдельные комбинации состояний которых рассматриваются в качестве целевых состояний технической системы, в которых она способна самостоятельно выполнять предусмотренные её конструкцией потребительские функции. Непосредственной причиной изменения состояний исполнительной части ТС (ОУ в ТС) являются изменения состояний её сенсорной части.

Классификационные признаки объектов таксона «технические системы»:

представляют собой целостную совокупность конечного множества со взаимодействующих материальных объектов

имеют условия штатной эксплуатации, предусмотренные их конструкцией

имеют модели управляемого предопределенного причинно-следственного поведения в пространстве достижимых равновесных устойчивых состояний

имеют целевые состояния, соответствующие состояниям исполнительной части объекта управления в ТС

имеют способность, находясь в целевых состояниях, самостоятельно выполнять потребительские функции

В природе и обществе вес системно. Любая машина, живой организм, общество в целом или его отдельная часть — предприятие. фирма, офис, учреждение — представляют собой различные системы: технические, биологические, социальные, в том числе социально-экономические. Под системой обычно понимают комплекс взаимосвязанных элементов, образующих определенную целостность. Комплекс этот составляет особое единство со средой и является элементом системы более высокого порядка. Элементы любой системы, в свою очередь, выступают как системы более низкого порядка. Элементы в реальных системах — это фактические объекты, части, элементы и компоненты.

Многообразие технических, биологических, социальных, в том числе социально-экономических, систем может быть упорядочено, если их классифицировать, т е. разделить, а затем объединить по определенным признакам. Из множества способов классификации наиболее распространенной считают классификацию, приведенную на рис. 1.1.

По происхождению различают системы: а) естественные (природные), например: звездные образования, солнечная система, планеты, материки, океаны; б) искусственные, т е. созданные трудом человека (предприятия, фирмы, города, машины).

Искусственные системы могут быть, в свою очередь, по специфике содержания разделены на системы: технические, технологические, информационные, социальные, экономические, иные. Из числа последних выделяются такие системы, как отрасль, регион, предприятие, цех. участок и т.п.

По объективности существования системы могут быть: а) материальными (существуют объективно, т.е. независимо от сознания человека): б) идеальными («сконструированными» в сознании человека в виде гипотез, образов, представлений).

По степени связи с окружающей средой системы могут быть: а) открытыми: б) относительно обособленными: в) закрытыми: г) изолированными.

По зависимости от времени различают системы: а) статистические, параметры которых нс зависят от времени; б) динамические, параметры которых являются функцией времени.

По обусловленности действия системы бывают: а) детерминированными; б) вероятностными. В первых системах одной и той же причине всегда соответствует четкий, строгий, однозначный результат. В системах вероятностного типа одной и той же причине в одних и тех условиях может соответствовать один из нескольких возможных результатов. Пример вероятностной системы — цеховой персонал, который является на работу каждый раз в различном составе.

По месту в иерархии систем принято различать: а) суперсистемы; б) большие системы; в) подсистемы; г) элементы.

Среди систем, созданных природой, также выделяют: а) неживые; б) живые, в том числе человек. Системы, созданные человеком (антропогенные), могут быть подразделены на технические. человеко-машинные, социально-экономические.

К техническим системам относят системы, которые созданы человеком и наделены определенной функций или целью (например. здания, машины); к человеко-машинным — системы, в которых одним из элементов является человек, причем цель человек}’ ставит техническая система. Человека в технических системах называют оператором, так как он выполняет операции, которые требует от него обслуживание машины. Летчик в самолете, оператор за пультом ЭВМ. водитель в машине — вес это человеко-машинные системы. Социально-экономическими считаются системы, где человек ставит задачи (выдвигает цели) не только перед техническими системами, но и перед людьми, входящими в эти системы в качестве элементов. Отметим, что социально-экономические системы, могут содержать и технические, и человеко-машинные элементы.

С точки зрения науки об управлении социально-экономические системы (СЭС) представляют собой наиболее сложные объекты. Несмотря на богатый практический опыт управления такими системами, их теоретический аппарат находится на этапе становления и часто просто заимствуется из теории управления техническими системами.

Разнообразие форм не препятствует техническим, биологическим и социально-экономическим системам иметь ряд общих черт и закономерностей: они динамичны, характеризуются причинной связью отдельных элементов, наличием управляющей и управляемой подсистем и управляющего параметра, усилительной способностью (способностью существенно изменяться под влиянием самых малых воздействий), способностью хранить, передавать п преобразовывать информацию, обратной связью элементов, общей системой процессов управления и др.

Всем классам систем характерно наличие целого ряда общих свойств, среди которых уместно выделить следующие.

Свойство целостности . Все системы, будучи как обособленным целым делятся на элементы, существующие лишь в силу существования целого. В целостной системе элементы функционируют совместно, в совокупности обеспечивая процесс функционирования системы как целого. Первичность целого — основной постулат теории систем.

Свойство неаддитивности . Означает принципиальную не-сводимость свойств системы к сумме свойств составляющих ее элементов и невыводимость свойств целого из свойств компонентов. Совокупное функционирование разнородных взаимосвязанных элементов порождает качественно новые функциональные свойства целого, не имеющего аналогов в свойствах его элементов.

Свойство синергичности . Предполагает, что однонаправленность действий элементов усиливает эффективность функционирования системы, и наоборот. Другими словами, для любой системы имеется такой набор элементов, при котором ее потенциал всегда будет.либо существенно больше простой суммы потенциалов входящих в нее элементов (люди, техника, технология, структура и т.д.). либо значительно меньше. Эффект синергии элементов получается при отлаженном взаимодействии системы с внешней средой и элементов внутри системы.

Свойство эмерджентности . Означает, что цели элементов системы не всегда совпадают с целями системы. Например, отмечается различная ориентация деятельности работников инновационных служб предприятия и специалистов маркетинга.

Свойство взаимозависимости и взаимодействия системы и внешней среды . Система реагирует на воздействие последней, развивается под этим воздействием, сохраняя качественную определенность и свойства, которые обеспечивают ее относительную устойчивость и адаптивность функционирования.

Свойства непрерывности функционирования и эволюции . Система существует, пока функционируют все процессы. Взаимодействие элементов определяет характер функционирования системы как целого, и наоборот. Одновременно система обладает способностью к развитию (саморазвитию).

Свойство приоритета интересов системы более высокого уровня перед интересами ее элементов . Отдельный работник социально-экономической системы не может ставить свои интересы выше интересов данной системы.

Понятие технических систем, законы строения и развития технических систем

Как отмечалось в параграфе 1.2, понятия «технология» и «техника» не тождественны: техника является только одним из средств реализации технологии. Следуя той же логике, необходимо различать технологические и технические системы, а, значит, и знать отличия закономерностей их формирования и развития.

Техническая система включает в себя пространственную совокупность взаимосвязанных элементов, образующих нечто целое, предназначенное для выполнения одной или нескольких


функций, и необходимых или непосредственно человеку, или другим техническим устройствам.

Очевидно, что техническая система является материальной системой. Ее можно изучать, совершенствовать, целенаправленно видоизменяя составные элементы. Важнейшими составными элементами любой технической системы являются: рабочий орган (исполнительный механизм), источник энергии (привод), трансмиссия (передаточный механизм) и орган управления.

Очевидно также, что выполняющие одну и ту же функцию технические системы могут, тем не менее, отличаться друг от друга принципом своего действия, а, значит, и составляющими элементами.

Идея потребности в технической системе реализуется через принцип действия, обеспечивающий возможность ее функционирования с помощью соответствующего рабочего органа - первичного элемента любой системы, под который подбираются все остальные элементы. В свою очередь подходящий принцип действия выбирается из известных законов природы.

Таким образом, целенаправленное создание новой технической системы проходит следующие этапы: потребность человека (общества) - возникновение идеи - поиск соответствующих знаний - определение принципа действия системы - выбор рабочего органа - подбор остальных элементов системы.

Система будет работоспособной, если минимально работоспособными будут все четыре органа. Повышение работоспособности (функциональности) системы происходит за счет совершенствования всех ее органов. Это совершенствование происходит неравномерно - то один, то другой элемент в своем развитии вырывается вперед и вынуждает совершенствоваться и остальные. Но наступает период, когда из резервов всех элементов выжато все возможное и дальше улучшать нечего и некуда - система исчерпала свои возможности. Она или умирает (например, гусиное перо в качестве пишущего средства, факел), или останавливается в своем развитии (карандаш, лампа накаливания), или ее рабочий орган входит в новую систему (грифель обычного карандаша - в цанговый карандаш).

Таким образом, историю развития технической системы можно представить в виде схемы, состоящей из длинной цепочки сменяющих друг друга систем с различными принципами действия, подсистемами, надсистемами, связями между ними. Такую схему называют «системный оператор», так как она позволяет ориентироваться во всей генетике системы, или «схемой многоэкранного мышления».


Чем больше «экранов» человеческий разум может увидеть, чем больше связей установить и учесть, тем легче принять объективность законов развития технических систем.

В настоящее время сформулированы следующие законы строения и развития техники:

Законы строения:

1. Закон соответствия между функцией и структурой.

Суть данного закона состоит в том, что в правильно спроектированной технической системе каждый элемент - от сложных узлов до простых деталей имеет вполне определенную функцию (назначение) по обеспечению работы этой системы. Таким образом, у правильно спроектированных технических систем нет лишних деталей.

Использование закона максимально результативно при поиске более рациональных и эффективных конструкторско-тех-нологических решений новых технических систем.

2. Закон корреляции параметров однородного ряда техни
ческих систем.

К однородному ряду относятся такие технические системы, которые имеют одинаковые функцию, структуру, условия работы (в смысле взаимодействия с предметами труда и окружающей средой) и отличаются только значениями главного параметра (например, размера).

3. Закон симметрии технических систем.
Техническая система, испытывающая воздействие среды в

виде потоков вещества, энергии или информации, должна иметь определенный вид симметрии.

4. Закон гомологических рядов.

Закон гомологических рядов (от гр. homologos - соответственный, подобный) в наследственной изменчивости был сформулирован Н.И. Вавиловым, установившим параллелизм в изменчивости родственных групп растений. Позже было открыто, что в основе данного явления лежит гомология генов (их одинаковое молекулярное строение и сходство в порядке расположения в хромосомах) у родственных видов.

При генетическом анализе искусственных объектов их можно сравнить с объектами живой природы, каждый из которых тоже достиг очень высокого уровня развития и по-своему совершенен. Принципиальная разница между ними в том, что эволюция объектов живой природы - от простейшей амебы до сложнейших белковых организмов - происходила в естественных условиях их взаимодействия с внешней средой как борьба за выживание. И каждый этап этого совершенствования - тоже разрешение противоречия, но возникшего, например, в свя-


Зи с резким изменением температуры или исчезновением вида, который служил традиционной пищей другого, и т.д.

Таким образом, закон гомологических рядов позволяет довольно точно прогнозировать появление новых технических решений.

Законы развития:

1. Закон прогрессивной эволюции техники.

Действие закона прогрессивной эволюции в мире техники аналогично действию закона естественного отбора Дарвина в живой природе. Его суть состоит в том, что в техническом объекте с одинаковой функцией каждый переход от поколения к поколению вызван устранением возникшего главного дефекта (дефектов), связанным с улучшением какого-либо критерия (показателя) развития при наличии определенных технико-экономических условий. Если же рассматривать все переходы от поколения к поколению, т.е. всю историю конструктивной эволюции определенного класса техники, то можно наблюдать закономерности исчерпания возможностей конструктор-ско-технологических решений на трех уровнях.

На первом уровне улучшаются отдельные параметры используемого технического решения. Когда изменение параметров уже не дает существенного эффекта, осуществляются изменения на втором уровне - путем перехода к более эффективному техническому решению, но без изменения физического принципа действия. Циклы на первом и втором уровнях совершаются до тех пор, пока в рамках используемого принципа действия не исчерпываются возможные новые технические решения, обеспечивающие улучшение интересующих показателей. После этого происходит революционное изменение на третьем уровне - переход на новый, более прогрессивный принцип действия и т.д.

В законе прогрессивной эволюции исчерпание функциональности и эффективности конструкции не просто формальность: пока не будут достигнуты оптимальные параметры, не может произойти переход к новому техническому решению или к новому принципу действия.

Закономерность исчерпания действует лишь при определенных условиях: если при наличии необходимого научно-технического потенциала переход к новому техническому решению или физическому принципу действия обеспечивает получение дополнительной эффективности, превышающей затраты, то может произойти скачок к новому техническому решению или физическому принципу действия без исчерпания возможностей предыдущих.


2. Закон стадийного развития технических систем. Любая техническая система в своем развитии проходит четыре основные стадии:

1) техническая система реализует только функцию обработки предмета труда (технологическая функция);

2) наряду с технологической, техническая система реализует функцию обеспечения процесса энергией (энергетическая функция);

3) техническая система помимо технологической и энергетической реализует функцию управления процессом;

4) техническая система помимо всех предыдущих функций реализует еще функцию планирования, исключая человека из технологического процесса.

Переход к очередной стадии происходит при исчерпании природных возможностей человека в улучшении показателей выполнения фундаментальной функции - удовлетворение потребностей общества. Пример стадийного развития технических систем приведен в табл. 5.1.

Таблица 5.1

Стадийное развитие технических систем

Основная функция технической системы Технологическая функция (ТФ) ТФ + энергетическая функция (ЭФ) ТФ + ЭФ + + функция управления (ФУ) ТФ + ЭФ + + ФУ + функция планирования
Размалывание зерна Каменные жернова с ручным приводом Каменные жернова с приводом от водяного колеса или паровой машины Мельница с системой автоматического управления (САУ) Мельница с САУ, получающая задание от автоматизированной системы планирования работ
Передвижение по водной поверхности Корабль с веслами (мускульный привод) Корабль с парусом (перемещение энергией ветра) Пароход (перемещение энергией пара с возможностью управления) Современный корабль с компьютеризированной системой навигации

3. Закон расширения множества потребностей-функций. При наличии нужного потенциала и социально-экономической целесообразности возникшая новая потребность удовлетворяется с помощью впервые созданных технических систем; при этом возникает новая функция, которая существует до тех пор, пока ее реализация будет обеспечивать улучшение жизни лю-



4. Закон возрастания разнообразия технических систем.

Разнообразие технических систем в мире, стране или отрасли, а также отдельного класса технических систем, имеющих одинаковую функцию, в связи с необходимостью наиболее полного удовлетворения человеческих потребностей, обеспечения высоких темпов производительности труда и улучшения других критериев прогрессивного развития техники со временем монотонно и ускоренно возрастает. Число новых технических систем за промежуток времени t (N (t)) увеличивается по экспоненциальному закону

5. Закон возрастания сложности технических объектов.

Сложность технических объектов с одинаковой функцией в силу действия факторов стадийного развития техники и прогрессивной конструктивной эволюции технических систем от поколения к поколению монотонно и ускоренно возрастает.

Подводя итог вышеизложенному, сформулируем постулат теории решения изобретательских задач: технические системы развиваются по объективно существующим законам: эти законы познаваемы, их можно выявить и использовать для сознательного развития технических систем, которое происходит в общем для всех систем направлении: повышения уровня их идеальности.