Гармонические колебания. Связь амплитуды световой волны с ее интенсивностью

Интенсивность света, связь интенсивности света с амплитудой светового вектора.

Интенсивностью света называют электромагнитную энергию , проходящую в единицу времени через единицу площади поверхности, перпендикулярной направлению распространения света. Частоты видимых световых волн лежат в пределах

= (,39 4-0,75)-10 15 Гц.

Ни глаз, ни какой-либо иной приемник световой энергии не может уследить за столь частыми изменениями потока энергии, вследствие чего они регистрируют усредненный по времени поток . Поэтому правильнее определить интенсивность как модуль среднего по времени значения плотности потока энергии, переносимой световой волной. Плотность потока электромагнитной энергии определяется выражением

Поскольку световая волна- это электромагнитная волна, то складывается из энергии магнитного и электрического полей

(4.5)

где V- объем, занимаемый волновым полем.

Из уравнений Максвелла следует, что векторы напряженности электрического и магнитного полей в электромагнитной волне связаны соотношением

(4.6)

Поэтому выражение (4.5) можно записать следующим образом

Из уравнений Максвелла скорость распространения электромагнитных волн

Выделим некоторый объем волнового поля в форме параллелепипеда (рис.4.5)

Рис.4.5

Тогда , по определению интенсивности

Используя выражение (4,6) и полагая, что в прозрачной среде m=1 получим

где n- показатель преломления среды, в которой распространяется волна. Таким образом, напряженность магнитного поля Н пропорционально напряженности электрического поля Е и n:

Тогда интенсивность волны будет определяться выражением

(4.7)

(коэффициент пропорциональности равен )- Следовательно, интенсивность света пропорциональна показателю преломления среды и квадрату амплитуды вектора напряженности электрического поля световой волны. Заметим, что при рассмотрении распространения света в однородной среде можно считать, что интенсивность пропорциональна квадрату амплитуды вектора напряженности электрического поля () световой волны:

Однако в случае прохождения света через границу раздела сред выражение для интенсивности, не учитывающее множитель n, приводит к не сохранению светового потока.

Рассмотрим сферическую световую волну. Площадь сферического фронта волны , где R- радиус фронта волны. Согласно уравнению (4,4) находим интенсивность

Эти выражения показывают, что амплитуда сферической волны уменьшается пропорционально расстоянию от источника световых волн. Если R достаточно велико, т.е. источник находится очень далеко от области наблюдения, то фронт волны представляется частью сферической поверхности очень большого радиуса. Ее можно считать плоскостью. Волна, фронт волны которой представляется плоскостью, называется плоской, так как энергия волны во всех плоскостях, представляющих фронты волны в различные моменты времени остается постоянной, то амплитуда у такой волны постоянна.

.Понятие интерференции, наложение гармонических волн, условия когерентности.

Свет является электромагнитной волной. Сложение волн, распространяющихся в среде, определяется сложением соответствующих колебаний. Рассмотрим наиболее простой случай сложения электромагнитных волн (колебаний):

1) частоты их одинаковы,

В этом случае для каждой точки среды, в которой происходит сложение волн, амплитуда результирующей волны для напряженности электрического поля определяется векторной диаграммой (рис.4.6)

Из диаграммы следует, что результирующая амплитуда определится следующим образом:

где d- разность фаз слагаемых волн (колебаний).

Результат сложения волн зависит от особенностей источников света и может быть различен.

Звуковые радиопередачи стали возможными после изобретения электронных усилительных ламп.

Трудность звуковой передачи состоит в том, что для радиосвязи необходимы колебания высокой частоты, а колебания звукового диапазона являются колебаниями низкой частоты, для излучения которых невозможно построить эффективные антенны. Поэтому колебания звуковой частоты приходится тем или иным способом накладывать на колебания высокой частоты, которые уже переносят их на большие расстояния.

Управление колебаниями высокой частоты в соответствии с колебаниями низкой частоты называется модуляцией колебаний высокой частоты. Модулирование представляет собой изменение с низкой (звуковой) частотой одного из параметров высокочастотных колебаний. Колебания высокой частоты называют несущими колебаниями, поскольку они выполняют служебную роль - переносчика колебаний звуковой частоты. Несущая частота должна быть строго постоянной, т. е. стабилизированной.

При амплитудной модуляции изменяют со звуковой частотой амплитуду высокочастотных колебаний. Амплитудную модуляцию можно осуществить следующим образом. В цепь сетки лампового генератора незатухающих колебаний высокой частоты включают источник электрических колебаний звуковой частоты. Звуковые колебания возбуждают в цепи микрофона М (рис. 27.11) электрические колебания, которые через трансформатор передаются в цепь сетки электронной лампы.

Поскольку вторичная обмотка этого трансформатора не пропускает колебания высокой частоты, то параллельно к ней подключается конденсатор через который они легко проходят. В то же

время колебания низкой частоты не замыкаются через него, поскольку для них он представляет большое сопротивление. В цепь сетки включена еще батарея смещения чтобы потенциал сетки всегда оставался отрицательным по отношению к катоду.

Если нет звуковых колебаний, установка работает как генератор незатухающих высокочастотных колебаний (§ 27.3) постоянной амплитуды. Когда в цепи микрофона возникают электрические колебания (рис. 27.12, а), напряжение на сетке, продолжая изменяться с высокой частотой в такт с колебаниями в контуре начинает изменяться еще и со звуковой частотой.

Вследствие этого анодный ток лампы и амплитуда колебаний тока в контуре непрерывно изменяются в соответствии с колебаниями звуковой частоты (рис. 27.12, б), т. е. происходит модуляция колебаний высокой частоты.

Модулированные высокочастотные колебания улавливаются антенной радиоприемника, усиливаются и детектируются (рис. 27.12, в). В телефоне возникают колебания звуковой частоты (рис. 27.12, г),

и мембрана телефона или громкоговорителя воспроизводит переданные звуковые колебания.

На принципиальных схемах радиотелефонной связи для звуковых передач, изображенных на рис. 27.13, показаны основные блоки, из которых состоят передатчик и приемник. Первый блок передатчика - генератор незатухающих колебаний Г, второй - модулятор М, в котором происходит модуляция колебаний с помощью микрофона третий - усилитель высокочастотных колебаний и четвертый - передающая антенна

Как мы скоро увидим, детектирование АМ-сигнала является просто генерацией напряжения, пропорционального мгновенной амплитуде модулируемого ВЧ-сигнала. Во многих других применениях (радиоастрономия, лабораторные ВЧ-измерения, «нивелировка» сигналов генератора, проектирование фильтров, наблюдения и т.д.), очень важно бывает иметь возможность измерять амплитуду и мощность ВЧ-сигналов. Поэтому, прежде чем переходить к обсуждению организации связи, рассмотрим некоторые касающиеся этого вопроса схемы и методы.

Выпрямление сигналов.

В разд. 1.30 мы показали, как использовать простой диод для получения выходного напряжения пропорционального амплитуде сигнала. Мы показали, как компенсировать падение напряжения на диоде с помощью второго диода, обеспечивающего смещение порядка 0,6 В, если характеристика диода еще не имеет резкого изменения. В разд. 4.18 показано, как обойти диодную нелинейность и обеспечить смещение путем включения диода в цепь обратной связи операционного усилителя и формируя таким образом схему точного выпрямления (или выделения абсолютного значения сигнала).

Каждая из таких схем не лишена проблем. Преимуществом простых диодных детекторов является работа в аномально широкой области частот (до ), если правильно подобрать диоды), но они нелинейны при низких уровнях сигналов. Использование диодов Шоттки (основные носители) в некоторой степени помогает, так как прямое напряжение для них ниже. Вы можете значительно улучшить ситуацию, если перед выпрямлением пропустите сигнал через предусилитель (это используется, например, в «детекторе уровня» усилитель/диод Avantek); однако этот путь ограничивает динамическую область из-за насыщения усилителя имеет область 30 дБ и работает на частотах от 10 до 1000 МГц). Активный выпрямитель, наоборот, высоко линеен; но он хорошо работает только в области относительно низких частот и совместно со схемами операционных усилителей. Можно, конечно, использовать быстродействующие ОУ, но все равно вы будете ограничены частотой 10 МГц или около этого.

Синхронное (гомодин) детектирование.

Интересным методом, в котором сочетаются динамическая область, точность и быстродействие, является синхронное детектирование, также называемое «гомодинным детектированием». В этом методе (рис. 13.28) выходной сигнал выпрямляется путем инвертирования во время какой-либо половины цикла.

Рис. 13.28. Синхронный («гомодинный») детектор.

Это, очевидно, требует чистого сигнала той же частоты, что и детектируемый сигнал, который либо подают извне, либо вырабатывают внутри с помощью системы фазовой автоматической подстройки частоты (ФАПЧ) (разд. 9.27). Наконец, синхронное детектирование хорошо работает вплоть до нескольких мегагерц; большой недостаток - это нужда в когерентном опорном сигнале. Можно видеть, что это та же схема, что и в разд. 15.15, где она выступает в роли фазового детектора (форма, которой мы кратко касались также в разд. 9.27).

Схема с источником тока.

Другим решением проблемы диодной нелинейности является переход к управлению выпрямительной схемой с помощью тока, а не напряжения; выход в таком случае нагружается резистивно для получения пропорционального выходного напряжения (рис. 13.29). Хорошее осуществление этой идеи с помощью источника тока на транзисторе, управляемом напряжением, показано на рис. 13.30; характеристики этой схемы приведены на рис. 13.31.

Рис. 13.30. Широкополосный линейный детектор с источником тока.

Рис. 13.31. Характеристики широкополосного детектора.

Работу ее можно истолковать и так: в отсутствии входного сигнала выход усилителя развязывается от выпрямительной цепи, имеющей очень высокое усиление по напряжению (из-за его нагрузки, потребляющей ток); таким образом, чтобы открыть диод, достаточно очень небольшого входного сигнала. Здесь, усиление по напряжению падает до величины (в данном случае, предотвращая насыщение. Благодаря широкополосному усилителю и быстродействующему диоду, эта схема будет работать в области до 100 МГц и выше.

Диодная компенсация пост-детектированием.

Фирма Hewlett-Packard (HP Journal, 10/80) поставляет схемы, показанные на рис. 13.32, в которых так умно используют согласованные диоды Шоттки, что на каждый диод поступает один и тот же сигнал. Поскольку операционные усилители работают на выпрямленных (низкочастотных) сигналах, ширина полосы ограничивается только диодной цепью. Проектировщики этой схемы заслуживают высокой похвалы (они, можно сказать, «трижды молодцы»).

Рис. 13.32. Диодный детектор с самокомпенсацией; указаны падения напряжения и потенциалы в контрольных точках.

Детекторы с амплитудным слежением.

На рис. 13.33 продемонстрирована другая хорошая идея. Чтобы свести на нет неизвестный ток, устранение диодных нелинейностей и смещений осуществляют, используя локально генерируемый сигнал, выпрямленный в симметричной схеме. Обратная связь регулирует амплитуду локального низкочастотного сигнала, делая сбалансированными выпрямленные выходы. Частота сигнала, формирующего нуль, достаточно низка так, что его амплитуда может быть точно измерена с помощью прецизионного выпрямителя на ОУ. При хорошем исполнении эти схемы будут работать линейно с сигналами в несколько милливольт и при частоте вплоть до гигагерц.

Детектирование мощности.

Все вышеописанные методы касаются измерений амплитуды высокочастотного сигнала. Но часто бывает, когда нужно реально знать величину мощности. Конечно, для синусоидальной волны имеется простое соотношение, связывающее две величины, по измеренной амплитуде вы можете рассчитать мощность.

Рис. 13.33. Детектор с амплитудным слежением.

Однако, для волны несинусоидальной формы правильное измерение мощности может быть сделано только усреднением квадрата фактической формы сигнала напряжения. В языке радиочастотных измерений это означает, что вам необходим «квадратичный детектор».

Существуют некоторые пригодные для этого цифровые методы. Для сигналов с частотой ниже средних хорошо использовать «функциональные модули», например, монолитный преобразователь среднеквадратичного напряжения в постоянное Analog Devices. В этих устройствах экспоненциальная характеристика диода в цепи обратной связи используется для формирования квадрата входного сигнала, который затем проходит через низкочастотный фильтр и поступает на аналоговую схему, извлекающую квадратный корень. Схема характеризуется прекрасной линейностью, динамической областью и хорошей шириной полосы. Например, имеет полную ширину полосы 8 МГц, нелинейность 0,02% и динамическую область 60 дБ; у него даже есть логарифмический выход.

Рис. 13.34. Квадратичный детектор на обращенном диоде. (С разр. Alan Rogers, Haystack Observatory.)

При частотах выше нескольких мегагерц методы «квадрат/квадратный корень» преобразования среднеквадратичного сигнала не работают из-за неадекватности полосы в цепи операционного усилителя. Однако можно использовать другие методы. На рис. 13.34 представлена простая схема квадратичного детектора с обращенным диодом, который есть не что иное, как туннельный диод (разд. 1.06), используемый в нетуннельном направлении (где он имеет нулевое прямое падение напряжения). Мы получили эту схему от радиоастрономов Haystack Observatory и были поражены ее экстраординарной линейностью по мощности (рис. 13.35).

В значительной мере эта квадратичная техника произошла от болометрических методов, где входной сигнал (предварительно усиленный) подается на мощный омический нагреватель, температура которого затем измеряется. Поскольку мощность нагревателя точно пропорциональна , этот метод является чисто квадратичным. Примером болометрического модуля может служить Linear Technology. В нем согласованная пара омических нагревателей связана с согласованной парой диодов, измеряющих температуру. Входной сигнал подается на один из нагревателей, а обратная связь подключается к опорному нагревателю, диод которого находится при той же температуре.

Важнейшим параметром, характеризующим механические, звуковые, электрические, электромагнитные и все другие виды колебаний, является период - время, в течение которого совершается одно полное колебание. Если, например, маятник часов-ходиков делает за 1 с два полных колебания, период каждого колебания равен 0,5с. Период колебаний больших качелей около 2 с, а период колебаний струны может составлять от десятых до десятитысячных долей секунды.

Рисунок 2.4 - Колебание

где: φ – фаза колебания, I – сила тока, Ia – амплитудное значение силы тока (амплитуда)

Т – период колебания силы тока (период)

Другим параметром, характеризующим колебания, является частота (от слова «часто») - число, показывающее, сколько полных колебаний в секунду совершают маятник часов, звучащее тело, ток в проводнике и т.п. Частоту колебаний оценивают единицей, носящей название герц (сокращенно пишут Гц): 1 Гц-это одно колебание в секунду. Если, например, звучащая струна совершает 440 полных колебаний в 1 с (при этом она создает тон «ля» третьей октавы), говорят, что частота ее колебаний 440 Гц. Частота переменного тока электроосветительной сети 50 Гц. При этом токе электроны в проводах сети в течение секунды текут попеременно 50 раз в одном направлении и столько же раз в обратном, т.е. совершают за 1 с 50 полных колебаний.

Более крупные единицы частоты - килогерц (пишут кГц), равный 1000 Гц и мегагерц (пишут МГц), равный 1000 кГц или 1 000 000 Гц.

Амплитуда - максимальное значение смещения или изменения переменной величины при колебательном или волновом движении. Неотрицательная скалярная величина, измеряется в единицах, зависящих от типа волны или колебания.

Рисунок 2.5 - Синусоидальное колебание.

где, y - амплитуда волны, λ - длина волны.

Например:

    амплитуда для механического колебания тела (вибрация), для волн на струне или пружине - это расстояние и записывается в единицах длины;

    амплитуда звуковых волн и аудио-сигналов обычно относится к амплитуде давления воздуха в волне, но иногда описывается как амплитуда смещения относительно равновесия (воздуха или диафрагмы говорящего). Её логарифм обычно измеряется в децибелах (дБ);

    для электромагнитного излучения амплитуда соответствует величине электрического и магнитного поля.

Форма изменения амплитуды называется огибающей волной .

Звуковые колебания

Как возникают звуковые волны в воздухе? Воздух состоит из невидимых глазам частиц. При ветре они могут переноситься на большие расстояния. Но они, кроме того, могут и колебаться. Например, если в воздухе сделать резкое движение палкой, то мы почувствуем легкий порыв ветра и одновременно услышим слабый звук. Звук это - результат колебаний частиц воздуха, возбужденных колебаниями палки.

Проведем такой опыт. Оттянем струну, например, гитары, а потом отпустим ее. Струна начнет дрожать - колебаться около своего первоначального положения покоя. Достаточно сильные колебания струны заметны на глаз. Слабые колебания струны можно только почувствовать как легкое щекотание, если прикоснуться к ней пальцем. Пока струна колеблется, мы слышим звук. Как только струна успокоится, звук затихнет. Рождение звука здесь - результат сгущения и разрежения частиц воздуха. Колеблясь из стороны в сторону, струна теснит, как бы прессует перед собой частицы воздуха, образуя в некотором его объеме области повышенного давления, а сзади, наоборот, области пониженного давления. Это и есть звуковые волны . Распространяясь в воздухе со скоростью около 340 м/с , они несут в себе некоторый запас энергии. В тот момент, когда до уха доходит область повышенного давления звуковой волны, она надавливает на барабанную перепонку, несколько прогибая ее внутрь. Когда же до уха доходит разреженная область звуковой волны, барабанная перепонка выгибается несколько наружу. Барабанная перепонка все время колеблется в такт с чередующимися областями повышенного и пониженного давления воздуха. Эти колебания передаются по слуховому нерву в мозг, и мы воспринимаем их как звук. Чем больше амплитуды звуковых волн, тем больше энергии несут они в себе, тем громче воспринимаемый нами звук.

Звуковые волны, как и водяные или электрические колебания, изображают волнистой линией - синусоидой. Ее горбы соответствуют областям повышенного давления, а впадины-областям пониженного давления воздуха. Область повышенного давления и следующая за нею область пониженного давления образуют звуковую волну.

По частоте колебаний звучащего тела можно судить о тоне или высоте звука. Чем больше частота, тем выше тон звука, и наоборот, чем меньше частота, тем ниже тон звука. Наше ухо способно реагировать на сравнительно небольшую полосу (участок) частот звуковых колебаний - примерно от 20 Гц до 20 кГц . Тем не менее эта полоса частот вмещает всю обширнейшую гамму звуков, создаваемых голосом человека, симфоническим оркестром: от очень низких тонов, похожих на звук жужжания жука, до еле уловимого высокого писка комара. Колебания частотой до 20 Гц, называемые инфразвуковыми , и свыше 20 кГц, называемые ультразвуковыми , мы не слышим. А если бы барабанная перепонка нашего уха оказалась способной реагировать и на ультразвуковые колебания, мы могли бы тогда услышать писк летучих мышей, голос дельфина. Дельфины издают и слышат ультразвуковые колебания с частотами до 180 кГц.

Но нельзя путать высоту, т.е. тон звука с его силой. Высота звука зависит не от амплитуды, а от частоты колебаний. Толстая и длинная струна музыкального инструмента, например, создает низкий тон звука, т.е. колеблется медленнее, чем тонкая и короткая струна, создающая высокий тон звука (рис. 1).

Рисунок 2.6 - Звуковые волны

Чем больше частота колебаний струны, тем короче звуковые волны и выше тон звука.

В электро - и радиотехнике используют переменные токи частотой от нескольких герц до тысяч гигагерц. Антенны широковещательных радиостанций, например, питаются токами частотой примерно от 150 кГц до 100 МГц.

Эти быстропеременные колебания, называемые колебаниями радиочастоты, и являются тем средством, с помощью которого осуществляется передача звуков на большие расстояния без проводов.

Весь огромный диапазон переменных токов принято подразделять на несколько участков - поддиапазонов.

Токи частотой от 20 Гц до 20 кГц, соответствующие колебаниям, воспринимаемым нами как звуки разной тональности, называют токами (или колебаниями) звуковой частоты , а токи частотой выше 20 кГц - токами ультразвуковой частоты .

Токи частотой от 100 кГц до 30 МГц называют токами высокой частоты ,

Токи частотой выше 30 МГц - токами ультравысокой и сверхвысокой частоты.