Изображают магнитное поле на рисунках. Графическое изображение магнитных полей. Метод спектров. Линии магнитной индукции. Доклад на тему магнитное поле и его графическое изображение

Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля . Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.

Учение об электромагнетизме основано на двух положениях:

  • магнитное поле действует на движущиеся заряды и токи;
  • магнитное поле возникает вокруг токов и движущихся зарядов.

Взаимодействие магнитов

Постоянный магнит (или магнитная стрелка) ориентируется вдоль магнитного меридиана Земли. Тот его конец, который указывает на север, называется северным полюсом (N), а противоположный конец - южным полюсом (S). Приближая два магнита друг к другу, заметим, что одноименные их полюсы отталкиваются, а разноименные - притягиваются (рис. 1 ).

Если разделить полюса, разрезав постоянный магнит на две части, то мы обнаружим, что каждая из них тоже будет иметь два полюса , т. е. будет постоянным магнитом (рис. 2 ). Оба полюса - северный и южный, - неотделимые друг от друга, равноправны.

Магнитное поле, создаваемое Землей или постоянными магнитами, изображается, подобно электрическому полю, магнитными силовыми линиями. Картину силовых линий магнитного поля какого-либо магнита можно получить, помещая над ним лист бумаги, на котором насыпаны равномерным слоем железные опилки. Попадая в магнитное поле, опилки намагничиваются - у каждой из них появляется северный и южный полюсы. Противоположные полюсы стремятся сблизиться друг с другом, но этому мешает трение опилок о бумагу. Если постучать по бумаге пальцем, трение уменьшится и опилки притянутся друг к другу, образуя цепочки, изображающие линии магнитного поля.

На рис. 3 показано расположение в поле прямого магнита опилок и маленьких магнитных стрелок, указывающих направление линий магнитного поля. За это направление принято направление северного полюса магнитной стрелки.

Опыт Эрстэда. Магнитное поле тока

В начале XIX в. датский ученый Эрстэд сделал важное открытие, обнаружив действие электрического тока на постоянные магниты . Он поместил длинный провод вблизи магнитной стрелки. При пропускании по проводу тока стрелка поворачивалась, стремясь расположиться перпендикулярно ему (рис. 4 ). Это можно было объяснить возникновением вокруг проводника магнитного поля.

Магнитные силовые линии поля, созданного прямым проводником с током, представляют собой концентрические окружности, расположенные в перпендикулярной к нему плоскости, с центрами в точке, через которую проходит ток (рис. 5 ). Направление линий определяется правилом правого винта:

Если винт вращать по направлению линий поля, он будет двигаться в направлении тока в проводнике .

Силовой характеристикой магнитного поля является вектор магнитной индукции B . В каждой точке он направлен по касательной к линии поля. Линии электрического поля начинаются на положительных зарядах и оканчиваются на отрицательных, а сила, действующая в этом поле на заряд, направлена по касательной к линии в каждой ее точке. В отличие от электрического, линии магнитного поля замкнуты, что связано с отсутствием в природе «магнитных зарядов».

Магнитное поле тока принципиально ничем не отличается от поля, созданного постоянным магнитом. В этом смысле аналогом плоского магнита является длинный соленоид - катушка из провода, длина которой значительно больше ее диаметра. Схема линий созданного им магнитного поля, изображенная на рис. 6 , аналогична таковой для плоского магнита (рис. 3 ). Кружочками обозначены сечения провода, образующего обмотку соленоида. Токи, текущие по проводу от наблюдателя, обозначены крестиками, а токи противоположного направления - к наблюдателю - обозначены точками. Такие же обозначения приняты и для линий магнитного поля, когда они перпендикулярны плоскости чертежа (рис. 7 а, б).

Направление тока в обмотке соленоида и направление линий магнитного поля внутри него также связаны правилом правого винта, которое в этом случае формулируется так:

Если смотреть вдоль оси соленоида, то текущий по направлению часовой стрелки ток создает в нем магнитное поле, направление которого совпадает с направлением движения правого винта (рис. 8 )

Исходя из этого правила, легко сообразить, что у соленоида, изображенного на рис. 6 , северным полюсом служит правый его конец, а южным - левый.

Магнитное поле внутри соленоида является однородным - вектор магнитной индукции имеет там постоянное значение (B = const). В этом отношении соленоид подобен плоскому конденсатору, внутри которого создается однородное электрическое поле.

Сила, действующая в магнитном поле на проводник с током

Опытным путем было установлено, что на проводник с током в магнитном поле действует сила. В однородном поле прямолинейный проводник длиной l, по которому течет ток I, расположенный перпендикулярно вектору поля B, испытывает действие силы: F = I l B .

Направление силы определяется правилом левой руки :

Если четыре вытянутых пальца левой руки расположить по направлению тока в проводнике, а ладонь - перпендикулярно вектору B, то отставленный большой палец укажет направление силы, действующей на проводник (рис. 9 ).

Следует отметить, что сила, действующая на проводник с током в магнитном поле, направлена не по касательной к его силовым линиям, подобно электрической силе, а перпендикулярна им. На проводник, расположенный вдоль силовых линий, магнитная сила не действует.

Уравнение F = IlB позволяет дать количественную характеристику индукции магнитного поля.

Отношение не зависит от свойств проводника и характеризует само магнитное поле.

Модуль вектора магнитной индукции B численно равен силе, действующей на расположенный перпендикулярно к нему проводник единичной длины, по которому течет ток силой один ампер.

В системе СИ единицей индукции магнитного поля служит тесла (Тл):

Магнитное поле. Таблицы, схемы, формулы

(Взаимодействие магнитов, опыт Эрстеда, вектор магнитной индукции, направление вектора, принцип суперпозиции. Графическое изображение магнитных полей, линии магнитной индукции. Магнитный поток, энергетическая характеристика поля. Магнитные силы, сила Ампера, сила Лоренца. Движение заряженных частиц в магнитном поле. Магнитные свойства вещества, гипотеза Ампера)

Давайте вместе разбираться в том, что такое магнитное поле. Ведь многие люди живут в этом поле всю жизнь и даже не задумываются о нем. Пора это исправить!

Магнитное поле

Магнитное поле – особый вид материи. Оно проявляется в действии на движущиеся электрические заряды и тела, которые обладают собственным магнитным моментом (постоянные магниты).

Важно: на неподвижные заряды магнитное поле не действует! Создается магнитное поле также движущимися электрическими зарядами, либо изменяющимся во времени электрическим полем, либо магнитными моментами электронов в атомах. То есть любой провод, по которому течет ток, становится также и магнитом!

Тело, обладающее собственным магнитным полем.

У магнита есть полюса, называемые северным и южным. Обозначения "северный" и "южный" даны лишь для удобства (как "плюс" и "минус" в электричестве).

Магнитное поле изображается посредством силовых магнитных линий . Силовые линии непрерывны и замкнуты, а их направление всегда совпадает с направлением действия сил поля. Если вокруг постоянного магнита рассыпать металлическую стружку, частицы металла покажут наглядную картину силовых линий магнитного поля, выходящих из северного и входящих в южный полюс. Графическая характеристика магнитного поля - силовые линии.

Характеристики магнитного поля

Основными характеристиками магнитного поля являются магнитная индукция , магнитный поток и магнитная проницаемость . Но давайте обо всем по порядку.

Сразу отметим, что все единицы измерения приводятся в системе СИ .

Магнитная индукция B – векторная физическая величина, являющаяся основной силовой характеристикой магнитного поля. Обозначается буквой B . Единица измерения магнитной индукции – Тесла (Тл ).

Магнитная индукция показывает, насколько сильно поле, определяя силу, с которой оно действует на заряд. Данная сила называется силой Лоренца .

Здесь q - заряд, v - его скорость в магнитном поле, B - индукция, F - сила Лоренца, с которой поле действует на заряд.

Ф – физическая величина, равная произведению магнитной индукции на площадь контура и косинус между вектором индукции и нормалью к плоскости контура, через который проходит поток. Магнитный поток - скалярная характеристика магнитного поля.

Можно сказать, что магнитный поток характеризует количество линий магнитной индукции, пронизывающих единицу площади. Магнитный поток измеряется в Веберах (Вб) .

Магнитная проницаемость – коэффициент, определяющий магнитные свойства среды. Одним из параметров, от которых зависит магнитная индукция поля, является магнитная проницаемость.

Наша планета на протяжении нескольких миллиардов лет является огромным магнитом. Индукция магнитного поля Земли изменяется в зависимости от координат. На экваторе она равна примерно 3,1 на 10 в минус пятой степени Тесла. К тому же существуют магнитные аномалии, где значение и направление поля существенно отличаются от соседних областей. Одни из самых крупных магнитных аномалий на планете - Курская и Бразильская магнитные аномалии .

Происхождение магнитного поля Земли до сих пор остается загадкой для ученых. Предполагается, что источником поля является жидкое металлическое ядро Земли. Ядро движется, значит, движется расплавленный железо-никелевый сплав, а движение заряженных частиц – это и есть электрический ток, порождающий магнитное поле. Проблема в том, что эта теория (геодинамо ) не объясняет того, как поле сохраняется устойчивым.

Земля – огромный магнитный диполь. Магнитные полюса не совпадают с географическими, хотя и находятся в непосредственной близости. Более того, магнитные полюса Земли движутся. Их смещение регистрируется с 1885 года. Например, за последние сто лет магнитный полюс в Южном полушарии сместился почти на 900 километров и сейчас находится в Южном океане. Полюс арктического полушария движется через Северный Ледовитый океан к Восточно-Сибирской магнитной аномалии, скорость его передвижения (по данным 2004 года) составила около 60 километров в год. Сейчас наблюдается ускорение движения полюсов - в среднем скорость растет на 3 километра в год.

Каково значение магнитного поля Земли для нас? В первую очередь магнитное поле Земли защищает планету от космических лучей и солнечного ветра. Заряженные частицы из далекого космоса не падают прямо на землю, а отклоняются гигантским магнитом и движутся вдоль его силовых линий. Таким образом, все живое оказывается защищенным от пагубной радиации.

За историю Земли происходило несколько инверсий (смен) магнитных полюсов. Инверсия полюсов – это когда они меняются местами. Последний раз это явление произошло около 800 тысяч лет назад, а всего геомагнитных инверсий в истории Земли было более 400. Некоторые ученые полагают, что с учетом наблюдающегося ускорения движения магнитных полюсов следующей инверсии полюсов следует ожидать в ближайшие пару тысяч лет.

К счастью, в нашем веке смены полюсов пока не ожидается. А значит, можно думать о приятном и наслаждаться жизнью в старом добром постоянном поле Земли, рассмотрев основные свойства и характеристики магнитного поля. А чтобы Вы могли это делать, существуют наши авторы, которым можно с уверенностью в успехе поручить часть учебных хлопот! и другие типы работ вы можете заказать по ссылке.

Мы не можем увидеть магнитное поле, однако для лучшего понимания магнитных явлений важно научиться его изображать. В этом помогут магнитные стрелки. Каждая такая стрелка — это маленький постоянный магнит, который легко поворачивается в горизонтальной плоскости (рис. 2.1). О том, как графически изображают магнитное поле и какая физическая величина его характеризует, вы узнаете из этого параграфа.

Рис. 2.2. В магнитном поле магнитные стрелки ориентируются определенным образом: северный полюс стрелки указывает направление вектора индукции магнитного поля в данной точке

Изучаем силовую характеристику магнитного поля

Если заряженная частица движется в магнитном поле, то поле будет действовать на частицу с некоторой силой. Значение этой силы зависит от заряда частицы, направления и значения скорости ее движения, а также от того, насколько сильным является поле.

Силовой характеристикой магнитного поля является магнитная индукция.

Магнитная индукция (индукция магнитного поля) — это векторная физическая величина, характеризующая силовое действие магнитного поля.

Магнитную индукцию обозначают символом B.

Единица магнитной индукции в СИ — тесла; названа в честь сербского физика Николы Теслы (1856-1943):

За направление вектора магнитной индукции в данной точке магнитного поля принято направление, на которое указывает северный полюс магнитной стрелки, установленной в этой точке (рис. 2.2).

Обратите внимание! Направление силы, с которой магнитное поле действует на движущиеся заряженные частицы или на проводник с током, или на магнитную стрелку, не совпадает с направлением вектора магнитной индукции.

Магнитные линии:

Рис. 2.3. Линии магнитного поля полосового магнита

Вне магнита выходят из северного полюса магнита и входят в южный;

Всегда замкнуты (магнитное поле — это вихревое поле);

Наиболее густо расположены у полюсов магнита;

Никогда не пересекаются

Изображаем магнитное поле

На рис. 2.2 видим, как ориентируются магнитные стрелки в магнитном поле: их оси как будто образуют линии, а вектор магнитной индукции в каждой точке направлен вдоль касательной к линии, проходящей через эту точку.

С помощью магнитных линий графически изображают магнитные поля:

1) за направление линии магнитной индукции в данной точке принято направление вектора магнитной индукции;

Рис. 2.4. Цепочки железных опилок воспроизводят картину линий магнитной индукции магнитного поля подковообразного магнита

2) чем больше модуль магнитной индукции, тем ближе друг к другу чертят магнитные линии.

Рассмотрев графическое изображение магнитного поля полосового магнита, можно сделать некоторые выводы (см. на рис. 2.3).

Заметим, что данные выводы справедливы для магнитных линий любого магнита.

Какое направление имеют магнитные линии внутри полосового магнита?


Картину магнитных линий можно воспроизвести с помощью железных опилок.

Возьмем подковообразный магнит, положим на него пластинку из оргстекла и через ситечко будем насыпать на пластинку железные опилки. В магнитном поле каждый кусочек железа намагнитится и превратится в маленькую «магнитную стрелку». Импровизированные «стрелки» сориентируются вдоль магнитных линий магнитного поля магнита (рис. 2.4).

Изобразите картину магнитных линий магнитного поля подковообразного магнита.

Узнаём об однородном магнитном поле

Магнитное поле в некоторой части пространства называют однородным, если в каждой его точке векторы магнитной индукции одинаковы как по модулю, так и по направлению (рис. 2.5).

На участках, где магнитное поле однородно, линии магнитной индукции параллельны и расположены на одинаковом расстоянии друг от друга (рис. 2.5, 2.6). Магнитные линии однородного магнитного поля, направленные к нам, принято изображать точками (рис. 2.7, а) — мы как будто видим «острия стрел», летящих к нам. Если магнитные линии направлены от нас, то их изображают крестиками — мы как будто видим «оперения стрел», летящих от нас (рис. 2.7, б).

В большинстве случаев мы имеем дело с неоднородным магнитным полем, — полем, в разных точках которого векторы магнитной индукции имеют разные значения и направления. Магнитные линии такого поля искривлены, а их плотность разная.

Рис. 2.6. Магнитное поле внутри полосового магнита (а) и между двумя магнитами, обращенными друг к другу разноименными полюсами (б), можно считать однородным

Изучаем магнитное поле Земли

Для изучения земного магнетизма Вильям Гильберт изготовил постоянный магнит в виде шара (модель Земли). Расположив на шаре компас, он заметил, что стрелка компаса ведет себя так же, как на поверхности Земли.

Эксперименты позволили ученому предположить, что Земля — это огромный магнит, а на севере нашей планеты расположен ее южный магнитный полюс. Дальнейшие исследования подтвердили гипотезу В. Гильберта.

На рис. 2.8 изображена картина линий магнитной индукции магнитного поля Земли.

рис. 2.7. Изображение линий магнитной индукции однородного магнитного поля, которые перпендикулярны плоскости рисунка и направлены к нам (а); направлены от нас (б)

Представьте, что вы идете к Северному полюсу, двигаясь точно в том направлении, на которое указывает стрелка компаса. Достигнете ли вы места назначения?

Линии магнитной индукции магнитного поля Земли не параллельны ее поверхности. Если закрепить магнитную стрелку в карданном подвесе, то есть так, чтобы она могла свободно вращаться как вокруг горизонтальной, так

Рис. 2.8. Схема расположения магнитных линий магнитного поля планеты Земля

и вокруг вертикальной осей, стрелка установится под углом к поверхности Земли (рис. 2.9).

Как будет расположена магнитная стрелка в устройстве на рис. 2.9 вблизи северного магнитного полюса Земли? вблизи южного магнитного полюса Земли?

Магнитное поле Земли издавна помогало ориентироваться путешественникам, морякам, военным и не только им. Доказано, что рыбы, морские млекопитающие и птицы во время своих миграций ориентируются по магнитному полю Земли. Так же ориентируются, ища путь домой, и некоторые животные, например кошки.

Узнаём о магнитных бурях

Исследования показали, что в любой местности магнитное поле Земли периодически, каждые сутки, изменяется. Кроме того, наблюдаются небольшие ежегодные изменения магнитного поля Земли. Случаются, однако, и резкие его изменения. Сильные возмущения магнитного поля Земли, которые охватывают всю планету и продолжаются от одного до нескольких дней, называют магнитными бурями. Здоровые люди их практически не ощущают, а вот у тех, кто имеет сердечно-сосудистые заболевания и заболевания нервной системы, магнитные бури вызывают ухудшение самочувствия.

Магнитное поле Земли — своеобразный «щит», который защищает нашу планету от летящих из космоса, в основном от Солнца («солнечный ветер»), заряженных частиц. Вблизи магнитных полюсов потоки частиц подлетают довольно близко к атмосфере Земли. При возрастании солнечной активности космические частицы попадают в верхние слои атмосферы и ионизируют молекулы газа — на Земле наблюдаются полярные сияния (рис. 2.10).

Подводим итоги

Магнитная индукция В — это векторная физическая величина, характеризующая силовое действие магнитного поля. Направление вектора магнитной индукции совпадает с направлением, на которое указывает северный полюс магнитной стрелки. Единица магнитной индукции в СИ — тесла (Тл).

Условные направленные линии, в каждой точке которых касательная совпадает с линией, вдоль которой направлен вектор магнитной индукции, называют линиями магнитной индукции или магнитными линиями.

Линии магнитной индукции всегда замкнуты, вне магнита они выходят из северного полюса магнита и входят в южный, гуще расположены в тех областях магнитного поля, где модуль магнитной индукции больше.

Планета Земля имеет магнитное поле. Вблизи северного географического полюса Земли расположен ее южный магнитный полюс, вблизи южного географического полюса — северный магнитный полюс.

Контрольные вопросы

1. Дайте определение магнитной индукции. 2. Как направлен вектор магнитной индукции? 3. Какова единица магнитной индукции в СИ? В честь кого она названа? 4. Приведите определение линий магнитной индукции. 5. Какое направление принято за направление магнитных линий? 6. От чего зависит густота магнитных линий? 7. Какое магнитное поле называют однородным? 8. Докажите, что Земля имеет магнитное поле. 9. Как расположены магнитные полюсы Земли относительно географических? 10. Что такое магнитные бури? Как они влияют на человека?


Упражнение № 2

1. На рис. 1 изображены линии магнитной индукции на некотором участке магнитного поля. Для каждого случая а-в определите: 1) какое это поле — однородное или неоднородное; 2) направление вектора магнитной индукции в точках А и В поля; 3) в какой точке — А или В — магнитная индукция поля больше.

2. Почему стальная оконная решетка может со временем намагнититься?

3. На рис. 2 изображены линии магнитного поля, созданного двумя одинаковыми постоянными магнитами, обращенными друг к другу одноименными полюсами.

1) Существует ли магнитное поле в точке А?

2) Каково направление вектора магнитной индукции в точке В? в точке С?

3) В какой точке — А, В или С — магнитная индукция поля наибольшая?

4) Каково направление векторов магнитной индукции внутри магнитов?

4. Раньше во время экспедиций на Северный полюс возникали трудности в определении направления движения, ведь вблизи полюса обычные компасы почти не работали. Как вы думаете, почему?

5. Воспользуйтесь дополнительными источниками информации и выясните, какое значение имеет магнитное поле для жизни на нашей планете. Что произошло бы, если бы магнитное поле Земли вдруг исчезло?

6. Существуют участки земной поверхности, где магнитная индукция магнитного поля Земли значительно больше, чем в соседних областях. Воспользуйтесь дополнительными источниками информации и узнайте о магнитных аномалиях подробнее.

7. Объясните, почему любое незаряженное тело всегда притягивается к телу, имеющему электрический заряд.

Это материал учебника

Для исследования структуры магнитного поля используют метод спектров . Мелкие железные опилки, попадая в магнитное по-ле, намагничиваются и, взаимодействуя меж-ду собой, образуют цепочки, расположение которых позволяет судить о структуре маг-нитного поля.

В качестве примера применения метода спектров рассмотрим опыт с магнитным полем прямого проводника. Через тонкую пластинку из диэлектрика пропустим длин-ный прямой проводник, включенный в элек-трическую цепь. На пластинку будем сыпать мелкие железные опилки, слегка постукивая по пластинке. Опилки соберутся вокруг про-водника в виде концентрических кругов раз-личного диаметра (рис. 6.10). При повто-рении опыта с другими проводниками при других значениях силы тока получим похо-жие картины, которые и называются маг-нитными спектрами.

Спектры можно изобразить на бумаге в виде линий магнитной индукции .

Для прямого проводника такое изобра-жение показано на рис. 6.11. В изображе-ниях магнитных спектров линии магнитной индукции показывают направление магнит-ной индукции в каждой точке. В каждой точке линии индукции касательная совпа-дает с вектором магнитной индукции.

Линии, касательные к которым в каждой точке показывают направление магнитной ин-дукции, называются линиями магнитной ин-дукции .

Плотность линий магнитной индукции зависит от модуля магнитной индукции. Она больше там, где модуль больше, и наоборот. Направление линий магнитной индукции прямого проводника определяется по пра-вилу правого винта.

Спектры магнитных полей проводников другой формы имеют много общего.

Так, спектр магнитного поля кольца с током похож на два совмещенных спектра прямых проводников (рис. 6.12). Только плотность линий индукции в центре кольца больше (рис. 6.13).

Магнитный спектр катушки с большим количеством витков (соленоида) показан на рис. 6.14. На рисунке видно, что линии магнитной индукции такой катушки внут-ри параллельные и имеют одинаковую плотность. Это свидетельствует, что внутри длинной катушки магнитное поле однород-ное — во всех точках магнитная индукция одинакова (рис. 6.15). Линии магнитной индукции расходятся лишь за пределами катушки, где магнитное поле неоднород-ное.

Если сравнить спектры магнитных полей проводников с током различной формы, то можно заметить, что линии индукции всегда замкнутые или при дальнейшем продолже-нии могут замкнуться. Это свидетельствует об отсутствии магнитных зарядов. Такое поле называют вихревым. Вихревое поле не имеет потенциала. Материал с сайта

На этой странице материал по темам:

  • Спектров магнитных полей гдз решебник

  • Какие физические процессы происходят при образовании магнитного спектра

  • Открытия в области магнитных полей

  • Доклад на тему магнитное поле и его графическое изображение

  • Спектры магнитных полей примеры

Вопросы по этому материалу:

Графическое изображение магнитного поля. Поток вектора магнитной индукции

Магнитное поле можно изобразить графически при помощи линий магнитной индукции. Линией магнитной индукции называют линию, касательная к которой в каждой точке совпадает с направлением вектора индукции магнитного поля (рис. 6).

Исследования показали, что линии магнитной индукции являются замкнутыми линиями, охватывающими токи. Густота линий магнитной индукции пропорциональна величине вектора в данном месте поля. В случае магнитного поля прямого тока линии магнитной индукции имеют форму концентрических окружностей, лежащих в плоскостях, перпендикулярных току, с центром на прямой с током. Направление линий магнитной индукции независимо от формы тока можно определить по правилу буравчика. В случае магнитного поля прямого тока буравчик необходимо вращать таким образом, чтобы его поступательное движение совпало с направлением тока в проводе, тогда вращательное движение ручки буравчика совпадет с направлением линий магнитной индукции (рис. 7).

На рис. 8 и 9 изображены картины линий магнитной индукции поля кругового тока и поля соленоида. Соленоид представляет собой совокупность круговых токов с общей осью.

Линии вектора индукции внутри соленоида параллельны друг другу, густота линий одинакова, поле однородно ( = const). Поле соленоида аналогично полю постоянного магнита. Конец соленоида, из которого выходят линии индукции аналогичен северному полюсу – N, противоположный конец соленоида аналогичен южному полюсу – S.

Число линий магнитной индукции, пронизывающих определенную поверхность, называют магнитным потоком через эту поверхность. Обозначают магнитный поток буквой Ф в (или Ф).


,
(3)

Где α – угол, образуемый вектором и нормалью к поверхности (рис. 10).

– проекция вектора на нормаль к площадке S.

Измеряется магнитный поток в веберах (Вб): [Ф]=[B]× [S]=Тл× м 2 = =