Кальций характер. Элемент кальций. Свойства, получение, применение. История и происхождение названия

ОПРЕДЕЛЕНИЕ

Кальций - двадцатый элемент Периодической таблицы. Обозначение - Ca от латинского «calcium». Расположен в четвертом периоде, IIА группе. Относится к металлам. Заряд ядра равен 20.

Кальций принадлежит к числу самых распространенных в природе элементов. В земной коре его содержится приблизительно 3% (масс.). Он встречается в виде многочисленных отложений известняков и мела, а также мрамора, которые представляют собой природные разновидности карбоната кальция CaCO 3 . В больших количествах встречаются также гипс CaSO 4 ×2H 2 O, фосфорит Ca 3 (PO 4) 2 и, наконец, различные содержащие кальций силикаты.

В виде простого вещества кальций представляет собой ковкий, довольно твердый металл белого цвета (рис.1). На воздухе быстро покрывается слоем оксида, а при нагревании сгорает ярким красноватым пламенем. С холодной водой кальций реагирует сравнительно медленно, но из горячей воды быстро вытесняет водород, образуя гидроксид.

Рис. 1. Кальций. Внешний вид.

Атомная и молекулярная масса кальция

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии кальций существует в виде одноатомных молекул Ca, значения его атомной и молекулярной масс совпадают. Они равны 40,078.

Изотопы кальция

Известно, что в природе кальций может находиться в виде четырех стабильных изотопов 40 Ca, 42 Ca, 43 Ca, 44 Ca, 46 Ca и 48 Ca, с явным преобладанием изотопа 40 Ca (99,97%). Их массовые числа равны 40, 42, 43, 44, 46 и 48 соответственно. Ядро атома изотопа кальция 40 Ca содержит двадцать протонов и двадцать нейтронов, а остальные изотопы отличаются от него только числом нейтронов.

Существуют искусственные изотопы кальция с массовыми числами от 34-х до 57-ми, среди которых наиболее стабильным является 41 Ca с периодом полураспада равным 102 тысячи лет.

Ионы кальция

На внешнем энергетическом уровне атома кальция имеется два электрона, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 .

В результате химического взаимодействия кальций отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Ca 0 -2e → Ca 2+ .

Молекула и атом кальция

В свободном состоянии кальций существует в виде одноатомных молекул Ca. Приведем некоторые свойства, характеризующие атом и молекулу кальция:

Сплавы кальция

Кальций служит легирующим компонентом некоторых свинцовых сплавов.

Примеры решения задач

ПРИМЕР 1

Задание Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

Ca → Ca(OH) 2 → CaCO 3 →Ca(HCO 3) 2 .

Ответ Растворив кальций в воде можно получить мутный раствор соединения известного под названием «известковое молоко» — гидроксида кальция:

Ca+ 2H 2 O→ Ca(OH) 2 + H 2 .

Пропустив через раствор гидроксида кальция углекислый газ получаем карбонат кальция:

2Ca(OH) 2 + CO 2 → CaCO 3 + H 2 O.

Добавив к карбонату кальция воды и продолжая пропускать через данную смесь углекислый газ получаем гидрокарбонат кальция:

CaCO 3 + H 2 O + CO 2 → Ca(HCO 3) 2 .

Природные соединения кальция (мел, мрамор, известняк, гипс) и продукты их простейшей переработки (известь) были известны людям с древних времен. В 1808 г. английский химик Хэмфри Дэви подверг электролизу влажную гашеную известь (гидроксид кальция) с ртутным катодом и получил амальгаму кальция (сплав кальция с ртутью). Из этого сплава, отогнав ртуть Дэви получил чистый кальций.
Он же предложил название нового химического элемента, от латинского "сalx" обозначавшего название известняка, мела и других мягких камней.

Нахождение в природе и получение:

Кальций - пятый по распространенности элемент в земной коре (более 3%), образует множество пород, в основе многих из которых - карбонат кальция. Некоторые из этих пород имеют органическое происхождение (ракушечник), показывающее важную роль кальция в живой природе. Природный кальций - смесь 6 изотопов с массовыми числами от 40 до 48, причем на 40 Ca приходится 97% общего количества. Ядерными реакциями получены и другие изотопы кальция, например радиоактивный 45 Ca .
Для получения простого вещества кальция используется электролиз расплавов его солей или алюмотермия:
4CaO + 2Al = Ca(AlO 2) 2 + 3Ca

Физические свойства:

Серебристо-серый металл с кубической гранецентрированной решеткой, значительно более твердый, чем щелочные металлы. Температура плавления 842°C, кипения 1484°C, плотность 1,55 г/см 3 . При высоких давлениях и температурах около 20K переходит в состояние сверхпроводника.

Химические свойства:

Кальций не столь активен как щелочные металлы, тем не менее его приходится хранить под слоем минерального масла или в плотно запаянных металлических барабанах. Уже при обычной температуре он реагирует с кислородом и азотом воздуха, а также с водяными парами. При нагревании сгорает на воздухе красно-оранжевым пламенем, образуя оксид с примесью нитридов. Подобно магнию кальций продолжает гореть в атмосфере углекислого газа. При нагревании реагирует с другими неметаллами, образую не всегда очевидные по составу соединения, например:
Ca + 6B = CaB 6 или Ca + P => Ca 3 P 2 (а также CaP или CaP 5)
Во всех своих соединениях кальций имеет степень окисления +2.

Важнейшие соединения:

Оксид кальция CaO - ("негашёная известь") вещество белого цвета, щелочной оксид, энергично реагирует с водой ("гасится") переходя в гидроксид. Получают термическим разложением карбоната кальция.

Гидроксид кальция Ca(OH) 2 - ("гашёная известь") белый порошок, мало растворим в воде (0,16г/100г), сильная щелочь. Раствор ("известковая вода") используется для обнаружения углекислого газа.

Карбонат кальция CaCO 3 - основа большинства природных минералов кальция (мел, мрамор, известняк, ракушечник, кальцит, исландский шпат). В чистом виде вещество белого цвета или бесцв. кристаллы, При нагревании (900-1000 С) разлагается, образуя оксид кальция. Не р-рим, реагирует с кислотами, способен растворяться в воде, насыщенной углекислым газом, переходя в гидрокарбонат: CaCO 3 + CO 2 + H 2 O = Ca(HCO 3) 2 . Обратный процесс приводит к появлению отложений карбоната кальция, в частности таких образований, как сталактиты и сталагмиты
Встречается в природе также в составе доломита CaCO 3 *MgCO 3

Сульфат кальция CaSO 4 - вещество белого цвета, в природе CaSO 4 *2H 2 O ("гипс", "селенит"). Последний при осторожном нагревании (180 С) переходит в CaSO 4 *0,5H 2 O ("жжёный гипс", "алебастр") - белый порошок, при замешивании с водой снова образующий CaSO 4 *2H 2 O в виде твердого, достаточно прочного материала. Мало растворим в воде, в избытке серной кислоты способен растворяться, образуя гидросульфат.

Фосфат кальция Ca 3 (PO 4) 2 - ("фосфорит"), нерастворим, под действием сильных кислот переходит в более растворимые гидро- и дигидрофосфаты кальция. Исходное сырье для получения фосфора, фосфорной кислоты, фосфорных удобрений. Фосфаты кальция входят также в состав апатитов, природных соединений с примерной формулой Са 5 3 Y, где Y = F, Cl, или ОН, соответственно фтор-, хлор-, или гидроксиапатит. Наряду с фосфоритом апатиты входят в состав костного скелета многих живых организмов, в т.ч. и человека.

Фторид кальция CaF 2 - (природн.: "флюорит", "плавиковый шпат"), нерастворимое в-во белого цвета. Природные минералы имеют разнообразные окраски, обусловленные примесями. Светится в темноте при нагревании и при УФ-облучении. Увеличивает текучесть ("плавкость") шлаков при получении металлов, чем обусловлено его применение в качестве флюса.

Хлорид кальция CaCl 2 - бесцв. крист. в-во хорошо р-римое в воде. Образует кристаллогидрат CaCl 2 *6H 2 O. Безводный ("плавленый") хлорид кальция - хороший осушитель.

Нитрат кальция Ca(NO 3) 2 - ("кальциевая селитра") бесцв. крист. в-во хорошо р-римое в воде. Составная часть пиротехнических составов, придающее пламени красно-оранжевый цвет.

Карбид кальция CaС 2 - реагирует с водой, к-тами образуя ацетилен, напр.: CaС 2 + H 2 O = С 2 H 2 + Ca(OH) 2

Применение:

Металлический кальций используется как сильный восстановитель при получении некоторых трудновосстанавлиевых металлов ("кальциетермия"): хром, РЗЭ, торий, уран и др. В металлургии меди, никеля, специальных сталей и бронз кальций и его сплавы используется для удаления вредных примесей серы, фосфора, избыточного углерода.
Кальций используется также для связывания малых количеств кислорода и азота при получении глубокого вакуума и очистке инертных газов.
Нейтрон-избыточные ионы 48 Ca используются для синтеза новых химических элементов, например элемента №114, . Другой изотоп кальция, 45 Ca , используется как радиоактивная метка при исследованиях биологической роли кальция и его миграции в окружающей среде.

Основной областью применения многочисленных соединений кальция является производство строительных материалов (цемент, строительные смеси, гипсокартон и т.д.).

Кальций один из макроэлементов в составе живых организмов, образуя соединения необходимые для построения как внутреннего скелета позвоночных животных, так и внешнего многих беспозвоночных, скорлупу яиц. Ионы кальция также участвуют в регуляции внутриклеточных процессов, обуславливают свертываемость крови. Нехватка кальция в детском возрасте приводит к рахиту, в пожилом - к остеопорозу. Источником кальция служат молочные продукты, гречка, орехи, а его усвоению способствует витамин D. При нехватке кальция используются различные препараты: кальцекс, раствор хлорида кальция, глюконат кальция и др.
Массовая доля кальция в организме человека 1,4-1,7%, суточная потребность 1-1,3 г (в зависимости от возраста). Избыточное потребление кальция может привести к гиперкальцемии - отложению его соединений во внутренних органах, образованию тромбов в кровеносных сосудах. Источники:
Кальций (элемент) // Википедия. URL: http://ru.wikipedia.org/wiki/Кальций (дата обращения: 3.01.2014).
Популярная библиотека химических элементов: Кальций. // URL: http://n-t.ru/ri/ps/pb020.htm (3.01.2014).

Кальций - элемент главной подгруппы второй группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 20. Обозначается символом Ca (лат. Calcium ). Простое вещество кальций - мягкий, химически активный щёлочноземельный металл серебристо-белого цвета.

Кальций в окружающей среде

В природе его очень много: из солей кальция образованы горные массивы и глинистые породы, он есть в морской и речной воде, входит в состав растительных и животных организмов. На долю кальция приходится 3,38 % массы земной коры (5-е место по распространенности после кислорода, кремния, алюминия и железа).

Изотопы кальция

Кальций встречается в природе в виде смеси шести изотопов: 40 Ca, 42 Ca, 43 Ca, 44 Ca, 46 Ca и 48 Ca, среди которых наиболее распространённый - 40 Ca - составляет 96,97 %.

Из шести природных изотопов кальция пять стабильны. Шестой изотоп 48 Ca, самый тяжелый из шести и весьма редкий (его изотопная распространённость равна всего 0,187 %), как было недавно обнаружено, испытывает двойной бета-распад с периодом полураспада 5,3×10 19 лет.

Содержание кальция в горных породах и минералах

Большая часть кальция содержится в составе силикатов и алюмосиликатов различных горных пород (граниты, гнейсы и т. п.), особенно в полевом шпате - анортите Ca.

В виде осадочных пород соединения кальция представлены мелом и известняками, состоящими в основном из минерала кальцита (CaCO 3). Кристаллическая форма кальцита - мрамор - встречается в природе гораздо реже.

Довольно широко распространены такие минералы кальция, как кальцит CaCO 3 , ангидрит CaSO 4 , алебастр CaSO 4 ·0.5H 2 O и гипс CaSO 4 ·2H 2 O, флюорит CaF 2 , апатиты Ca 5 (PO 4) 3 (F,Cl,OH), доломит MgCO 3 ·CaCO 3 . Присутствием солей кальция и магния в природной воде определяется её жёсткость.

Кальций, энергично мигрирующий в земной коре и накапливающийся в различных геохимических системах, образует 385 минералов (четвёртое место по числу минералов).

Миграция кальция в земной коре

В естественной миграции кальция существенную роль играет «карбонатное равновесие», связанное с обратимой реакцией взаимодействия карбоната кальция с водой и углекислым газом с образованием растворимого гидрокарбоната:

СаСО 3 + H 2 O + CO 2 ↔ Са (НСО 3) 2 ↔ Ca 2+ + 2HCO 3 -

(равновесие смещается влево или вправо в зависимости от концентрации углекислого газа).

Огромную роль играет биогенная миграция.

Содержание кальция в биосфере

Соединения кальция находятся практически во всех животных и растительных тканях (см. тж. ниже). Значительное количество кальция входит в состав живых организмов. Так, гидроксиапатит Ca 5 (PO 4) 3 OH, или, в другой записи, 3Ca 3 (PO 4) 2 ·Са(OH) 2 - основа костной ткани позвоночных, в том числе и человека; из карбоната кальция CaCO 3 состоят раковины и панцири многих беспозвоночных, яичная скорлупа и др. В живых тканях человека и животных 1,4-2 % Са (по массовой доле); в теле человека массой 70 кг содержание кальция - около 1,7 кг (в основном в составе межклеточного вещества костной ткани).

Получение кальция

Кальций впервые получен Дэви в 1808 г. с помощью электролиза. Но, как и другие щелочные и щелочноземельные металлы, элемент №20 нельзя получить электролизом из водных растворов. Кальций получают при электролизе его расплавленных солей.

Это сложный и энергоемкий процесс. В электролизере расплавляют хлорид кальция с добавками других солей (они нужны для того, чтобы снизить температуру плавления СаСl 2).

Стальной катод только касается поверхности электролита; выделяющийся кальций прилипает и застывает на нем. По мере выделения кальция катод постепенно поднимают и в конечном счете получают кальциевую «штангу» длиной 50...60 см. Тогда ее вынимают, отбивают от стального катода и начинают процесс сначала. «Методом касания» получают кальций сильно загрязненный хлористым кальцием, железом, алюминием, натрием. Очищают его переплавкой в атмосфере аргона.

Если стальной катод заменить катодом из металла, способного сплавляться с кальцием, то при электролизе будет получаться соответствующий сплав. В зависимости от назначения его можно использовать как сплав, либо отгонкой в вакууме получить чистый кальций. Так получают сплавы кальция с цинком, свинцом и медью.

Другой метод получения кальция – металлотермический – был теоретически обоснован еще в 1865 г. известным русским химиком Н.Н. Бекетовым. Кальций восстанавливают алюминием при давлении всего в 0,01 мм ртутного столба. Температура процесса 1100...1200°C. Кальций получается при этом в виде пара, который затем конденсируют.

В последние годы разработан еще один способ получения элемента. Он основан на термической диссоциации карбида кальция: раскаленный в вакууме до 1750°C карбид разлагается с образованием паров кальция и твердого графита.

Физические свойства кальция

Металл кальций существует в двух аллотропных модификациях. До 443 °C устойчив α-Ca с кубической гранецентрированной решеткой (параметр а = 0,558 нм), выше устойчив β-Ca с кубической объемно-центрированной решеткой типа α-Fe (параметр a = 0,448 нм). Стандартная энтальпия ΔH 0 перехода α → β составляет 0,93 кДж/моль.

При постепенном повышении давления начинает проявлять свойства полупроводника, не становится полупроводником в полном смысле этого слова (металлом уже тоже не является). При дальнейшем повышении давления возвращается в металлическое состояние и начинает проявлять сверхпроводящие свойства (температура сверхпроводимости в шесть раз выше, чем у ртути, и намного превосходит по проводимости все остальные элементы). Уникальное поведение кальция похоже во многом на стронций.

Несмотря на повсеместную распространенность элемента, даже химики и то не все видели элементарный кальций. А ведь этот металл и внешне и по поведению совсем непохож на щелочные металлы, общение с которыми чревато опасностью пожаров и ожогов. Его можно спокойно хранить на воздухе, он не воспламеняется от воды. Механические свойства элементарного кальция не делают его «белой вороной» в семье металлов: по прочности и твердости кальций превосходит многие из них; его можно обтачивать на токарном станке, вытягивать в проволоку, ковать, прессовать.

И все-таки в качестве конструкционного материала элементарный кальций почти не применяется. Для этого он слишком активен. Кальций легко реагирует с кислородом, серой, галогенами. Даже с азотом и водородом при определенных условиях он вступает в реакции. Среда окислов углерода, инертная для большинства металлов, для кальция – агрессивная. Он сгорает в атмосфере CO и CO 2 .

Естественно, что, обладая такими химическими свойствами, кальций не может находиться в природе в свободном состоянии. Зато соединения кальция – и природные и искусственные – приобрели первостепенное значение.

Химические свойства кальция

Кальций - типичный щелочноземельный металл. Химическая активность кальция высока, но ниже, чем всех других щелочноземельных металлов. Он легко взаимодействует с кислородом, углекислым газом и влагой воздуха, из-за чего поверхность металлического кальция обычно тускло серая, поэтому в лаборатории кальций обычно хранят, как и другие щелочноземельные металлы, в плотно закрытой банке под слоем керосина или жидкого парафина.

В ряду стандартных потенциалов кальций расположен слева от водорода. Стандартный электродный потенциал пары Ca 2+ /Ca 0 −2,84 В, так что кальций активно реагирует с водой, но без воспламенения:

Ca + 2Н 2 О = Ca(ОН) 2 + Н 2 + Q.

С активными неметаллами (кислородом, хлором, бромом) кальций реагирует при обычных условиях:

2Са + О 2 = 2СаО, Са + Br 2 = CaBr 2 .

При нагревании на воздухе или в кислороде кальций воспламеняется. С менее активными неметаллами (водородом, бором, углеродом, кремнием, азотом, фосфором и другими) кальций вступает во взаимодействие при нагревании, например:

Са + Н 2 = СаН 2 , Ca + 6B = CaB 6 ,

3Ca + N 2 = Ca 3 N 2 , Са + 2С = СаС 2 ,

3Са + 2Р = Са 3 Р 2 (фосфид кальция), известны также фосфиды кальция составов СаР и СаР 5 ;

2Ca + Si = Ca 2 Si (силицид кальция), известны также силициды кальция составов CaSi, Ca 3 Si 4 и CaSi 2 .

Протекание указанных выше реакций, как правило, сопровождается выделением большого количества теплоты (то есть эти реакции - экзотермические). Во всех соединениях с неметаллами степень окисления кальция +2. Большинство из соединений кальция с неметаллами легко разлагается водой, например:

СаН 2 + 2Н 2 О = Са(ОН) 2 + 2Н 2 ,

Ca 3 N 2 + 3Н 2 О = 3Са(ОН) 2 + 2NH 3 .

Ион Ca 2+ бесцветен. При внесении в пламя растворимых солей кальция пламя окрашивается в кирпично-красный цвет.

Такие соли кальция, как хлорид CaCl 2 , бромид CaBr 2 , иодид CaI 2 и нитрат Ca(NO 3) 2 , хорошо растворимы в воде. Нерастворимы в воде фторид CaF 2 , карбонат CaCO 3 , сульфат CaSO 4 , ортофосфат Ca 3 (PO 4) 2 , оксалат СаС 2 О 4 и некоторые другие.

Важное значение имеет то обстоятельство, что, в отличие от карбоната кальция СаСО 3 , кислый карбонат кальция (гидрокарбонат) Са(НСО 3) 2 в воде растворим. В природе это приводит к следующим процессам. Когда холодная дождевая или речная вода, насыщенная углекислым газом, проникает под землю и попадает на известняки, то наблюдается их растворение:

СаСО 3 + СО 2 + Н 2 О = Са(НСО 3) 2 .

В тех же местах, где вода, насыщенная гидрокарбонатом кальция, выходит на поверхность земли и нагревается солнечными лучами, протекает обратная реакция:

Са(НСО 3) 2 = СаСО 3 + СО 2 + Н 2 О.

Так в природе происходит перенос больших масс веществ. В результате под землей могут образоваться огромные провалы, а в пещерах образуются красивые каменные «сосульки» - сталактиты и сталагмиты.

Наличие в воде растворенного гидрокарбоната кальция во многом определяет временную жёсткость воды. Временной её называют потому, что при кипячении воды гидрокарбонат разлагается, и в осадок выпадает СаСО 3 . Это явление приводит, например, к тому, что в чайнике со временем образуется накипь.

Применение кальция

До последнего времени металлический кальций почти не находил применения. США, например, до второй мировой войны потребляли в год всего 10...25 т кальция, Германия – 5...10 т. Но для развития новых областей техники нужны многие редкие и тугоплавкие металлы. Выяснилось, что кальции – очень удобный и активный восстановитель многих из них, и элемент стали применять при получении тория, ванадия, циркония, бериллия, ниобия, урана, тантала и других тугоплавких металлов. Чистый металлический кальций широко применяется в металлотермии при получении редких металлов.

Чистый кальций применяется для легирования свинца, идущего на изготовление аккумуляторных пластин, необслуживаемых стартерных свинцово-кислотных аккумуляторов с малым саморазрядом. Также металлический кальций идет на производство качественных кальциевых баббитов БКА.

Применение металлического кальция

Главное применение металлического кальция - это использование его как восстановителя при получении металлов, особенно никеля, меди и нержавеющей стали. Кальций и его гидрид используются также для получения трудновосстанавливаемых металлов, таких, как хром, торий и уран. Сплавы кальция со свинцом находят применение в аккумуляторных батареях и подшипниковых сплавах. Кальциевые гранулы используются также для удаления следов воздуха из электровакуумных приборов.

Природный мел в виде порошка входит в составы для полировки металлов. Но чистить зубы порошком из природного мела нельзя, так как он содержит остатки раковин и панцирей мельчайших животных, которые обладают повышенной твердостью и разрушают зубную эмаль.

Использование кальция в ядерном синтезе

Изотоп 48 Ca - наиболее эффективный и употребительный материал для производства сверхтяжёлых элементов и открытия новых элементов таблицы Менделеева. Например, в случае использования ионов 48 Ca для получения сверхтяжёлых элементов на ускорителях ядра этих элементов образуются в сотни и тысячи раз эффективней, чем при использовании других «снарядов» (ионов). Радиоактивный кальций широко используют в биологии и медицине в качестве изотопного индикатора при изучении процессов минерального обмена в живом организме. С его помощью установлено, что в организме происходит непрерывный обмен ионами кальция между плазмой, мягкими тканями и даже костной тканью. Большую роль сыграл 45 Са также при изучении обменных процессов, происходящих в почвах, и при исследовании процессов усвоения кальция растениями. С помощью этого же изотопа удалось обнаружить источники загрязнения стали и сверхчистого железа соединениями кальция в процессе выплавки.

Способность кальция связывать кислород и азот позволила применить его для очистки инертных газов и как геттер (Геттер – вещество, служащее для поглощения газов и создания глубокого вакуума в электронных приборах.) в вакуумной радиоаппаратуре.

Применение соединений кальция

Некоторые соединения кальция, получаемые искусственным путем, стали даже более известными и привычными, чем известняки или гипс. Так, гашеную Са(OH) 2 и негашеную СаО известь применяли еще строители древности.

Цемент – это тоже соединение кальция, полученное искусственным путем. Сначала обжигают смесь глины или песка с известняком и получают клинкер, который затем размалывают в тонкий серый порошок. О цементе (вернее, о цементах) можно рассказывать очень много, это тема самостоятельной статьи.

То же самое относится и к стеклу, в состав которого тоже обычно входит элемент.

Гидрид кальция

Нагреванием кальция в атмосфере водорода получают CaH 2 (гидрид кальция), используемый в металлургии (металлотермии) и при получении водорода в полевых условиях.

Оптические и лазерные материалы

Фторид кальция (флюорит) применяется в виде монокристаллов в оптике (астрономические объективы, линзы, призмы) и как лазерный материал. Вольфрамат кальция (шеелит) в виде монокристаллов применяется в лазерной технике, а также как сцинтиллятор.

Карбид кальция

Карбид кальция – вещество, открытое случайно при испытании новой конструкции печи. Еще недавно карбид кальция CaCl 2 использовали главным образом для автогенной сварки и резки металлов. При взаимодействии карбида с водой образуется ацетилен, а горение ацетилена в струе кислорода позволяет получать температуру почти 3000°C. В последнее время ацетилен, а вместе с ним и карбид все меньше расходуются для сварки и все больше – в химической промышленности.

Кальций как химический источник тока

Кальций, а также его сплавы с алюминием и магнием используются в резервных тепловых электрических батареях в качестве анода(например кальций-хроматный элемент). Хромат кальция используется в таких батареях в качестве катода. Особенность таких батарей - чрезвычайно долгий срок хранения (десятилетия) в пригодном состоянии, возможность эксплуатации в любых условиях (космос, высокие давления), большая удельная энергия по весу и объёму. Недостаток в недолгом сроке действия. Такие батареи используются там, где необходимо на короткий срок создать колоссальную электрическую мощность (баллистические ракеты, некоторые космические аппараты и.др.).

Огнеупорные материалы из кальция

Оксид кальция, как в свободном виде, так и в составе керамических смесей, применяется в производстве огнеупорных материалов.

Лекарственные средства

Соединения кальция широко применяются в качестве антигистаминного средства.

  • Хлорид кальция
  • Глюконат кальция
  • Глицерофосфат кальция

Кроме того, соединения кальция вводят в состав препаратов для профилактики остеопороза, в витаминные комплексы для беременных и пожилых.

Кальций в организме человека

Кальций - распространенный макроэлемент в организме растений, животных и человека. В организме человека и других позвоночных большая его часть содержится в скелете и зубах в виде фосфатов. Из различных форм карбоната кальция (извести) состоят скелеты большинства групп беспозвоночных (губки, коралловые полипы, моллюски и др.). Потребность в кальции зависит от возраста. Для взрослых необходимая дневная норма составляет от 800 до 1000 миллиграммов (мг), а для детей от 600 до 900 мг, что для детей очень важно из-за интенсивного роста скелета. Большая часть кальция, поступающего в организм человека с пищей, содержится в молочных продуктах, оставшийся кальций приходится на мясо, рыбу, и некоторые растительные продукты (особенно много содержат бобовые).

Усваиванию кальция препятствуют аспирин, щавелевая кислота, производные эстрогенов. Соединяясь с щавелевой кислотой, кальций дает нерастворимые в воде соединения, которые являются компонентами камней в почках.

Избыточные дозы кальция и витамина Д могут вызвать гиперкальцемию, после которой следует интенсивная кальцификация костей и тканей (в основном затрагивает мочевыделительную систему). Максимальная дневная безопасная доза составляет для взрослого от 1500 до 1800 миллиграмм.

Кальций в жёсткой воде

Комплекс свойств, определяемых одним словом «жесткость», воде придают растворенные в ней соли кальция и магния. Жесткая вода непригодна во многих случаях жизни. Она образует слой накипи в паровых котлах и котельных установках, затрудняет окраску и стирку тканей, но годится для варки мыла и приготовления эмульсий в парфюмерном производстве. Поэтому раньше, когда способы умягчения воды были несовершенны, текстильные и парфюмерные предприятия обычно размещались поблизости от источников «мягкой» воды.

Различают жесткость временную и постоянную. Временную (или карбонатную) жесткость придают воде растворимые гидрокарбонаты Са(НCO 3) 2 и Mg(HCO 3) 2 . Устранить ее можно простым кипячением, при котором гидрокарбонаты превращаются в нерастворимые в воде карбонаты кальция и магния.

Постоянная жесткость создается сульфатами и хлоридами тех же металлов. И ее можно устранить, но сделать это намного сложнее.

Сумма обоих жесткостей составляет общую жесткость воды. Оценивают ее в разных странах по-разному. Принято выражать жесткость воды числом миллиграмм-эквивалентов кальция и магния в одном литре воды. Если в литре воды меньше 4 мг-экв, то вода считается мягкой; по мере увеличения их концентрации – все более жесткой и, если содержание превышает 12 единиц, – очень жесткой.

Жесткость воды обычно определяют с помощью раствора мыла. Такой раствор (определенной концентрации) прибавляют по каплям к отмеренному количеству воды. Пока в воде есть ионы Са 2+ или Mg 2+ , они будут мешать образованию пены. По затратам мыльного раствора до появления пены вычисляют содержание ионов Са 2+ и Mg 2+ .

Интересно, что аналогичным путем определяли жесткость воды еще в Древнем Риме. Только реактивом служило красное вино – его красящие вещества тоже образуют осадок с ионами кальция и магния.

Хранение кальция

Металлический кальций длительно хранить можно в кусках весом от 0,5 до 60 кг. Такие куски хранят в бумажных мешках, вложенных в железные оцинкованные барабаны с пропаянными и покрашенными швами. Плотно закрытые барабаны укладывают в деревянные ящики. Куски весом меньше 0,5 кг подолгу хранить нельзя – они быстро превращаются в окись, гидроокись и карбонат кальция.

Общие сведения и методы получения

Кальций (Са) - серебристо-белый металл. Открыт английским химиком Дэви в 1808 г., однако в чистом виде получен только в 1855 г. Бунзеном и Матиссеном путем электролиза расплавленного хлористого кальция. Промышленный способ получения кальция разработан Зутером и Ред-лихом в 1896 г. на заводе Ратенау (Германия). В 1904 г. в Биттерфель-де начал работать первый завод по получению кальция.

Свое название элемент получил от латинского calx (calcis) - известь.

В свободном состоянии в природе не встречается. Входит в состав осадочных и метаморфических пород. Чаще всего встречаются карбонат­ные породы (известняк, мел). Кроме того, кальций содержится во мно­гих минералах: гипсе, кальците, доломите, мраморе и др.

В известняке присутствует не менее 40 % углекислого кальция, в кальците - 56 % СаО, в доломите - 30,4 % СаО, в гипсе - 32,5 % СаО. Кальций содержится в почве и морской воде (0,042 %).

Металлический кальций и его сплавы получают электролитическим и металлотермичсским способами. Электролитические способы основаны на электролизе расплавленного хлористого кальция. Получающийся металл содержит СаС1 2 , поэтому его переплавляют, а для получения высокочистого кальция перегоняют. Оба процесса проводят в вакууме.

Кальций получают также методом алюминотермического восстанов­ления в вакууме, а также термической диссоциацией карбида кальция.

Физические свойства

Атомные характеристики. Атомный номер 20, атомная масса 40,08 а. е. м., атомный объем 26,20 10 _6 м 3 /моль, атомный радиус 0,197 нм, ионный радиус (Са 2 +) 0,104 нм Конфигурация внешних электронных оболочек Зр е 4А 2 . Значения потенциалов ионизации атомов / (эВ): 6,111; 11,87; 51,21. Электроотрицательность 1,0. Кристаллическая решетка г. ц. к. с периодом а =0,556 нм (координационное число 12), переходящая около 460 °С в гексагональную с а=0,448 нм (координационное число 6;6). Энергия кристаллической решетки 194,1 мкДж/кмоль.

Природный кальций состоит из смеси шести стабильных изотопов (40 Са, 42 Са, 43 Ca , 44 Са, 46 Са, 48 Са), из которых наиболее распространен 40 Са (96,97 %). Остальные изотопы (39 Са, "Са, 45 Са, 47 Са и 49 Са) об­ладают радиоактивными свойствами и могут быть получены искусст-иенным путем.

Эффективное поперечное сечение захвата тепловых нейтронов 0,44*10 -28 м 2 . Работа выхода электронов ср = 2,70-н 2,80 эВ. Работа вы­хода электронов для грани (100) монокристалла 2,55 эВ.

Плотность. Плотность кальция при 20 °С р= 1,540 Мг/м 3 , а при 480°С 1,520 Мг/м 3 , жидкого (865°С) 1,365 Мг/м 3 .

Химические свойства

Нормальный электродный потенциал реакции Са-2е^=Са 2 + ср=-2,84 В. В соединениях проявляет степень окисления +2.

Кальций - химически очень активный элемент, вытесняет почти все металлы из их оксидов, сульфидов и галогенидов. Медленно взаимо­действует с холодной водой, при этом выделяется водород, в горячей ЗВде образуется гидроксид. С сухим воздухом при комнатной темпе­ратуре кальций не реагирует, при нагреве до 300 °С и выше сильно окисляется, а при дальнейшем нагреве, особенно в присутствии кисло­рода, воспламеняется, образуя СаО; теплота образования АЯ 0 йр = = 635,13 кДж/моль.

При взаимодействии с водородом при 300-400 °С образуется гид­рид кальция СаН 2 (ДЯ 0 бр= 192,1 кДж/моль), с кислородом прочное ч. высокотемпературное соединение СаО. С фосфором кальций образует устойчивое и прочное соединение Са 3 Р 2 , а с углеродом - карбид СаС 2 . С фтором, хлором, бромом и ио­дом взаимодействует, образуя CaF 2 , СаС1 2 , СаВг 2 , Са1 2 . При нагревании кальции с серой образуется сульфид CaS , с кремнием - силициды Ca 2 Si , CaSi и CaSi 2 .

Концентрированная азотная кислота и концентрированный раствор NaOH слабо взаимодействуют с кальцием, а разбавленная азотная кис­лота бурно. В крепкой серной кислоте кальций покрывается защитной пленкой CaS 0 4 , которая препятствует дальнейшему взаимодействию; разбавленная H 2 S 0 4 действует слабо, разбавленная соляная кислота - сильно.

С большинством металлов кальций взаимодействует, образуя твер­дые растворы и химические соединения.

Нормальный электронный потенциал ф 0 = -2,84 В. Электрохимиче­ский эквивалент 0,20767 мг/Кл.

Технологические свойства

Благодаря высокой пластичности кальция его можно подвераать обра­ботке давлением всех видов. При 200-460 °С он хорошо прессуется, прокатывается в листы, куется, из него легко получают проволоку и другие полуфабрикаты. Кальций хорошо обрабатывается резанием (об­точка на токарном, сверлильном и других станках).

Области применения

Применение металлического кальция обусловлено его высокой химиче­ской активностью. Поскольку при повышенной температуре кальций мо­жет энергично соединяться со всеми газами, кроме инертных, его ис­пользуют для промышленной очистки аргона и гелия, а также в каче­стве газопоглотителя в высоковакуумных приборах, например элек­тронных трубках и т. д.

В металлургии кальций используют в качестве раскислителя и де-сульфуратора стали; при очистке свинца и олова от висмута и сурь­мы; в качестве восстановителя при получении тугоплавких редких ме­таллов, обладающих высоким сродством к кислороду (циркония, ти­тана, тантала, ниобия, тория, урана и др.); в качестве легирующей добавки к свинцово-кальциевым баббитам для повышения их механиче­ских и антифрикционных свойств

Сплав свинца с 0,04 % Са обладает повышенной твердостью по срав­нению с чистым свинцом. Небольшие добавки (0,1 %) кальция повы­шают устойчивость против ползучести. Сплав кальция (до 70 %) с цин­ком используется тля изготовления пенобетона.

Широко применяются лигатуры кальция с кремнием и марганцем, с алюминием и кремнием в качестве раскислителей и добавок в произ­водстве легких сплавов

Присадка кальцийлитиевых лигатур в незначительных количествах к сплавам на основе железа (чугуну, углеродистым и специальным ста­лям) увеличивает их жидкотекучесть и заметно повышает твердость и временное сопротивление.

Широкое применение получили соединения кальция. Так, оксид каль­ция используют в стекольном производстве, для футеровки печей, по­лучения гашеной извести. Гидросульфит кальция применяют в произ­водстве искусственного волокна и для очистки каменноугольного газа.

Хлорная известь используется как" отбеливающее средство в текстиль­ной и целлюлозно-бумажной промышленности, а также как дезинфици­рующее средство. Пероксид кальция идет на приготовление гигиениче­ских и косметических препаратов, а также зубных паст. Сульфид каль­ция служит для получения фосфоресцирующих препаратов, а в коже­венной промышленности - для удаления волосяного покрова кожи. Соединения кальция с мышьяком ядовиты и опасны. Их используют для уничтожения вредителей сельского хозяйства. Соединения кальция с фосфором и цианамиды кальция служат для получения удобрений (суперфосфат, азотистые удобрения и др.). Широко применяются ми­нералы - мрамор, гипс, известняк, доломит и т. д.