Наука изучающая химический состав биохимические процессы. Что такое биохимия? Что изучает биохимия. Что входит в состав биохимии

Биохимический анализ крови – один из наиболее популярных методов исследования для пациентов и врачей. Если четко знать, что показывает биохимический анализ из вены, можно на ранних стадиях выявлять ряд серьезных недугов, среди которых – вирусный гепатит , . Раннее выявление таких патологий дает возможность применить правильное лечение и излечить их.

Кровь на исследование медсестра набирает на протяжении нескольких минут. Каждый пациент должен понимать, что неприятных ощущений эта процедура не вызывает. Ответ на вопрос, откуда берут кровь для анализа, однозначен: из вены.

Говоря о том, что такое биохимический анализ крови и что входит в него, следует учесть, что полученные результаты фактически являются своеобразным отображением общего состояния организма. Тем не менее, пытаясь самостоятельно понять, нормальный анализ или есть определенные отклонения от нормального значения, важно понимать, что такое ЛПНП, что такое КФК (КФК - креатинфосфокиназа), понимать, что такое urea (мочевина) и др.

Общие сведения о том, анализ биохимии крови - что это такое и что можно узнать, проведя его, вы получите из этой статьи. Сколько стоит проведение такого анализа, сколько дней нужно, чтобы получить результаты, следует узнавать непосредственно в лаборатории, где пациент намеревается провести это исследование.

Как происходит подготовка к биохимическому анализу?

Перед тем, как сдавать кровь, нужно тщательно подготовиться к этому процессу. Тем, кто интересуется, как правильно сдать анализ, нужно учесть несколько достаточно простых требований:

  • сдавать кровь нужно только натощак;
  • вечером, накануне предстоящего анализа, нельзя пить крепкий кофе, чай, потреблять жирную еду, алкогольные напитки (последние лучше не пить на протяжении 2-3 дней);
  • нельзя курить, по крайней мере, в течение часа до анализа;
  • за сутки до сдачи анализов не стоит практиковать любые тепловые процедуры – ходить в сауну, баню, также человек не должен подвергать себя серьезным физическим нагрузкам;
  • сдать лабораторные анализы нужно утром, перед проведением любых медицинских процедур;
  • человек, который готовится к анализам, придя в лабораторию, должен немного успокоиться, несколько минут посидеть и отдышаться;
  • негативным является ответ на вопрос, можно ли чистить зубы перед сдачей анализов: чтобы точно определить сахар в крови, утром перед проведением исследования нужно проигнорировать эту гигиеническую процедуру, а также не пить чай и кофе;
  • не следует перед забором крови принимать , гормональные лекарства, мочегонные средства и др.;
  • за две недели до исследования нужно прекратить прием средств, которые влияют на липиды в крови, в частности, статины ;
  • если нужно сдать полный анализ повторно, это нужно делать в одно и то же время, лаборатория тоже должна быть той же самой.

Если был проведен клинический анализ крови, расшифровка показателей проводится специалистом. Также интерпретация показателей биохимического анализа крови может проводиться с помощью специальной таблицы, в которой указаны нормальные показатели анализов у взрослых и у детей. Если какой-либо показатель отличается от нормы, важно обратить на это внимание и проконсультироваться с врачом, который может правильно «прочитать» все полученные результаты и дать свои рекомендации. При необходимости назначается биохимия крови: расширенный профиль.

Таблица расшифровки биохимического анализа крови у взрослых

Показатель в исследовании Норма
Белок общий 63-87 г/л

Фракции белка:альбумины

глобулины (α1, α2, γ, β)

Креатинин 44-97 мкмоль на л – у женщин, 62-124 – у мужчин
Мочевина 2,5-8,3 ммоль/л
Мочевая кислота 0,12-0,43 ммоль/л — у мужчин, 0,24-0,54 ммоль/л — у женщин.
Холестерин общий 3,3-5, 8 ммоль/л
ЛПНП менее 3 ммоль на л
ЛПВП выше или равно 1,2 ммоль на л — у женщин, 1 ммоль на л – у мужчин
Глюкоза 3,5-6,2 ммоль на л
Билирубин общий 8,49-20,58 мкмоль/л
Билирубин прямой 2,2-5,1 мкмоль/л
Триглицериды менее 1,7 ммоль на л
Аспартатаминотрансфераза (сокращенно АСТ) аланинаминотрансфераза — норма у женщин и мужчин — до 42 Ед/л
Аланинаминотрансфераза (сокращенно АЛТ) до 38 Ед/л
Гамма-глутамилтрансфераза (сокращенно ГГТ) нормальные показатели ГГТ — до 33,5 Ед/л — у мужчин, до 48,6 Ед/л – у женщин.
Креатинкиназа (сокращенно КК) до 180 Ед/л
Щелочная фосфатаза (сокращенно ЩФ) до 260 Ед/л
Α-амилаза до 110 Е на литр
Калий 3,35-5,35 ммоль/л
Натрий 130-155 ммоль/л

Таким образом, биохимическое исследование крови дает возможность провести развернутый анализ для оценки работы внутренних органов. Также расшифровка результатов позволяет адекватно «читать», какие именно , макро- и микроэлементы, нужны организму. Биохимия крови позволяет распознать наличие патологий .

Если правильно расшифровать полученные показатели, намного проще поставить любой диагноз. Биохимия – это более подробное исследование, чем ОАК. Ведь расшифровка показателей общего анализа крови не позволяет получить столь подробных данных.

Очень важно проводить такие исследования при . Ведь общий анализ при беременности не дает возможности получить полной информации. Поэтому биохимию у беременных назначают, как правило, в первые месяцы и в третьем триместре. При наличии определенных патологий и плохого самочувствия этот анализ проводят чаще.

В современных лабораториях способны провести исследование и расшифровать полученные показатели на протяжении нескольких часов. Пациенту предоставляется таблица, в которой указаны все данные. Соответственно, есть возможность даже самостоятельно отследить, насколько показатели крови в норме у взрослых и у детей.

Как таблица расшифровки общего анализа крови у взрослых, так и биохимические анализы расшифровываются с учетом возраста и пола пациента. Ведь норма биохимии крови, как и норма клинического анализа крови, может варьироваться у женщин и мужчин, у молодых и пожилых пациентов.

Гемограмма – это клинический анализ крови у взрослых и детей, который позволяет узнать количество всех элементов крови, а также их морфологические особенности, соотношение , содержание и др.

Так как биохимия крови – это комплексное исследование, она включает также печеночные пробы. Расшифровка анализа позволяет определить, в норме ли функция печени. Печеночные показатели важны для диагностики патологий этого органа. Оценить структурное и функциональное состояние печени дают возможность следующие данные: показатель АЛТ, ГГТП (ГГТП норма у женщин немного ниже), щелочной фосфатазы, уровень и общего белка. Печеночные пробы проводятся при необходимости установить или подтвердить диагноз.

Холинэстераза определяется с целью диагностики выраженности и состояния печени, а также ее функций.

Сахар в крови определяется с целью оценки функций эндокринной системы. Как называется анализ крови на сахар, можно узнать непосредственно в лаборатории. Обозначение сахара можно найти в бланке с результатами. Как обозначается сахар? Он обозначается понятием «глюкоза» или «GLU» на английском.

Важна норма CRP , так как скачок этих показателей свидетельствует о развитии воспаления. Показатель АСТ свидетельствует о патологических процессах, связанных с разрушением тканей.

Показатель MID в анализе крови определяют при проведении общего анализа. Уровень MID позволяет определить развитие , инфекционных болезней, анемии и др. Показатель MID позволяет оценить состояние иммунной системы человека.

МСНС – это показатель средней концентрации в . Если МСНС повышен, причины этого связаны с недостатком или фолиевой кислоты , а также врожденного сфероцитоза.

MPV - среднее значение объема измеренных .

Липидограмма предусматривает определение показателей общего , ЛПВП, ЛПНП, триглицеридов. Липидный спектр определяют с целью выявления нарушений липидного обмена в организме.

Норма электролитов крови свидетельствует о нормальном течении обменных процессов в организме.

Серомукоид – это фракция белков , которая включает группу гликопротеинов. Говоря о том, серомукоид - что это такое, следует учесть, что если разрушается, деградирует или повреждается соединительная ткань, серомукоиды поступают в плазму крови. Поэтому серомукоиды определяют с целью прогноза развития .

ЛДГ, LDH (лактатдегидрогеназа) – это , принимающий участие в окислении глюкозы и продукции молочной кислоты.

Исследование на остеокальцин проводят для диагностики .

Анализ на ферритин (белковый комплекс, основное внутриклеточное депо железа) проводят при подозрении на гемохроматоз, хронические воспалительные и инфекционные болезни, опухоли.

Анализ крови на ASO важен для проведения диагностики разновидности осложнений после перенесенной стрептококковой инфекции.

Кроме того, определяются и другие показатели, а также проводятся другие следования (электрофорез белков и др.). Норма биохимического анализа крови отображается в специальных таблицах. В ней отображена норма биохимического анализа крови у женщин, таблица также дает информацию о нормальных показателях у мужчин. Но все же о том, как расшифровать общий анализ крови и как прочитать данные биохимического анализа, лучше спрашивать у специалиста, который адекватно оценит результаты в комплексе и назначит соответствующее лечение.

Расшифровка биохимии крови у детей проводится специалистом, который назначил исследования. Для этого также используется таблица, в которой обозначена норма у детей всех показателей.

В ветеринарии также существуют нормы биохимических показателей крови для собаки, кошки – в соответствующих таблицах указан биохимический состав крови животных.

Что значат в анализе крови некоторые показатели, подробнее рассматривается ниже.

Белок очень много значит в организме человека, так как он принимает участие в творении новых клеток, в транспорте веществ и формировании гуморального .

В состав протеинов входит 20 основных , также в их составе содержатся неорганические вещества, витамины, остатки липидов и углеводов.

В жидкой части крови содержится примерно 165 белков, причем, их строение и роль в организме разные. Протеины делятся на три разные белковые фракции:

  • глобулины (α1, α2, β, γ);
  • фибриноген .

Так как выработка протеинов происходит в основном в печени, их уровень свидетельствует о ее синтетической функции.

Если проведенная протеинограмма свидетельствует, что в организме отмечается снижение показателей общего белка, это явление определяется как гипопротеинемия. Подобное явление отмечается в следующих случаях:

  • при белковом голодании – если человек соблюдает определенную , практикует вегетарианство;
  • если отмечается повышенное выведение белка с мочой – при , болезнях почек, ;
  • если человек теряет много крови – при кровотечениях, обильных месячных;
  • в случае серьезных ожогов;
  • при экссудативном плеврите, экссудативном , асците;
  • при развитии злокачественных новообразований;
  • если нарушено образование белка – при , гепатите;
  • при снижении всасывания веществ – при , колите, энтерите и др.;
  • после продолжительного приема глюкокортикостероидов.

Повышенный уровень белка в организме – это гиперпротеинемия . Различается абсолютная и относительная гиперпротеинемия.

Относительный рост протеинов развивается в случае потери жидкой части плазмы. Это происходит, если беспокоит постоянная рвота, при холере.

Абсолютное увеличение белка отмечается, если имеют место воспалительные процессы, миеломная болезнь.

Концентрации этого вещества на 10% изменяются при изменении положения тела, а также во время физических нагрузок.

Почему изменяются концентрации фракций белка?

Белковые фракции – глобулины, альбумины, фибриноген.

Стандартный биоанализ крови не предполагает определения фибриногена, который отображает процесс свертывания крови. – анализ, в котором определяют этот показатель.

Когда повышен уровень фракций белка?

Уровень альбуминов:

  • если происходит потеря жидкости во время инфекционных заболеваний;
  • при ожогах.

Α-глобулины:

  • при системных болезнях соединительной ткани ( , );
  • при гнойных воспалениях в острой форме;
  • при ожогах в период восстановления;
  • у больных гломерулонефритом.

Β- глобулины:

  • при гиперлипопротеинемии у людей с сахарным диабетом, ;
  • при кровоточащей язве в желудке или кишечнике;
  • при нефротическом синдроме;
  • при .

Гамма-глобулины повышены в крови:

  • при вирусных и бактериальных инфекциях;
  • при системных болезнях соединительной ткани (артрит ревматоидный, дерматомиозит, склеродермия);
  • при аллергии;
  • при ожогах;
  • при глистной инвазии.

Когда понижен уровень фракций белка?

  • у новорожденных детей вследствие недоразвитости печеночных клеток;
  • при легких;
  • при беременности;
  • при заболеваниях печени;
  • при кровотечениях;
  • в случае накопления плазмы в полостях организма;
  • при злокачественных опухолях.

В организме происходит не только строительство клеток. Они также распадаются, и при этом накапливаются азотистые основания. Формирование их происходит в печени человека, выводятся они через почки. Следовательно, если показатели азотистого обмена повышены, то вероятно нарушение функций печени или почек, а также избыточный распад белков. Основные показатели азотистого обмена – креатинин , мочевина . Реже определяется аммиак, креатин, остаточный азот, мочевая кислота.

Мочевина (urea)

  • гломерулонефриты, острые и хронические;
  • отравление разными веществами - дихлорэтаном, этиленгликолем, солями ртути;
  • артериальная гипертензия;
  • краш-синдром;
  • поликистоз или почек;

Причины, вызывающие понижение:

  • увеличенное выделение мочи;
  • введение глюкозы;
  • печеночная недостаточность;
  • снижение обменных процессов;
  • голодание;
  • гипотиреоз.

Креатинин

Причины, вызывающие повышение:

  • почечная недостаточность в острой и хронической формах;
  • декомпенсированный ;
  • акромегалия;
  • дистрофия мышц;
  • ожоги.

Мочевая кислота

Причины, вызывающие повышение:

  • лейкозы;
  • дефицит витамина В-12;
  • инфекционные болезни острого характера;
  • болезнь Вакеза;
  • заболевания печени;
  • сахарный диабет в тяжелой форме;
  • патологии кожных покровов;
  • отравление угарным газом, барбитуратами.

Глюкоза

Глюкоза считается основным показателем обмена углеводов. Она является основным энергетическим продуктом, который поступает в клетку, так как жизнедеятельность клетки зависит именно от кислорода и глюкозы. После того, как человек принял пищу, глюкоза попадает в печень, а там происходит ее утилизация в виде гликогена . Контролируют эти процессы поджелудочной – и глюкагон . Вследствие недостатка глюкозы в крови развивается гипогликемия, ее избыток говорит о том, что имеет место гипергликемия.

Нарушение концентрации глюкозы в крови происходит в следующих случаях:

Гипогликемия

  • при продолжительном голодании;
  • в случае нарушения всасывания углеводов – при , энтерите и др.;
  • при гипотиреозе;
  • при хронических патологиях печени;
  • при недостаточности коры надпочечников в хронической форме;
  • при гипопитуитаризме;
  • в случае передозировки инсулином или гипогликемическими лекарствами, которые принимают перорально;
  • при , инсуломе, менингоэнцефалите, .

Гипергликемия

  • при сахарном диабете первого и второго типов;
  • при тиреотоксикозе;
  • в случае развития опухоли ;
  • при развитии новообразований коры надпочечников;
  • при феохромоцитоме;
  • у людей, которые практикуют лечение глюкокортикоидами;
  • при ;
  • при травмах и опухолях мозга;
  • при психоэмоциональном возбуждении;
  • если произошло отравление угарным газом.

Специфические окрашенные белки – это пептиды, в составе которых есть металл (медь, железо). Это миоглобин, гемоглобин, цитохром, церуллоплазмин и др. Билирубин – это конечный продукт распада таких белков. Когда завершается существование эритроцита в селезенке, за счет биливердинредуктазы вырабатывается билирубин, который называется непрямой или свободный. Этот билирубин токсичен, поэтому для организма он вреден. Однако так как происходит его быстрая связь с альбуминами крови, то отравление организма не происходит.

В то же время у людей, которые страдают циррозом, гепатитом, в организме связи с глюкуроновой кислотой не происходит, поэтому анализ показывает высокий уровень билирубина. Далее происходит связывание непрямого билирубина с глюкуроновой кислотой в клетках печени, и он превращается в связанный или прямой билирубин (DBil), не являющийся токсичным. Высокий уровень его отмечается при синдроме Жильбера , дискинезиях желчевыводящих путей . Если проводятся печеночные пробы, расшифровка их может демонстрировать высокий уровень прямого билирубина, если повреждены печеночные клетки.

Ревмопробы

Ревмопробы – комплексный иммунохимический анализ крови, в который входит исследование на определение ревматоидного фактора, анализ на циркулирующие иммунные комплексы, определение антител к о-стрептолизину. Ревмопробы могут проводиться самостоятельно, а также как часть исследований, которые предусматривает иммунохимия. Ревмопробы следует проводить, если есть жалобы на боли в суставах.

Выводы

Таким образом, общетерапевтический развернутый биохимический анализ крови – очень важное исследование в процессе диагностики. Тем, кто хочет провести в поликлинике или в лаборатории полный расширенный БХ анализ крови или ОАК, важно учесть, что в каждой лаборатории используют определенный набор реактивов, анализаторы и другие аппараты. Следовательно, нормы показателей смогут различаться, что нужно учитывать, изучая, что показывает клинический анализ крови или результаты биохимии. Перед тем, как читать результаты, важно убедиться, что в бланке, который выдают в медучреждении, обозначены нормативы, чтобы расшифровать результаты пробы правильно. Норма ОАК у детей также обозначена в бланках, но оценивать полученные результаты должен врач.

Многие интересуются: анализ крови форма 50 - что это и зачем его сдавать? Это анализ на определение антител, которые есть в организме, если он заражен . Анализ ф50 делается как при подозрении на ВИЧ, так и с целью профилактики у здорового человека. К такому исследованию также стоит правильно подготовиться.

Биохимический анализ – исследование широкого спектра ферментов, органических и минеральных веществ. Этот анализ обмены веществ в организме человека: углеводный, минеральный, жировой и белковый. Изменения в обменах веществ показывают, существует ли -либо патология и в каком именно органе.

Данный анализ делается в том случае, если у врача есть подозрение на скрытное заболевание. Результат анализа патологию в организме на самом начальном этапе развития, и специалист может сориентироваться с выбором лекарственных средств.

С помощью этого анализа можно выявить заболевание лейкозом на ранней стадии, когда еще симптомы не начали проявляться. В таком случае можно начать принимать необходимые препараты и остановить патологический процесс заболевания.

Процесс забора и значения показателей анализа

На анализ берется кровь из вены, примерно пять-десять миллилитров. Ее помещают в специальную пробирку. Анализ проводят на голодный желудок пациента, для более полной правдивости. Если нет никакого риска для здоровья, рекомендуется не принимать перед крови лекарственные средства.

Для трактовки результатов анализа используют самые информативные показатели:
- уровень глюкозы и сахара – повышенный показатель характеризует развитие сахарного диабета у человека, резкое его снижение представляет угрозу жизни;
- холестерин – повышенное его содержание констатирует факт наличия атеросклероза сосудов и риска сердечно-сосудистых заболеваний;
- трансаминазы – ферменты, выявляющие такие заболевания, как инфаркт миокарда, поражение печени (гепатит), или наличие какой-либо травмы;
- билирубин – его высокие показатели говорят о поражении печени, массивном разрушении эритроцитов и нарушении оттока желчи;
- мочевина и креатин – их избыток указывает на ослабление функции выделения почек и печени;
- общий белок – его показатели изменяются, когда в организме происходит тяжелое заболевание или какой-либо негативный процесс;
- амилаза – является ферментом поджелудочной железы, повышение ее уровня в крови указывает на воспаление железы – панкреатит.

Помимо вышеперечисленного, биохимический анализ крови определяет содержание в организме калия, железа, фосфора и хлора. Расшифровывать результаты анализа может только лечащий врач, который и назначит соответствующее лечение.

Биохимия - это наука, занимающаяся изучением различных молекул, химических реакций и процессов, протекающих в живых клетках и организмах. Основательное знание биохимии совершенно необходимо для успешного развития двух главных направлений биомедицинских наук: 1) решение проблем сохранения здоровья человека; 2) выяснение причин различных болезней и изыскание путей их эффективного лечения.

БИОХИМИЯ И ЗДОРОВЬЕ

Всемирная организация здравоохранения (ВОЗ) определяет здоровье как состояние «полного физического, духовного и социального благополучия, которое не сводится к простому отсутствию болезней и недомоганий». Со строго биохимической точки зрения организм можно считать здоровым, если многие тысячи реакций, протекающих внутри клеток и во внеклеточной среде, идут в таких условиях и с такими скоростями, которые обеспечивают максимальную жизнеспособность организма и поддерживают физиологически нормальное (не патологическое) состояние.

БИОХИМИЯ, ПИТАНИЕ, ПРОФИЛАКТИКА И ЛЕЧЕНИЕ

Одной из главных предпосылок сохранения здоровья является оптимальная диета, содержащая ряд химических веществ; главными из них являются витамины, некоторые аминокислоты, некоторые жирные кислоты, различные минеральные вещества и вода. Все эти вещества представляют тот или иной интерес как для биохимии, так и для науки о рациональном питании. Следовательно, между этими двумя науками существует тесная связь. Кроме того, можно полагать, что на фоне усилий, прилагаемых к тому, чтобы сдержать рост цен на медицинское обслуживание, все большее внимание будет уделяться сохранению здоровья и предупреждению болезней, т.е. профилактической медицине. Так, например, для предупреждения атеросклероза и рака со временем, вероятно, все большее значение будет придаваться рациональному питанию. В то же время концепция рационального питания должна основываться на знании биохимии.

БИОХИМИЯ И БОЛЕЗНИ

Все болезни представляют собой проявление каких-то изменений в свойствах молекул и нарушений хода химических реакций и процессов. Основные факторы, приводящие к развитию болезней у животных и человека, приведены в табл. 1.1. Все они оказывают влияние на одну или несколько ключевых химических реакций или на структуру и свойства функционально важных молекул.

Вклад биохимических исследований в диагностику и лечение заболеваний сводится к следующему.

Таблица 1.1. Основные факторы, приводящие к развитию болезней. Все они оказывают влияние на различные биохимические процессы, протекающие в клетке или целом организме

1. Физические факторы: механическая травма, экстремальная температура, резкие изменения атмосферного давления, радиация, электрический шок

2. Химические агенты и лекарственные препараты: некоторые токсические соединения, терапевтические препараты и т.д.

4. Кислородное голодание: потеря крови, нарушение кислородпереносящей функции, отравление окислительных ферментов

5. Генетические факторы: врожденные, молекулярные

6. Иммунологические реакции: анафилаксия, аутоиммунные заболевания

7. Нарушения пищевого баланса: недостаточное питание, избыточное питание

Благодаря этим исследованиям можно 1) выявить причину болезни; 2) предложить рациональный и эффективный путь лечения; 3) разработать методики для массового обследования населения с целью ранней диагностики; 4) следить за ходом болезни; 5) контролировать эффективность лечения. В Приложении описаны наиболее важные биохимические анализы, используемые для диагностики различных заболеваний. К этому Приложению будет полезно обращаться всякий раз, когда будет идти речь о биохимической диагностике различных болезней (например, инфаркта миокарда, острого панкреатита и др.).

Возможности биохимии в отношении предупреждения и лечения болезней кратко проиллюстрированы на трех примерах; позднее в этой же главе мы рассмотрим еще несколько примеров.

1. Хорошо известно, что для поддержания своего здоровья человек должен получать определенные сложные органические соединения - витамины. В организме витамины превращаются в более сложные молекулы (коферменты), которые играют ключевую роль во многих протекающих в клетках реакциях. Недостаток в диете какого-либо из витаминов может привести к развитию различных заболеваний, например цинги при недостатке витамина С или рахита при недостатке витамина D. Выяснение ключевой роли витаминов или их биологически активных производных стало одной из главных задач, которые решали биохимики и диетологи с начала нынешнего столетия.

2. Патологическое состояние, известное под названием фенилкетонурия (ФКУ), в отсутствие лечения может привести к тяжелой форме умственной отсталости. Биохимическая природа ФКУ известна уже около 30 лет: заболевание обусловлено недостатком или полным отсутствием активности фермента, который катализирует превращение аминокислоты фенилаланина в другую аминокислоту, тирозин. Недостаточная активность этого фермента приводит к тому, что в тканях накапливается избыток фенилаланина и некоторых его метаболитов, в частности кетонов, что неблагоприятно сказывается на развитии центральной нервной системы. После того как были выяснены биохимические основы ФКУ, удалось найти рациональный способ лечения: больным детям назначают диету с пониженным содержанием фенилаланина. Массовое обследование новорожденных на ФКУ позволяет в случае надобности начать лечение незамедлительно.

3. Кистозный фиброз - наследуемая болезнь экзокринных, и в частности потовых, желез. Причина болезни неизвестна. Кистозный фиброз является одной из наиболее распространенных генетических болезней в Северной Америке. Он характеризуется аномально вязкими секретами, которые закупоривают секреторные протоки поджелудочной железы и бронхиолы. Страдающие этой болезнью чаще всего погибают в раннем возрасте от легочной инфекции. Поскольку молекулярная основа болезни неизвестна, возможно только симптоматическое лечение. Впрочем, можно надеяться, что в недалеком будущем с помощью технологии рекомбинантных ДНК удастся выяснить молекулярную природу заболевания, что позволит найти более эффективный способ лечения.

ФОРМАЛЬНОЕ ОПРЕДЕЛЕНИЕ БИОХИМИИ

Биохимия, как следует из названия (от греческого bios-жизнь), - это химия жизни, или, более строго, наука о химических основах процессов жизнедеятельности.

Структурной единицей живых систем является клетка, поэтому можно дать и другое определение: биохимия как наука изучает химические компоненты живых клеток, а также реакции и процессы, в которых они участвуют. Согласно этому определению, биохимия охватывает широкие области клеточной биологии и всю молекулярную биологию.

ЗАДАЧИ БИОХИМИИ

Главная задача биохимии состоит в том, чтобы достичь полного понимания на молекулярном уровне природы всех химических процессов, связанных с жизнедеятельностью клеток.

Для решения этой задачи необходимо выделить из клеток многочисленные соединения, которые там находятся, определить их структуру и установить их функции. В качестве примера можно указать на многочисленные исследования, направленные на выяснение молекулярных основ мышечного сокращения и ряда сходных процессов. В результате были выделены в очищенном виде многие соединения различной степени сложности и проведены детальные структурно-функциональные исследования. В итоге удалось выяснить ряд аспектов молекулярных основ мышечного сокращения.

Еще одна задача биохимии заключается в выяснении вопроса о происхождении жизни. Наши представления об этом захватывающем процессе далеки от исчерпывающих.

ОБЛАСТИ ИССЛЕДОВАНИЯ

Сфера биохимии столь же широка, как и сама жизнь. Всюду, где существует жизнь, протекают различные химические процессы. Биохимия занимается изучением химических реакций, протекающих в микроорганизмах, растениях, насекомых, рыбах, птицах, низших и высших млекопитающих, и в частности в организме человека. Для студентов, изучающих биомедицинские науки, особый интерес представляют

два последних раздела. Однако было бы недальновидно совсем не иметь представления о биохимических особенностях некоторых других форм жизни: нередко эти особенности существенны для понимания разного рода ситуаций, имеющих прямое отношение к человеку.

БИОХИМИЯ И МЕДИЦИНА

Между биохимией и медициной имеется широкая двусторонняя связь. Благодаря биохимическим исследованиям удалось ответить на многие вопросы, связанные с развитием заболеваний, а изучение причин и хода развития некоторых заболеваний привело к созданию новых областей биохимии.

Биохимические исследования, направленные на выявление причин заболеваний

В дополнение к указанным выше мы приведем еще четыре примера, иллюстрирующих широту диапазона возможных применений биохимии. 1. Анализ механизма действия токсина, продуцируемого возбудителем холеры, позволил выяснить важные моменты в отношении клинических симптомов болезни (диарея, обезвоживание). 2. У многих африканских растений содержание одной или нескольких незаменимых аминокислот весьма незначительно. Выявление этого факта позволило понять, почему те люди, для которых именно эти растения являются основным источником белка, страдают от белковой недостаточности. 3. Обнаружено, что у комаров - переносчиков возбудителей малярии - могут формироваться биохимические системы, наделяющие их невосприимчивостью к инсектицидам; это важно учитывать при разработке мер по борьбе с малярией. 4. Гренландские эскимосы в больших количествах потребляют рыбий жир, богатый некоторыми полиненасыщенными жирными кислотами; в то же время известно, что для них характерно пониженное содержание холестерола в крови, и поэтому у них гораздо реже развивается атеросклероз. Эти наблюдения навели на мысль о возможности применения полиненасыщенных жирных кислот для снижения содержания холестерола в плазме крови.

Изучение болезней способствует развитию биохимии

Наблюдения английского врача сэра Арчибальда Гаррода еще в начале 1900-х гг. за небольшой группой пациентов, страдавших врожденными нарушениями метаболизма, стимулировали исследование биохимических путей, нарушение которых происходит при такого рода состояниях. Попытки понять природу генетического заболевания под названием семейная гиперхолестеролемия, приводящего к развитию тяжелого атеросклероза в раннем возрасте, способствовали быстрому накоплению сведений о клеточных рецепторах и о механизмах поглощения холестерола клетками. Интенсивное изучение онкогенов в раковых клетках привлекло внимание к молекулярным механизмам контроля роста клеток.

Изучение низших организмов и вирусов

Ценная информация, которая оказалась весьма полезной для проведения биохимических исследований в клинике, была получена при изучении некоторых низших организмов и вирусов. Например, современные теории регуляции активности генов и ферментов сформировались на базе пионерских исследований, выполненных на плесневых грибах и на бактериях. Технология рекомбинантных ДНК зародилась в ходе исследований, проведенных на бактериях и бактериальных вирусах. Главным достоинством бактерий и вирусов как объектов биохимических исследований является высокая скорость их размножения; это существенно облегчает проведение генетического анализа и генетических манипуляций. Сведения, полученные при изучении вирусных генов, ответственных за развитие некоторых форм рака у животных (вирусных онкогенов), позволили лучше понять механизм трансформации нормальных клеток человека в раковые.

БИОХИМИЯ И ДРУГИЕ БИОЛОГИЧЕСКИЕ НАУКИ

Биохимия нуклеиновых кислот лежит в самой основе генетики; в свою очередь использование генетических подходов оказалось плодотворным для многих областей биохимии. Физиология, наука о функционировании организма, очень сильно перекрывается с биохимией. В иммунологии находит применение большое число биохимических методов, и в свою очередь многие иммунологические подходы широко используются биохимиками. Фармакология и фармация базируются на биохимии и физиологии; метаболизм большинства лекарств осуществляется в результате соответствующих ферментативных реакций. Яды влияют на биохимические реакции или процессы; эти вопросы составляют предмет токсикологии. Как мы уже говорили, в основе разных видов патологии лежит нарушение ряда химических процессов. Это обусловливает все более широкое использование биохимических подходов для изучения различных видов патологии (например, воспалительные процессы, повреждения клеток и рак). Многие из тех, кто занимается зоологией и ботаникой, широко используют в своей работе биохимические подходы. Эти взаимосвязи не удивительны, поскольку, как мы знаем, жизнь во всех своих проявлениях зависит от разнообразных биохимических реакций и процессов. Барьеры, существовавшие ранее между биологическими науками, фактически разрушены, и биохимия все в большей степени становится их общим языком.

Жизнь и неживое? Химия и биохимия? Где между ними грань? И есть ли она? Где связь? Ключ к разгадке этих проблем долгое время был у природы за семью замками. И лишь в XX веке удалось несколько приоткрыть тайны жизни, причем многие кардинальные вопросы прояснились, когда ученые дошли до исследований на уровне молекул. Познание физико-химических основ жизненных процессов стало одной из главных задач естествознания, и именно на этом направлении, пожалуй, были получены самые интересные результаты, имеющие принципиальное теоретическое значение и сулящие громадный выход в практику.

Химия давно уже присматривается к природным веществам, участвующим в процессах жизнедеятельности.

За прошедшие два столетия химии суждено было сыграть выдающуюся роль в познании живой природы. На первом этапе химическое изучение носило описательный характер, и учеными были выделены и охарактеризованы разнообразные природные вещества, продукты жизнедеятельности микроорганизмов, растений и животных, обладавшие часто ценными свойствами (лекарственные препараты, красители и т. п.). Однако лишь сравнительно недавно на смену этой традиционной химии природных соединений пришла современная биохимия с ее стремлением не только описать, но и объяснить, и не только самое простое, но и самое сложное в живом.

Внеорганическая биохимия

Внеорганическая биохимия как наука сложилась в середине XX столетия, когда на сцену вырвались новые направления биологии, оплодотворенные достижениями других наук, и когда в естествознание пришли специалисты нового склада ума, объединенные желанием и стремлением точнее описать живой мир. И не случайно под одной крышей старомодного здания по Академическому проезду, 18 оказались два вновь организованных института, представлявших самые новые в то время направления химико-биологической науки, - Институт химии природных соединений и Институт радиационной и физико-химической биологии. Этим двум институтам суждено было начать в нашей стране бой за познание механизмов биологических процессов и детальное выяснение структур физиологически активных веществ.

К этому периоду стала ясна уникальная структура основного объекта молекулярной биологии - дезоксирибонуклеиновой кислоты (ДНК), знаменитая «двойная спираль». (Это длинная молекула, на которой, как на магнитофонной ленте или матрице, записан полный «текст» всей информации об организме.) Появилась структура первого белка - гормона инсулина, был успешно выполнен химический синтез гормона окситоцина.

А что, собственно, такое биохимия, чем она занимается?

Эта наука изучает биологически важные природные и искусственные (синтетические) структуры, химические соединения - как биополимеры, так и низкомолекулярные вещества. Точнее, закономерности связи их конкретной химической структуры с соответствующей физиологической функцией. Биоорганическую химию интересует тонкое устройство молекулы биологически важного вещества, внутренние ее связи, динамика и конкретный механизм ее изменения, роль каждого ее звена в выполнении функции.

Биохимия — ключ к пониманию белков

Биоорганической химии принадлежат, несомненно, крупные успехи в изучении белковых веществ. Еще в 1973 году было завершено выяснение полной первичной структуры фермента аспартат-аминотрансферазы, состоящего из 412 аминокислотных остатков. Это один из наиболее важных биокатализаторов живого организма и один из наиболее крупных белков с расшифрованной структурой. Позднее было определено строение и других важных белков - несколько нейротоксинов из яда среднеазиатской кобры, которые используются при изучении механизма передачи нервного возбуждения в качестве специфических блокаторов, а также растительного гемоглобина из клубеньков желтого люпина и антилейкозного белка актиноксантина.

Огромный интерес представляют родопсины. Давно известно, что родопсин - основной белок , участвующий у животных в процессах зрительной рецепции, и его выделяют из особых систем глаза. Этот уникальный белок принимает световой сигнал и обеспечивает нам способность видеть. Было обнаружено, что подобный родопсину белок встречается и у некоторых микроорганизмов, но выполняет совсем другую функцию (поскольку бактерии «не видят»). Здесь он энергетическая машина, синтезирующая богатые энергией вещества за счет света. Оба белка очень близки по структуре, но их назначение принципиально различно.

Одним из важнейших объектов изучения был фермент, участвующий в реализации генетической информации. Двигаясь по ДНК-матрице, он как бы считывает записанную в ней наследственную информацию и на этой основе синтезирует информационную рибонуклеиновую кислоту. Последняя же, в свою очередь, служит матрицей для синтеза белков. Этот фермент - огромный белок, его молекулярный вес приближается к полумиллиону (вспомним: у воды он всего лишь 18) и состоит из нескольких различных субъединиц. Выяснение его структуры суждено было помочь ответить на важнейший вопрос биологии: каков механизм «снятия» генетической информации, как идет расшифровка текста, записанного в ДНК - основном веществе наследственности.

Пептиды

Ученых привлекают не только белки, но и более короткие цепочки из аминокислот, называемые пептидами. Среди них сотни веществ громадного физиологического значения. Вазопрессин и ангиотензин участвуют в регуляции кровяного давления, гастрин управляет секрецией желудочного сока, грамицидин С и полимиксин - антибиотики, к которым относятся и так называемые вещества памяти. В короткой цепочке несколькими «буквами» аминокислотами записана огромная биологическая информация!

Сегодня мы умеем искусственно получать не только любой сложный пептид, но и простой белок, например инсулин. Значение таких работ трудно переоценить.

Был создан метод комплексного анализа пространственного строения пептидов с помощью разнообразных физических и расчетных методов. А ведь сложная объемная архитектура пептида и определяет всю специфику его биологической активности. Пространственное строение любого биологически активного вещества, или, как говорят, его конформация, - ключ к пониманию механизма его действия.

Среди представителей нового класса пептидных систем - депсипелтидов - коллектив ученых обнаружил вещества поразительной природы, способные селективно переносить ионы металлов через биологические мембраны, так называемые ионофоры. И главный среди них - валиномицин.

Открытие ионофоров составило целую эру в мембранологии, поскольку позволило направленно изменять транспорт ионов щелочных металлов - калий и натрий - через биомембраны. С транспортом этих ионов связаны и процессы нервного возбуждения, и процессы дыхания, и процессы рецепции - восприятия сигналов внешней среды. На примере валиномицина удалось показать, как биологические системы способны выбрать лишь один ион из десятков других, связать его в удобно транспортируемый комплекс и перенести через мембрану. Это удивительное свойство валиномицина заключено в его пространственной структуре, напоминающей собой ажурный браслет.

Другой тип ионофоров представляет собой антибиотик грамицидин А. Это линейная цепочка, построенная из 15 аминокислот, в пространстве образует спираль из двух молекул, причем, как было установлено, это истинная двойная спираль. Первая двойная спираль в белковых системах! И спиральная структура, встраиваясь в мембрану, образует своеобразную пору, канал, через который ионы щелочных металлов проходят сквозь мембрану. Простейшая модель ионного канала. Понятно, почему грамицидин вызвал такую бурю в мембранологии. Ученые уже получили многие синтетические аналоги грамицидина, он детально изучался на искусственных и биологических мембранах. Сколько прелести и значимости в такой, казалось бы, маленькой молекуле!

Не без помощи валиномицина и грамицидина ученые оказались втянутыми в исследование биологических мембран.

Биологические мембраны

Но в состав мембран всегда входит еще один основной компонент, который определяет их природу. Это жироподобные вещества, или липиды. Молекулы липидов невелики по размеру, но они образуют прочные гигантские ансамбли, формирующие сплошной мембранный слой. В этот слой встраиваются молекулы белков - и вот вам одна из моделей биологической мембраны.

Почему же важны биомембраны? Вообще мембраны - важнейшие регуляторные системы живого организма. Сейчас по подобию биомембран создаются важные технические средства - микроэлектроды, датчики, фильтры, топливные элементы… И дальнейшие перспективы использования мембранных принципов в технике поистине безграничны.

Прочие интересы биохимии

Видное место занимают исследования по бихимии нуклеиновых кислот. Они нацелены на расшифровку механизма химического мутагенеза, а также на познание природы связи между нуклеиновыми кислотами и белками.

Особое внимание было издавна сосредоточено на искусственном синтезе гена. Ген, или, если говорить упрощенно, функционально значимый участок ДНК, сегодня уже можно получить химическим синтезом. Это одно из важных направлений модной сейчас «генной инженерии». Работы, лежащие на стыке биоорганической химии и молекулярной биологии, требуют овладения сложнейшими приемами, дружного сотрудничества химиков и биологов.

Еще один класс биополимеров - углеводы, или полисахариды. Мы знаем типичных представителей веществ этой группы - целлюлозу, крахмал, гликоген, свекловичный сахар. Но в живом организме углеводы выполняют самые разнообразные функции. Это защита клетки от врагов (иммунитет), она важнейшая составная часть клеточных стенок, компонент рецепторных систем.

Наконец, антибиотики. В лабораториях выяснено строение таких важнейших групп антибиотиков, как стрептотрицин, оливомицин, альбофунгин, абиковхромицин, ауреоловая кислота, обладающие противоопухолевой, противовирусной и антибактериальной активностью.

Рассказать о всех поисках и достижениях биоорганической химии невозможно. С уверенностью только можно утверждать, что у биооргаников больше планов, чем сделанного.

Биохимия тесно сотрудничает с молекулярной биологией, биофизикой, изучающими жизнь на уровне молекул. Она стала химическим фундаментом этих исследований. Создание и широкое использование новых ее методов, новых научных концепций способствует дальнейшему прогрессу биологии. Последняя, в свою очередь, стимулирует развитие химических наук.

55.0

Для друзей!

Справка

Слово «биохимия» пришло к нам ещё из XIX века. Но в качестве научного термина оно закрепилось век спустя благодаря немецкому учёному Карлу Нойбергу. Логично, что биохимия объединяет собой положения двух наук: химии и биологии. Поэтому она занимается исследованием веществ и химических реакций, которые протекают в живой клетке. Известными биохимиками своего времени были арабский учёный Авиценна, итальянский учёный Леонардо да Винчи, шведский биохимик А. Тизелиус и другие. Благодаря биохимическим разработкам появились такие методы, как разделение неоднородных систем (центрифугирование), хроматография, молекулярная и клеточная биология, электрофорез, электронная микроскопия и рентгеноструктурный анализ.

Описание деятельности

Деятельность биохимика сложна и многогранна. Эта профессия требует знаний микробиологии, ботаники, физиологии растений, медицинской и физиологической химии. Специалисты в области биохимии занимаются также исследованиями вопросов теоретической и прикладной биологии, медицины. Результаты их работы важны в сфере технической и промышленной биологии, витаминологии, гистохимии и генетике. Труд биохимиков применяется в образовательных учреждениях, медицинских центрах, на предприятиях биологического производства, в сельском хозяйстве и других сферах. Профессиональная деятельность биохимиков - это преимущественно лабораторная работа. Однако современный биохимик имеет дело не только с микроскопом, пробирками и реагентами, но и работает с разыми техническими приборами.

Заработная плата

средняя по России: средняя по Москве: средняя по Санкт-Петербургу:

Трудовые обязанности

Основные обязанности биохимика - это проведение научных исследований и последующий анализ полученных результатов.
Однако, биохимик не только принимает участие в научно-исследовательской работе. Он также может трудиться на предприятиях медицинской промышленности, где ведёт, например, работы по изучению действия препаратов на кровь человека и животных. Естественно, что подобная деятельность требует соблюдения технологического регламента биохимического процесса. Биохимик следит за реактивами, сырьём, химическим составом и свойствами готовой продукции.

Особенности карьерного роста

Биохимик - это не самая востребованная профессия, однако специалисты этой сферы ценятся высоко. Научные разработки компаний разных отраслей (пищевой, сельскохозяйственной, медицинской, фармакологической и др.) не обходятся без участия биохимиков.
Отечественные научно-исследовательские центры тесно сотрудничают с западными странами. Специалист, уверенно владеющий иностранным языком и уверенно работающий за компьютером, может найти работу в зарубежных биохимических компаниях.
Биохимик может реализовать себя в сфере образования, фармации или менеджменте.