Постоянная тонкой структуры через пи. Непостоянные постоянные. Альфа – это только начало

Астрофизики доказали то, что как минимум одна из фундаментальных физических постоянных, постоянная тонкой структуры «альфа» действительно постоянна и не меняется при переходе к другим звездным системам. Доказать это удалось в ходе наблюдений за белым карликом в 220 световых годах от Земли при помощи спектрального анализа. Подробности приведены в статье, которая опубликована в Physical Review Letters.

Постоянная тонкой структуры - безразмерная величина, образованная из универсальных физических констант:

α = e 2ħc ≈1/ 137 , где е — заряд эл-на, ħ — постоянная Планка, с — скорость света.

Согласно наиболее точным измерениям, a=1/137,035987(29). Т. с. п. определяет тонкое расщепление уровней энергии атома (а следовательно, и спектральных линий) В квантовой электродинамике а — естественный параметр, характеризующий «силу» электро-магнитного взаимодействия.

Эта константа была введена физиками для описания спектров в начале XX века и уже к середине столетия исследователи задались вопросом о том, насколько эта константа постоянна во времени, не меняется ли она от места к месту и нет ли зависимости ее от гравитационного поля.

Несмотря на то, что называется она постоянной, физики долгое время дискутируют о том, постоянна эта константа на самом деле. Несколько «скорректированное» ее значение для разных случаев могло бы решить определенные проблемы в современной космологии и астрофизике. А с выходом на сцену Теории струн многие ученые вообще склоняются к тому, что и прочие константы могут вести себя по разному. Изменения в постоянной тонкой структуры могли бы косвенно свидетельствовать о реальном существовании дополнительных свернутых измерений Вселенной, что необходимо Теории струн.

Ряд экспериментов, проведенных в 2010 году позволил сделать вывод о том, что изменения «альфа», если и существуют, не слишком велики, но работы по поиску отклонений были продолжены.

В новом исследовании использовался анализ спектров ионов никеля на поверхности белого карлика.

Проведенные наблюдения исключают возможность изменения постоянной тонкой структуры в гравитационном поле, которое в 30 тысяч раз сильнее поля Земли. Если постоянная альфа и меняется под действием гравитации, то это изменение не превышает одной сотой процента, говорят авторы исследования.

Смысл постоянной тонкой структуры, «альфы», можно характеризовать в рамках квантовой теории поля. Электромагнитное поле в квантовой теории состоит из так называемых виртуальных частиц, которые постоянно испускаются и поглощаются заряженными частицами (например, электронами или протонами), а постоянная «альфа» определяет то, насколько легко происходит испускание виртуальных частиц. Та же постоянная может быть определена и иначе: с использованием спектров атомов. предполагала одиночные уровни, в то время как реальные спектры демонстрировали две рядом расположенные линии: феномен получил название тонкой структуры, а величина зазора между линиями выражалась через константу «альфа».

Cтраница 3


Следует отметить, что хотя в последние годы изучение тонкой структуры сополимеров привлекает большое внимание исследователей, возможности применяемых методов еще весьма ограничены, особенно в отношении характеристики чередования звеньев.  

Интерферометр Фабри - Перо используется в спектроскопии для изучения тонкой структуры спектральных линий.  

Найденные Жиге ром константы вращения на основании изучения тонкой структуры полосы 7040 см совпали с ранее проведенными исследованиями в условиях высокой дисперсии. При варьировании азимутального утла от 0 до 180 получены следующие крайние значения моментов инерции: 1А 2 89 - 2 76; / в 32 0 - 35 1 и / с 35 0 - 32 4 - 10 40 г-смг. Можно видеть, что гармоническая средняя больших моментов почти не зависит от величины, принятой для азимутального угла. Поскольку этот момент в большей степени зависит от недостаточно точно определенного расстояния О - Н, чем от азимутального угла, определение точной величины последнего не имеет существенного значения.  

В аналитической практике ЯМР находит наибольшее применение при изучении тонкой структуры резонанса изолированного ядра; для этого используют спектрометр ЯМР высокого разрешения. Некоторые спектрометры сконструированы только для изучения ядер водорода (протонов), другие позволяют наблюдать также резонанс фтора или фосфора.  

Особое значение придается экспериментальным работам, ставящим себе целью изучение тонкой структуры турбулентных процессов.  

Особое значение придается экспериментальным работам, ставящим себе целью изучение тонкой структуры турбулентных процессов. Существуют специальные институты механики турбулентности, занимающиеся исследованиями разнообразных пространственно-временных статистических характеристик полей пульсационных скоростей и давлений.  

Хорошим материалом для оттенения является уран, особенно при изучении очень тонких структур, поскольку он обладает весьма малым размером кристаллитов; однако уран дорог и, кроме того, окисляется на воздухе, что, по-видимому, приводит к некоторому снижению рассеивающей способности по сравнению с величиной, приведенной в таблице.  

Керен и Реш , а также и Реш , занимались изучением тонкой структуры простых полиэфиров. Так, Реш нашел, что прирост длины полиэтиленгликоле-вой цепи на одну этиленоксидную группу равен - 2 А. Расчет для зигзагообразной цепи по известным величинам атомных расстояний и валентных углов дает для периода идентичности величину 3 4 А. Сокращение длины цепи на 43 % связано с образованием извитой спиральной структуры.  

Измерение эффектов второго порядка используют для получения информации о нелинейности электрохимической кинетики, изучения тонкой структуры двойного электрического слоя.  

Экспериментальные данные, позволившие открыть спин электрона, были получены главным образом при изучении тонкой структуры спектральных линий; краткое описание такой структуры дано в гл. Один из наиболее значительных экспериментов, опыт Штерна - Герлаха, был предложен в 1921 г. немецким физиком Отто Штерном (1888 - 1969) и в том же году выполнен вместе с В. Схема установки, использованной в эксперименте, показана на рис. 3.28. В процессе опыта серебро испарялось в условиях высокого вакуума из печи, расположенной на дне устройства. Узкий пучок атомов серебра, выходивший через калиброванное отверстие, попадал в сильно неоднородное магнитное поле, создаваемое полюсами магнита специальной формы. Затем пучки, отклоненные полем, попадали на фотопластинку и их следы удавалось обнаружить после проявления пластинки. Было установлено, что исходный пучок атомов серебра расщеплялся на два пучка.  

Представление о спине введено в 1925 г. (Уленбек п Гаудсмит) на основе изучения тонкой структуры спектральных линий.  

Этот вид упрочнения трубных сталей относительно точно можно определить по экспериментальным результатам, полученным при изучении тонкой структуры с помощью электронной микроскопии. Субструктурное упрочнение на поздних стадиях своего развития изменяется по параболическому закону.  

Способность растворов полициклических ароматических углеводородов к люминесценции позволяет определять с большой точностью состав смолистых веществ при записи и изучении тонкой структуры спектров низкотемпературной люминесценции в н-окта-не при - 193 С. Определяемая концентрация 3 4-бензпирена лежит в пределах ЦДК.  

Вместе с тем известно, что даже моноатомные по высоте ступени скола являются местами предпочтительного образования зародышей - на этом принципе основана методика изучения тонкой структуры поверхности посредством декорирования. Различные виды обработки поверхности - очистка, скалывание в вакууме, электронная бомбардировка и другие - приводят к заметному изменению плотности зародышей.  

Одним из наиболее важных технических вопросов при исследовании спектров испускания атомов меди и никеля в соединениях и сплавах, еще более усложнившимся при изучении тонкой структуры спектров поглощения этих же элементов, являлся вопрос о поглощении, которое испытывает рентгеновское излучение на пути от антикатода рентгеновской трубки спектрографа до рентгенопленки. В табл. 7 представлены величины, характеризующие проницаемость для медного и никелевого излучения отдельных препятствий, встречаемых рентгеновскими лучами на пути к пленке.  

Тимофей Гуртовой

Физический смысл

постоянной тонкой структуры

Безразмерная постоянная, равная 1/137, была получена немецким физиком-теоретиком Арнольдом Зоммерфельдом, в 1916 году, ещё до создания квантовой теории. Впоследствии она получила название постоянной тонкой структуры. Числовое её выражение было получено в системе СГСЭ, из математического выражения, которое имеет следующий вид:

2π e 2

а = ─── , (1)

h С

где: а - постоянная тонкой структуры; e заряд электрона; h Планка постоянная; С – скорость света.

Попытки узнать, что означает эта постоянная, в конце концов, привели к тому, что она якобы характеризует электромагнитное взаимодействие. Однако это ложная её интерпретация. Познать её сущность до сих пор так и не удалось. Единственное, что является понятным, так это её принадлежность к процессу получения спектров атомов, поскольку исходное относится к этой области.

Непонятность выражения (1) привлекая внимание, вызывает к нему любопытство. А то, что оно относится к явлению атомных спектров, процессу мало изученному – любопытство двойное. И в вопросах его разгадки приводит к разномыслию, даже такому: не может ли быть, что в этом процессе масса выброшенных из атома электронов не является величиной постоянной? В таком случае размерность быть бы должна. Разве что оно является результатом какого-то соотношения в этом процессе, на что, в своей работе, «намекал» сам Зоммерфельд. Тогда величина может быть и безразмерной. Так было замечено, что уравнение (1) возможно, анализируя далее, продолжить и завершить таким образом, чтобы оно указывало бы на его физическую сущность, что и было выполнено.

При завершении анализа оказалось, что уравнение (1), действительно выражает соотношение определённых величин, в процессе, когда атом находится в состоянии большой энергетической перегрузки , в результате высокой температуры. Однако не в процессе возникновения спектра , за счёт излучения, а в связи с процессом, происходящим в самом атоме .

Если какое либо вещество, повышая температуру, привести в парообразное состояние, то его атомы начинают излучать спектры резонансных частот. Но излучают не сами атомы, а частицы в момент их выброса, из перевозбуждённых атомов.

Математическое выражение тонкой структуры, в таком случае, должно описывать какой-то существенный факт, который имеет место в этом процессе. Поэтому завершение уравнения Зоммерфельда, с участием электронов, было проведено с позиции возникновения свободных носителей тока , при перевозбуждении атома.

В результате продолженного анализа выражение (1) было преобразовано в уравнение (2), из которого теперь следует его физический смысл (вывод в проекте, подготовленного, 2-го издания ).

2π σ

а = ──── , (2)

Электрическая проводимость – это физический параметр, электрической цепи, который свидетельствует о способности некоторых материалов, в той или иной мере, проводить электрический ток. Общая размерность проводимости – [см /с ].

Принимая во (2) проводимость общей, подчеркиваем, что сама цепь электрического тока, в данном случае, не рассматривается и проводимость привлекается только, как параметр кинетики носителей тока . В таком случае постоянная тонкой структуры во (2), с общей проводимостью, будет величиной безразмерной (3).

а = 2π σ [см/с]/ С [см/с]= 1 / 137 (3)

Уравнение (3), описывая движение, на основании размерности общей электрической проводимости [см /с ] , показывает отношение каких-то двух скоростей электрона V е1 и V е2 в атоме. И, согласно структуре уравнения, должно быть величиной постоянной (4).

а v = V е1 / V е2 = 1/137 (4)

Электрон, как известно, является стабильной фундаментальной элементарной частицей. Согласно физике рациональной, конституция материальных объектов представляется совокупностью вещественности, в виде внешней оболочки, и керна абсолютной пустоты в центре. Стабильность частиц, в таком случае, будет обусловлена достаточностью объёма керна абсолютного вакуума , что обеспечивается предельной, равной – С, вихревой скоростью её тонкой первоплазменной оболочки. Вихревая скорость оболочки частицы, в данном случае электрона, придавая ему вращательное движение , заставляет его двигаться в Пространстве по спирали, с той же предельной скоростью. Эту скорость будем называть спинорной .

Кроме скорости спиральной (спинорной) , электрон, движущийся в Пространстве, обладает и скоростью прямолинейной (поступательной) , вызываемой ускоряющей энергией внешнего электрического поля.

Спиральная скорость электрону задаётся его орбитальным движением в атоме. А поскольку подобная величина орбитальной скорости (равная – С) в атоме может быть только у поверхности вакуумного керна, значит, электрон сбрасывается с поверхности керна, т. е. из его центра, и в момент минимального объёма, переходя границу сферы, в процессе осцилляции. В результате сброса возникает скорость электрона - поступательная . Эта скорость частицы является скоростью её выхода из атома . Поэтому есть все основания считать, что уравнение (4) выражает отношение скоростей электрона в атоме : скорости выхода (V е1 = V е. в. ) , к скорости орбитальной (V е2 = V е. о. ) , иначе, спиральной (спинорной) в Пространстве – С .

Согласно (4) скорость выхода электрона из атома постоянна и меньше предельной – С, строго определённым образом, в 137 раз.

Анализируя уравнение (4), нельзя не заметить некоторую физическую, скажем так, «несправедливость» , которая из него так же вытекает. Постоянство пространственной спиральной скорости электрона, равное – С, утверждает постоянство и равенство скоростей всех электронов, по той или иной причине, покидающих пределы атомов, т. е. равенство скоростей выхода в любом веществе . Подобного в нормальных условиях быть не должно, поскольку работа выхода электрона из атома в Пространство, для каждого материала, индивидуальна. И возникает подозрение, что в нашем анализе процесса или где-то допущена ошибка, или это уравнение описывает только частный случай.

Однако, если учесть, что в основу математического изыскания Зоммерфельда положено явление спектрального проявления атомов, то всякие сомнения, по поводу реальности постоянства и равенства скоростей выхода из них электронов, должны отпасть. Поскольку это уравнение, действительно, представляет частный случай, когда именно существование подобных фактов в Природе, позволяет получать спектры атомов, где распределение спектральных линий зависит только от энергии, автономно проявляющих себя, атомных структур. Так что в случае значительного повышения температуры вещества и превращении его в пар, подобное, т. е. постоянство и равенство скоростей выхода электронов, независимо от используемого материала, вполне возможно.

В нормальных температурных условиях, при достаточной энергии возбуждения, атом испускает только моноэнергетичные электроны, по одному за период, скажем так, его общемассовой осцилляции. При высоких температурах атом выбрасывает уже целый пакет, причём полиэнергетичных электронов.

Поступающее в атомы излишнее количество энергии приводит к возникновению дополнительных вакуумных зон, между структурными частями атомов. Это ослабляет межструктурные связи, ранее, в нормальном состоянии, высокие. И структурные части атомов, приобретя свободу функционирования, начинают осциллировать самостоятельно, каждая со своей резонансной частотой.

В условиях высокой степени осцилляции, атом, не переставая быть целостным, компактным образованием, как прежде, в смысле целостного функционирования, в результате возникновения межструктурных зон вакуума, быть перестаёт. Каждая его структурная часть будет осциллировать отдельно, и каждая в своём резонансном режиме. Самостоятельно осциллируя, структурные части атома, сами испускают электроны, таким образом, усиливая процесс освобождения атомов от лишней энергии, поступающей в них извне.

Энергетическая самостоятельность структур атомов, допускающая резонансный режим их осцилляции, ставит эти образования, в процессе излучения ими электронов, в равные условия. В таком случае постоянство отношения в (4) непременно будет соблюдаться.

Различие же по величине радиусов орбит электронов, в этих условиях, создаёт только разную, по времени, цикличность, в процессе их обращений. От чего зависит частота сопутствующих этому процессу излучений, что и наблюдается в виде набора спектральных линий.

Подводя итог, только выполненному , в дополнительном анализе уравнения Зоммерфельда, можно сказать, что высокотемпературная осцилляция атомов создаёт одинаковые условия выхода из них электронов, без существенных различий в энергетических затратах на процесс их выброса для разных веществ. И в условиях энергетической перегрузки атомов, уравнивая их в этом поведении, приводит к получению спектра «чистых» резонансных частот , которые реально отражают внутреннюю структуру атома.

Завершение анализа

Следует так же заметить, что осциллирующие атомы, как свидетельствует практика, способны выбрасывать в Пространство частицы и в нормальных температурных условиях, если поглощаемые ими электромагнитные кванты будут обладать энергией не меньшей энергии выхода. Излучаются в этом случае и электроны, и позитроны.

Электрон, как уже было сказано, выбрасывается из центра атома, с поверхности вакуумной зоны, где его орбитальная скорость равна – С. Она-то и есть причина его, такой же по величине, спинорной скорости в Пространстве. Что, является залогом его прочности и долговечности, позволяя ему существовать даже при неоднократном взаимодействии с микроструктурой среды.

Позитрон выбрасывается с поверхностных слоёв атома, где скорость вихревого движения материи и, значит, его орбитальная скорость меньше предельной. Поэтому, обладая недостаточным количеством вихревого движения, не получая дополнительной энергии, может существовать в Пространстве только до первой встречи с его микроструктурой. После чего распадается и, излучив электромагнитный квант, превращается в первоматерию

В явлении получения спектров атомов, говоря об электрической проводимости, мы вводили в уравнение её размерность в общей форме, т. е., в виде физического понятия, характеризующего не движение носителей тока в электрической цепи, а просто кинетику электронов, которые перевозбуждёнными атомами выбрасываются в Пространство. Если же рассматривать возникновение и движение электронов, как носителей тока в электрической цепи, то в этом случае проводимость будет физическим параметром, характеризующим качество конкретной электрической цепи. И должна быть, в уравнении (3), удельной - σ у. , имея размерность – [ 1 /с ] . Принятие подобной размерности для одного члена уравнения, нарушая его прежнюю безразмерность, приводит к тому, что эта физическая постоянная размерность приобретает .

ά= 2π σ у / С[см/с] = 1 / 137 (5)

Теперь в (5), смысл уравнения (4), как отношения скорости выхода электрона из атома к его скорости Пространственной (орбитальной) , из-за различной размерности составляющих, теряется . Чтобы восстановить прежний смысл уравнения, в его числителе должна появиться размерность пространственной координаты – [см ] . Но она может появиться только с вновь ведённым физическим параметром. Будет ли законно подобное нововведение в уже существующее уравнение?

Если рассматривать не выброс зарядов структурами атома пресыщенного энергией, а процесс их получения за счёт действия на атомы, находящиеся в нормальном энергетическом состоянии, электрического поля в цепи электрического тока, которое будет стимулировать выход электронов (позитронов), то подобный акт возможен. И введённым параметром может стать радиус орбиты выбрасываемой частицы.

Однако новь введённый параметр – радиус , имея собственное числовое значение, восстановив смысл уравнения своей размерностью, теперь нарушит численную величину его результата. К тому же, эта величина будет постоянной только для атомов одного, конкретного материала. Поскольку частица выбрасывается в электрическую цепь из её материала. Физически это будет означать, что уравнение (2) теперь должно представлять отношение скорости выброса частицы из атома к её скорости в электрической цепи, при конкретном материале. И выражение (2), с внесённым пространственным параметром , в виде радиуса – r [см] орбитального частицы, примет следующий вид:

2π r σ у

ά = ──── , (6)

где: ά – величина отношения скоростей, но не равная постоянной 1/137 ; σ у – удельная проводимость материала электрической цепи; r – радиус орбиты частицы атома, которая при наличии электрического поля и замкнутой цепи, станет причиной возникновения электрического тока; С – скорость света.

Бета-частицы, как носители электрического тока, могут быть и отрицательными - электроны, и положительными – позитроны. Те и другие в цепях электрического тока существуют, только перескакивая от атома к атому, пока действует в них ЭДС.

Процесс возникновения электрического тока в электрических цепях, и его там существование, может быть представлен следующим образом. При возникновении ЭДС в электрической цепи, атомы материалов составляющих цепь поляризуются. Их материальная оболочка сдвигается относительно вакуумных кернов (последние, являя узлы кристаллической решетки материала, образуют жесткую его систему, и осцилляция атомов происходит вокруг них).

Все взаимодействия в материальном мире происходят согласно фундаментальному закону Потенциальной Градации материи . В атомах составляющих материалы с отрицательным коэффициентом Холла, которые поставляют в цепь электроны, материальные оболочки обладают большим поверхностным потенциалом, нежели потенциал отрицательного полюса источника ЭДС. Поэтому относительно узлов решетки оболочки сдвигаются в сторону этого полюса. И при осцилляции, в момент минимума объёма, под воздействием ЭДС источника сбрасывают «частицы»-электроны с поверхности сферы вакуумного керна , в направлении обратном, в сторону положительного полюса.

В атомах составляющих материалы с положительным коэффициентом Холла всё происходит наоборот, так как поверхностный потенциал их материальных оболочек меньше потенциала положительного полюса источника ЭДС, поэтому оболочки сдвигаются в его сторону. Сбрасываются «частицы»-позитроны с поверхности атомов, в момент максимума объема осциллирующего атома, что ускоряет их движение , и в сторону отрицательного полюса источника ЭДС.

Ввиду отсутствия свободной первоматерии в межатомных промежутках материалов составляющих электрическую цепь, сопротивление движению выброшенным «частицам» отсутствует. И их переформирование в точечно-корпускулярную форму не происходит. Что, при взаимодействии с встреченными ими атомами материала цепи, в результате интенсивного торможения приводит к окончательному их распаду и превращению в первоматерию.

Под воздействием ЭДС источника, возникшая первоматерия образует общий поток , по кольцу замкнутой цепи. Единый поток первочастиц, которые и являются истинными носителями электричества, как такового, созданный распавшимися полагаемыми «носителями», - это и есть электрический ток. А все тормозные излучения полагаемых и истинных носителей – тепло Джоуля.

Первочастицы обладают самым малым поверхностным потенциалом, поэтому движение их потока направлено в сторону положительного полюса источника ЭДС. Что, кстати, верно было принято исторически, хотя и интуитивно, без научного обоснования.

Поскольку в межатомном пространстве токопроводников, пространственная среда отсутствует, то скорость потока носителей (первочастиц), ею не ограниченная, будет на много порядков выше, чем в Пространстве, с первоматерией. Это и показано в (6) математически, с помощью внесённых численных значений удельной проводимости - σ у и орбитального радиуса частицы – r в атоме.

Радиус, например, «орбиты» электрона, который может быть выброшен осциллирующим атомом, по величине, не отличается от радиуса керна атома – 7,21·10-12 [см] . Радиус «орбиты» позитрона – равен радиусу атома.

Факт значительного превышения скорости частиц в электрической цепи относительно их скорости в Пространстве в физике уже признан: скорость распространения тока в электрической цепи почти мгновенна.

Всё вышеизложенное, основанное на выражении уравнении (6), говорит о том, что носителей электрического тока, в виде постоянно существующего электронного газа, в проводниках не существует. Но не только оно свидетельство этому, есть ещё и экспериментальное тому подтверждение .

Выводы из равенств – (4) и (6)

Все структурные материальные образования и отдельные частицы, составляющие атом, если рассматривать их по отдельности, завершенной корпускулярной (сконцентрированной, точечной) формы, не имеют. Это, как было сказано, кольцевые образования, находящиеся в вихревом движении вокруг вакуумного керна, каждое по своей кольцевой орбите. Сконцентрированную, точечную форму частицы приобретают при выходе из атома в Пространство, затрачивая на это энергию. Таким образом, энергия выхода частицы из атома (электрона или позитрона) в Пространство, заполненное первоматерией, – это энергия преобразования её формы. Кольцевая форма частиц превращается в форму в виде шара с топологией тора. Топология тора позволяет свободной частице иметь спин и способствует её поляризации в электрических и магнитных полях.

В Пространстве процесс преобразования двусторонний . При ускорении частицы, материя из рассредоточенного состояния, в Пространстве, превращается в состояние сосредоточенное в частице, её массу увеличивая . При торможении , наоборот , материя из состояния сосредоточенного в частице, переходит в состояние, рассредоточенное в Пространстве, её массу уменьшая .

В атоме же, при выбросе частицы, происходит только сосредоточение материи . Её кольцеобразная форма в атоме, в Пространстве превращается в сконцентрированную, точечную форму .

Скорость преобразования материи конечна и равна – С. Время преобразования материи находится в прямой зависимости от её количества. Поэтому отношение массы материи ко времени её преобразования в первоматерию и обратно, первоматерии в материю, величина постоянная.

а t. = m 1 / t 1 = m 2 / t 2 … mn / tn = Const (7)

Известно, что массы выбрасываемых частиц, электронов и позитронов, по величине разные. Однако суммарная масса носителей тока в электрической цепи (частиц первоматерии) - m н. т. ., после преобразования разного количества материи , выброшенных частиц, в первоматерию, на всех её участках , состоящих из материалов разной проводимости (с разным коэффициентом Холла), одинакова .

Подобное возможно только при условии, что в момент преобразования происходит и изменение величины преобразуемой массы , по причине разной скорости движения частиц, что приводит к уравниванию выбросов. Скорость выхода электрона и позитрона из атома в электрическую цепь обусловлена их орбитальными скоростями, а они разные - v э. > v п. .. И при большей скорости будет больше величина добавки - m .

m н. т. = m э. (v э. ) = m п .(v п. ) (8)

Практика показывает, что в электрической цепи, состоящей из материалов с разным коэффициентом Холла, величина тока на всех её участках одна и та же. Значит, полный заряд, состоящий из суммы элементарных носителей тока (первочастиц) q н. т ., циркулирующий в цепи, тоже постоянен. И, учитывая (7) и (8), следу положить равенство (9) и тождество (10).

U q н. т. = U (q э. + q п. ) = m э. C 2 + m п. V 2 (9)

q н. т. = q э + q п. ≡ ∑ m н. т. = m э. + m п. (10)

А из этого следует, что заряд носителя – это его масса , выраженная в электрических единицах . Значит, эти физические параметры частицы – m и q , через соответствующий коэффициент – k , можно приравнять и получить механическую электромагнитную массу (11).

m = k q, где k имеет размерность [кг /Кл] . (11)

Можно выразить электромагнитную массу и через параметры электромагнитного поля, но это вопрос уже другой темы.

Библиография

1. Сатаева О, Афанасьев Т. КТО МЫ И ОТКУДА? /О. Сатаева, Т. Афанасьев. //Размышления, подкреплённые материалом из монографии «Мы не одиноки во Вселенной», - 1-е изд. – Иркутск: ИВВАИУ (ВИ), 2007. – 208 с.


Названная фундаментальная постоянная микромира: α ≈ 1/137 была введена в физику в 20-е годы Арнольдом Зоммерфельдом для описания энергетических подуровней, обнаруженных экспериментально в спектрах излучения атомов. С тех пор были выявлены и множество других проявлений того же самого постоянного отношения в разнообразных явлениях, связанных с взаимодействиями элементарных частиц. Ведущие физики того времени постепенно осознали значение этого числа, как в мире элементарных частиц, так и в целом – в устройстве нашего мироздания. С этой точки зрения достаточно сказать только, что все основные свойства и характеристики объектов микромира: размеры электронных орбит в атомах, энергии связи (как между элементарными частицами, так и атомами), и тем самым, все физические и химические свойства вещества, определяются величиной этой константы. В дальнейшем, используя названную постоянную, удалось разработать и весьма результативную формальную теорию – современную квантовую электродинамику (КЭД), с фантастической точностью описывающую квантовое электромагнитное взаимодействие.

Из вышесказанного можно судить обо всей важности задачи выяснения физического смысла и причинного механизма возникновения этой постоянной, что является открытым вопросом в физике с тех пор, как она была обнаружена. На языке теоретиков, решение данной задачи означает: назвать ту исходную концепцию возникновения названной константы, исходя из которой последовательными выкладками можно прийти к экспериментально установленному её значению. О значимости же поставленного вопроса можно судить из шуточного высказывания знаменитого физика с мировым именем, Вольфганга Паули : «Когда я умру, первым делом посчитаю спросить у дьявола, – каков смысл постоянной тонкой структуры?» Ну, а Ричард Фейнман считал сам факт существования этого загадочного числа «проклятием для всех физиков» и советовал хорошим теоретикам «зарубить его на стене и всегда думать над ним»!

Представленный вопрос приобрел такое значение, прежде всего, потому что названная постоянная непосредственно связана с проблемой понимания физической сущности элементарных частиц, поскольку она проявляется не раздельно от них, а как их глубинное свойство. Посему многие физики в течение долгих лет упорно пытались решить эту величайшую задачу, применяя разные подходы и методы. Но пока все их усилия не увенчались успехом.

Что же предложено автором? Ему удалось обнаружить, что решение «загадки XX века» на самом деле содержится в наших учебниках и в хорошо известных формулах, относящихся к волнам, если только аккуратно подсчитать! Сказанное означает, что α является классической волновой константой. Но следует предупредить, что самое простейшее объяснение загадки может вызывать недоумение, если изначально мы не склонны слушать то, что нам предлагается. Как показал опыт, представленное решение проблемы весьма трудно воспринимается многими специалистами, хотя верность результата никем и не опровергается!

В чем же заключается причина этого затруднения? К сожалению, ведущие современные теоретики, чрезмерно увлеченные формально-математическими теориями (которые первоначально рассматривались как временный компромиссный вариант), уже успели забыть о существовании в физике нерешенной фундаментальной дилеммы «частицы – волны». В результате трудно встретить физика, которого бы не удивил подход автора – представить частицу как локализовано-стоячую волну (хотя официально это вполне допустимо, в силу той же нерешенной дилеммы). И это притом, что к аналогичному заключению уже давно пришли бесспорные авторитеты физической науки: Эйнштейн , Шредингер , Гейзенберг и др. под давлением весомых аргументов.

Представленный труд и полученный результат, на взгляд автора, может являться серьёзным указанием на правоту убеждений корифеев физики. Но этот вывод в свое время был упорно проигнорирован большинством голосов коллег (поскольку не удалось получить необходимых результатов, подтверждающих верность этого умозаключения). Как следствие, исследования в этой области теоретической физики пошли в неэффективном направлении. Предложенное решение может являться ключом к выявлению физической сущности элементарных частиц и тем самым открывать понятный путь к описанию микромира, альтернативный современным формально-феноменологическим теориям. Однако решающее слово принадлежит здесь глубоко мыслящим экспертам – теоретикам, которые, как мы надеемся, непременно найдутся и дадут объективную оценку представленному труду.

Появились новые подтверждения тому, что одна из важнейших констант современной физики меняется со временем – и в разных частях Вселенной по-разному.

http://www.popmech.ru/images/upload/article/const_1_1283782005_full.jpg

Квазар – точечный источник излучения, характеризующийся чрезвычайно высокой интенсивностью и изменчивостью. По современным теориям, квазары представляют собой активные центры молодых галактик с расположенными в их центрах черными дырами, которые с особенным аппетитом поглощают материю Почему Вселенная такова, какова есть? Почему численные соотношения безразмерных констант именно такие, какими мы их знаем? Почему пространство имеет три протяженных измерения? Почему существует именно фундаментальных взаимодействия, а не, скажем, пять? Почему, наконец, все в ней так сбалансировано и точно «подогнано» одно под другое? Сегодня популярно считать, что если б что-то было иначе, если б одна из базовых констант была иной, мы просто не могли бы задаваться этими вопросами. Такой подход называется антропным принципом: если б константы соотносились иначе, не могли б образоваться устойчивые элементарные частицы, если б у пространства было больше измерений, планеты не могли бы обрести устойчивые орбиты и так далее. Иначе говоря, не смогла бы образоваться Вселенная – и уж тем более не могли бы развиться такие разумные организмы, как мы с вами. (Подробнее об антропном принципе рассказывается в статье «Человеколюбивое мироздание».) В общем, мы появились просто в нужном месте – в единственном, где могли появиться. А возможно, и в нужном времени, о чем говорит недавнее громкое исследование одной из фундаментальных физических констант. Речь о постоянной тонкой структуры, величине безразмерной и ни из каких формул не выводимой. Устанавливается она эмпирически, как отношение скорости вращения электрона (находящегося на Боровском радиусе) к скорости света, и равна 1/137,036. Она характеризует силу взаимодействия электрических зарядов с фотонами. Несмотря на то, что называется она постоянной, физики уже не первое десятилетие дискутируют о том, насколько постоянна эта константа на самом деле. Несколько «скорректированное» ее значение для разных случаев могло бы решить определенные проблемы в современной космологии и астрофизике. А с выходом на сцену Теории струн многие ученые вообще склоняются к тому, что и прочие константы могут быть не столь уж неизменными. Изменения в постоянной тонкой структуре могли бы косвенно свидетельствовать о реальном существовании дополнительных свернутых измерений Вселенной, что абсолютно необходимо в Теории струн. Все это подстегнуло поиски доказательств – или опровержений – тому, что постоянная тонкой структуры может быть иной в других точках пространства и (или) времени. Благо, для того, чтобы оценить ее, можно воспользоваться таким доступным инструментом, как спектроскопия (постоянная тонкой структуры как раз и была введена для интерпретации спектроскопических наблюдений), а для того, чтобы «заглянуть в прошлое», достаточно посмотреть на далекие звезды. Поначалу эксперименты, казалось, опровергали возможность изменений этой постоянной, но по мере того, как инструменты становились все совершенней, можно было оценивать ее величину на все большем удалении и со все большей точностью, стали появляться более интересные свидетельства. В 1999-м, например, австралийские астрономы во главе с Джоном Уэббом (John Webb) проанализировали спектры 128-ми далеких квазаров и показали, что некоторые их параметры могут объясняться постепенным ростом постоянной тонкой структуры на протяжении последних 10-12 млрд лет. Однако эти результаты были крайне спорными. Скажем, работа, датируемая 2004-м, напротив, не обнаружила заметных изменений. А уже на днях тот же Джон Уэбб выступил с новым сенсационным сообщением – новая его работа названа некоторыми специалистами «открытием года» в физике. Ранее, в конце 1990-х Уэбб с коллегами работали с обсерваторией Keck на Гавайях и наблюдали квазары северной небесной полусферы. Тогда они пришли к выводу, что 10 млрд лет назад постоянная тонкой структуры была примерно на 0,0001 меньше и с тех пор немного «подросла». Теперь же, поработав с телескопом VLT обсерватории ESO в Чили и пронаблюдав 153 квазара южной полусферы, они получили те же результаты, но… с обратным знаком. Постоянная тонкой структуры «в южном направлении» 10 млрд лет назад была на 0,0001 больше и с тех пор «уменьшилась». Эти различия, названные исследователями «австралийским диполем», имеют высокую статистическую достоверность. А главное – они могут свидетельствовать о фундаментальной асимметрии нашего мироздания, которое может наблюдаться и в пространстве, и во времени. Возвращаясь к антропному принципу, с которого мы начали, можно сказать, что мы родились не только в идеальном месте, но и в идеальное время.

По информации Physics World