С4 путь фотосинтеза имеют растения. Пути фиксации СО2 при фотосинтезе. Темновая фаза фотосинтеза

В 1966 году австралийские ученые М. Хетч и К. Слэк установили, что у некоторых злаковых растений тропического и субтропического происхождения фотосинтез имеет свои особенности.

Особенность заключается в том, что в качестве первых продуктов фотосинтеза у этой группы растений образуется не трех, а четырехуглеродные соединения. При образовании 4-х углеродных соединений, углекислота соединяется не с рибулезодифосфатом, а с * кислотой. Путь ассимиляции СО 2 через * кислоту с образованием С4-дикарбоновых кислот получил название С4-путь усвоения углерода, а организмы С4-растений.

У растений тропического происхождения – сахарный тростник, сорго, просо, злаки, кукуруза, амарант и др. листовые сосудистые пучки окружены крупными клетками паренхимы с большими, зачастую лишенными гран хлоропластами. Эти клетки в свою очередь окружены более мелкими клеточками мезофилла с меньшими хлоропластами. В клетках мезофилла листа происходит первичное акцептирование СО 2 на * кислоту, которая вовлекает СО 2 в реакции карбоксилирования даже при очень низких концентрациях СО 2 в окружающем воздухе.

В результате карбоксилирования образуются щавелево-уксусная, яблочная и аспарагиновая кислоты. Из них яблочная и аспарагиновая переходят в обкладочные клетки проводящих пучков листа, подвергаются там декарбоксилированию и создают внутри клеток высокую концентрацию СО 2 , усваиваемую уже через рибулозодифосфат-карбоксилазу в цикле Калвина. Это выгодно, во-первых потому, что облегчает введение СО 2 в цикл Калвина через карбоксилирование рибулозодифосфата при помощи фермента рибулозодифосфат-карбоксилазы, которая менее активна и требует для оптимальной работы боле высоких концентраций СО 2 , чем *-карбоксилаза. Кроме того, высокая концентрация СО 2 в обкладочных клетках уменьшает световое дыхание и связанные с ним потери энергии.

Таким образом происходит высокоинтенсивный и кооперативный фотосинтез, свободный от излишних потерь в световом дыхании, от кислородного ингибирования и хорошо приспособленный в атмосфере бедной СО 2 и богатой О 2 .

Растения с С4-фотосинтезом – это цветковые растения из 19 семейств (3 сем. однодольных и 16 сем. двудольных). С4-злаки преобладают в районах с очень высокой температурой, приходящейся на вегетационный сезон. С4-двудольные широко распространены в тех районах, где вегетационный сезон характеризуется чрезмерной засушливостью. Для 23 семейств цветковых растений характерен метаболизм органических кислот по типу толстянковых, обозначенный как САМ-метаболизм. САМ-метаболизм возник в процессе эволюции у листьев суккулентных растений, включая кактусы и толстянки, но не все САМ-растения суккуленты, например, ананасы.

Суккуленты, произрастающие в засушливых областях (кактус) так же фиксируют атмосферный СО 2 с образованием 4-х углеродных соединений. Однако по своему физиологическому поведению эти растения отличаются от других представителей С4-типа. Устьица у них открыты ночью и закрыты днем. Обычно же картина бывает обратной: свет стимулирует открывание устьиц, а в темноте они остаются закрытыми.

Такой тип поведения представляет несомненную выгоду для растений пустыни. Эти растения поглощают в ночное время атмосферную СО2 образуя в результате её фиксацию 4-х углеродной органической кислоты, главным образом яблочную. Яблочная кислота запасается в вакуолях. Роль первичного акцептора углерода играет у них, как и у прочих С4-растений ФЕП. Днем, когда хлорофилл активируется светом, яблочная кислота декарбоксилируется с образованием 3-х углеродного соединения и СО2, их которой затем и строятся 6-углеродные сахара в цикле Кальвина.

Чередование на протяжении суток двух процессов: накопление кислот в ночное время и их распад днем получило название САМ-метаболизма, по семейству Crassulaceae.

У САМ-растений первичное карбоксилирование и образование 6-углеродных сахаров происходит в одних и тех же клетках, но в разное время. Тогда как у прочих С4-растений эти процессы происходят одновременно, но могут быть приурочены к разным клеткам. Разделение во времени фиксации СО 2 и переработки СО 2 на следующий день экономически выгодно. Таким образом, они обеспечивают себя углеродом, не подвергаясь чрезмерной потере воды.

В 1965 г. было показано, что у одного из тропических растений - сахарного тростника - первыми продуктами фотосинтеза, по-видимому, являются кислоты, содержащие четыре атома углерода (яблочная, щавелевоуксусная и аспарагиновая), а не С 3 -кислота (фосфоглицериновая), как у хлореллы и у большинства растений умеренной зоны. С тех пор было выявлено много других растений, главным образом тропических (и в том числе имеющих важное хозяйственное значение), у которых наблюдалась точно такая же картина; они были названы С 4 -растениями . Из однодольных к ним принадлежат, например, кукуруза (Zed), сорго (Sorghum), сахарный тростник (Sacchamm), просо (Eleusine), а из двудольных - Amaranthus и некоторые виды Euphorbia. Растения, у которых первым продуктом фотосинтеза является С 3 -кислота (ФГК), называют С 3 -растениями. Биохимию именно таких растений мы до сих пор и рассматривали в этой главе.

В 1966 г. австралийские исследователи Хэтч и Слэк показали, что С 4 -растения гораздо эффективнее поглощают двуокись углерода, чем С 3 -растения: в экспериментальной камере они снижали концентрацию СО 2 в газовой фазе до 0,1 ч. на млн., а С 3 -растения-только до 50-100 ч. на млн. Это говорит о том, что у С 4 -растений низкая углекислотная точка компенсации . У таких растений практически незаметно фото дыхание.

Этот новый путь превращений углерода у С 4 -растений называют путем Хэтча-Слэка . Хотя этот процесс несколько различен у разных видов, мы рассмотрим, как он идет у типичного С 4 -растения - кукурузы. Для С 4 -растений характерно особое анатомическое строение листа: все проводящие пучки у них окружены двойным слоем клеток. Хлоропласты клеток внутреннего слоя - обкладки проводящего пучка - отличаются по форме от хлоропластов в клетках мезофилла , из которых состоит наружный слой (диморфизм хлоропластов). На рис. 9.29, А и Б показано, как выглядит эта так называемая "кранц-анатомия " (от нем. Kranz - корона, венец, кольцо; при этом имеются в виду два клеточных слоя, на срезе имеющие вид колец). Ниже мы рассмотрим биохимические реакции С 4 -пути (см. рис. 9.30).

Рис. 9.29. А. "Кранц-анатомия", характерная для С 4 -растений. Микрофотография поперечного среза листа росички кроваво-красной (Digitaria sanguinalis), демонстрирующая диморфизм хлоропласте в клетках мезофилла и клетках обкладки проводящих пучков. В клетках мезофилла видны многочисленные граны, а в клетках обкладки проводящих пучков содержатся только отдельные рудиментарные граны. В обоих случаях видны зерна крахмала, × 4000. Б. Электронная микрофотография листа кукурузы. В клетках мезофилла и в клетках обкладки проводящих пучков видны хлоропласты двух типов, × 9900


Рис. 9.30. Упрощенная схема С 4 -пути, сопряженного с фиксацией двуокиси углерода. Показано, как двуокись углерода попадает из воздуха в клетки обкладки проводящих пучков и как происходит ее окончательная фиксация в составе С 3 -кислоты - ФГК

Путь Хэтча-Слэка

Это путь, связанный с транспортировкой СО 2 и водорода из клеток мезофилла в клетки обкладки проводящего пучка. В этих клетках двуокись углерода фиксируется точно так же, как и у С 3 -растений (рис. 9.30), а водород используется для ее восстановления.

Фиксация двуокиси углерода в клетках мезофилла. СО 2 фиксируется в цитоплазме клеток мезофилла в соответствии с уравнением:


Акцептором СО 2 служит фосфоенолпируват (ФЕП), а не рибулозобисфосфат (РиБФ), а вместо РиБФ-карбоксилазы в этой реакции участвует ФЕП-карбоксилаза. У этого фермента есть два громадных преимущества перед РиБФ-карбоксилазой. Во-первых, у него более высокое сродство к СО 2 , и, во-вторых, он не взаимодействует с кислородом и поэтому не участвует в фотодыхании. Образующийся оксалоацетат превращается в малат или аспартат, которые содержат по 4 атома углерода. У этих кислот две карбоксильные (-СООН) группы, т. е. это дикарбоновые кислоты .

Малатный шунт . Через плазмодесмы в клеточных стенках малат переходит в хлоропласты клеток обкладки проводящих пучков. Там он используется для образования СО 2 (путем декарбоксилирования), водорода (за счет окисления) и пиру вата. Выделяющийся при этом водород восстанавливает НАДФ до НАДФ·Н 2 .

Регенерация акцептора СО 2 . Пируват возвращается в клетки мезофилла и используется там для регенерации ФЕП путем присоединения фосфатной группы от АТФ к пирувату. На это расходуется энергия двух высокоэнергетических фосфатных связей.

Итоговая "стоимость" С4-пути

На транспорт СО 2 и водорода из клеток мезофилла в хлоропласты клеток обкладки проводящих пучков расходуются две высокоэнергетические фосфатные связи.

Повторная фиксация двуокиси углерода в клетках обкладки проводящих пучков

В хлоропластах клеток обкладки проводящих пучков образуются СО 2 , НАДФ·Н 2 и пируват (см. выше о малатном шунте). Затем СО 2 повторно фиксируется РиБФ-карбоксилазой в обычном С 3 -пути, где используется также и НАДФ·Н 2 .

Поскольку каждая молекула СО 2 должна связаться дважды, затраты энергии при С 4 -фотосинтезе примерно вдвое больше, чем при С 3 -фотосинтезе. На первый взгляд транспорт СО 2 в С 4 -пути кажется бессмысленным. Однако двуокись углерода настолько эффективно фиксируется ФЕП-карбоксилазой клеток мезофилла, что в клетках обкладки проводящих пучков накапливается очень большое количество СО 2 . А это значит, что РиБФ-карбоксилаза работает в более выгодных условиях, чем у С 3 -растений, где такой же фермент функционирует при обычной атмосферной концентрации СО 2 . Тому есть две причины: во-первых, РиБФ-карбоксилаза, как и любой фермент, более эффективно работает при высокой концентрации субстрата, и, во-вторых, подавляется фотодыхание, так как СО 2 конкурентно вытесняет кислород из активного центра.

Поэтому главное преимущество С 4 -фотосинтеза состоит в том, что значительно возрастает эффективность фиксации СО 2 , а углерод не теряется бесполезно в результате фотодыхания. Этот путь скорее дополняет, а не заменяет обычный С 3 -путь. В результате фотосинтез у С 4 -растений более эффективен, так как в обычных условиях скорость фотосинтеза лимитируется скоростью фиксации СО 2 . С 4 -растения потребляют больше энергии, но энергия, как правило, не бывает лимитирующим фактором фотосинтеза; такие растения обычно растут в странах, где интенсивность освещения очень высока, а хлоропласты у них видоизменены так, чтобы еще лучше использовать доступную им энергию (см. ниже).

Хлоропласты клеток мезофилла и обкладки проводящих пучков

Важнейшие различия между хлоропластами в клетках мезофилла и в клетках обкладки проводящих пучков перечислены в табл. 9.7, отчасти они видны и на рис. 9.29.


Таблица 9.7. Особенности хлоропластов мезофилла и хлоропластов обкладки проводящих пучков у С 4 -растений

9.39. Какие хлоропласты лучше приспособлены для световых, а какие - для темновых реакций?

9.40. Почему отсутствие гран в хлоропластах обкладки проводящих пучков дает определенную выгоду?

9.41. Малатный шунт - это фактически насос для перекачки СО 2 и водорода. Какие преимущества он дает?

9.42. а) Как скажется понижение концентрации кислорода на С 3 -фотосинтезе? б) А как - на С 4 -фотосинтезе? Объясните ваши ответы.

В 1965 г. было обнаружено, что первыми продуктами фотосинтеза у сахарного тростника (растение тропиков) являются органические кислоты, в состав которых входят 4 атома углерода (яблочная, щевелевоуксусная и аспарагиновая), а не 3С-кислота (фосфоглицериновая), как у большинства растений умеренного климата. С тех пор выявили множество растений, в основном тропических и субтропических, и имеющих порой важное экономическое значение, у которых фотосинтез протекает по такому же пути. Они получили название С4-растений. Примерами могут служить кукуруза, сорго, сахарный тростник и просо. Растения, в которых первым продуктом фотосинтеза является трехуглеродная фосфоглицериновая кислота, носят название С3-растения.

Биохимию именно С3-растений мы рассматривали до сих пор в этой главе.

В 1966 г. австралийские исследователи Хэтч и Слэк (Hatch, Slack) показали, что С4-растения значительно эффективнее, чем Сграстения, поглощают диоксид углерода: они способны удалять СО: из экспериментальной атмосферы вплоть до концентрации 0,1 части на миллион, тогда как для С 3 -растений это значение составляет 50-100 Ч*млн -1 . Хэтч и Слэк описали новый путь метаболизма углерода у Сграсгений, получивший название путь Хэтча-Слэка . Далее мы изучим этот процесс на примере типичного Сграстения - кукурузы.

У С4-растений листья имеют характерную особенность строения: вокруг каждого проводящего пучка у них расположены два ряда клеток. У клеток внутреннего кольца - обкладки проводящего пучка - хлоропласты по своей форме отличаются от хлоропластов клеток мезофилла внешнего кольца. Различие в строении хлоро-пластов у С 4 -растений получило название диморфизма (наличие двух форм). На рисeyrt, Ли Б показана так называемая «кранц-анатомия» (Kranz - корона, ореол; таким образом описываются те два ряда клеток, которые окружают проводящие пучки и имеют в сечении вид двух колец). Биохимические превращения, протекающие в этих клетках, описаны ниже; см. также рис. 7.22.

Путь Хэтча-Слэка

Путь Хэтча-Слэка предназначен для транспортировки диоксида углерода и водорода из клеток мезофилла в клетки обкладки проводящих пучков. Из клеток обкладки проводящих пучков диоксид углерода высвобождается и поступает в обычный С 3 -путь фотосинтетических превращений.

Захват (фиксация) диоксида углерода в клетках мезофилла

Диоксид углерода фиксируется в цитоплазме клеток мезофилла. Механизм этого процесса приведен в следующем уравнении:


Акцептором диоксида углерода служит фосфоенолпируват (ФЕП) вместо РиБФ у С3-растений, а вместо фермента РиБФ-карбоксилазы у С4-растений участвует фермент ФЕП-карбоксилаза. Фермент ФЕП-карбоксилаза работает значительно более эффективно, чем фермент С 3 -растений по двум причинам. Во-первых, ФЕП-карбоксилаза обладает большим сродством к диоксиду углерода, а во-вторых, ее работа не подвергается конкурентному ингибированию кислородом. Образовавшаяся щавелево-уксусная кислота далее превращается в малат, 4С-кислоту.

Малатный обходной путь (шунт)

Пройдя через плазмодесмы в клеточных стенках, малат попадает в хлоропласты клеток обкладки проводящего пучка, где он, соединяясь с диоксидом углерода, превращается в пируват (ЗС-кислоту). При этом выделяется водород, который используется для восстановления НАДФ. Обратите внимание, что в клетки мезофилла диоксид углерода и водород поступают извне, а затем в клетках обкладки проводящего пучка они вновь удаляются. Суммарным эффектом этих процессов является перемещение диоксида углерода и водорода из клеток мезофилла в клетки обкладки проводящего пучка.

Регенерация акцептора диоксида углерода

Пируват возвращается в клетки мезофилла , где в результате присоединения фосфатной группы от АТФ используется для регенерации ФЕП. На это расходуется энергия двух высокоэнергетических фосфатных связей.

- Вернуться в оглавление раздела " "

Путь С4 получил свое название, т.к. в темновой фазе первичным продуктом фиксации СО2 в этом случае является органическое соединение не с тремя, а с четырьмя атомами углерода (щавелевоуксусная кислота). Таким типом фотосинтеза обладают тропические растения жарких стран, например, бромелиевые. Было давно замечено, что эти растения усваивают СО2 намного лучше С3 растений. В анатомической структуре листьев С4-растений, наряду с нормальными обычными хлоропластами, вокруг сосудистых пучков у них имеются особый вид очень плотных хлоропластов почти без тилакоидов, но наполненных крахмалом. Эти хлоропласты назвали обкладочными.

В обычных хлоропластах у С4 растений, как и положено, протекает световая фаза фотосинтеза, а также происходит фиксация СО2 , но при этом образуется щавелевоуксусная кислота. Такая щавелевоуксусная кислота превращается в яблочную, которая поступает в обкладочные хлоропласты, где сразу расщепляется с выделением СО2. А дальше все идет, как и у нормальных С3 растений. При этом концентрация СО2 в обкладочных хлоропластах в результате становится значительно выше, чем у С3 растений, а очень плотное расположение этих хлоропластов обеспечивает то, что кислорода к ним почти не поступает, межклетников-то нет. Поэтому, раз нет кислорода, а углекислого газа сколько хочешь, фотодыхание не наступает.

Таким образом, у С4 растений и фиксация СО2 происходит более эффективно в виде других соединений, и образование сахаров осуществляется в особых хлоропластах, в результате чего сокращается интенсивность фотодыхания и связанных с ним потерь.

С4 растения могут захлопнуть свои устьица в жару, и не терять такой драгоценной влаги. У них обычно накоплено достаточно СО2 в виде яблочной кислоты.

27. Фотодыхание: биохимические реакции, их локализация. Физиологическая роль фотодыхания.

Фотодыхание – это активируемый светом процесс выделения СО2 и поглощения О2. Первичным продуктом фотодыхания является гликолевая кислота. Фотодыхание усиливается при низком содержании СО2 и высокой концентрации О2 в воздухе. В этих условиях рибулозодисфаткарбоксилаза хлоропластов катализирует не карбоксилирование рибулозо-1,5-дифосфата, а его расщепление на 3-фосфоглицериновую и 2-фосфогликолевую кислоты. Последняя дефосфорилируется с образованием гликолевой кислоты.

Гликолевая кислота из хлоропласта переходит в пероксисому, где окисляется до глиоксиловой кислоты. Глиоксиловая кислота аминируется, превращаясь в глицин. Глицин транспортируется в митохондрию, где из двух молекул глицина синтезируется серин и освобождается СО2.



Серин может поступать в пероксисому и передает аминогруппу на пировиноградную кислоту с образованием аланина, а сам превращается в гидроксипировиноградную кислоту. Последняя при участии НАДФН восстанавливается в глицериновую кислоту. Она переходит в хлоропласты, где включается в цикл Кальвина

У растений С4 -типа выделяющийся при фотодыхании углекислый газ реагирует в клетках мезофилла с фосфоэнолпировиноградной кислотой с образованием щавелевоуксусной и яблочной кислот. Яблочная кислота переходит в клетки обкладки, где служит донором СО2. Растения С3-пути характеризуются высокой интенсивностью фотодыхания. Фосфогликолевая кислота через ряд превращений распадается с выделением С02. Таким образом, при фотодыхании часть промежуточных продуктов фотосинтеза теряется за счет выделения С02. Реакции окисления и карбоксилирования конкурируют друг с другом, а осуществление карбоксилазной или оксигеназной функции зависит от содержания 02 и С02

Фотодыхание снижает эффективность фотосинтеза, приводит к потерям ассимилированного углерода, однако имеет некоторое синтетическое значение. На ранних этапах развития жизни, когда в атмосфере было мало кислорода, рубиско заняло ключевую позицию в фотосинтезе, и ее оксигеназная функция не доставляла проблем. По мере увеличения содержания кислорода потери на фотодыхание нарастали, и у ряда растений возникли механизмы активной доставки к месту работы рубиско углекислого газа (см. C4 и CAM-фотосинтез), увеличивающее долю её карбоксилазной активности до 100%.


Цикл Кальвина – основной, но не единственный путь восстановления СО 2 . Так австралийские ученые М. Хетч и К. Слэк (1966) и советский ученый Ю. Карпилов (1960) выявили, что у некоторых растений, главным образом, тропических и субтропических, таких как кукуруза, сахарный тростник, сорго и другие, основная часть меченного углерода (14 СО 2) уже после нескольких секунд фотосинтеза обнаруживается не в фосфоглицериновой кислоте, а в щавелево-уксусной (ЩУК), яблочной (ЯК) и аспаргиновой (АК) кислотах. В этих кислотах можно обнаружить в первые секунды до 90 % поглощенного 14 СО 2 . Через 5–10 минут метка появлялась в фосфоглицериновой кислоте, а затем в фосфоглицериновых сахарах. Так как эти органические кислоты содержат по 4 атома углерода, то такие растения начали называть С 4 -растениями в отличие от С 3 -растений, в которых радиоуглеродная метка появляется, прежде всего, в ФГК.

Это открытие положило начало серии исследований, в результате которых подробно был изучен химизм превращения углерода в фотосинтезе в С 4 -растениях. Акцептором углекислого газа в этих растениях является фосфоенолпировиноградная кислота (ФЕП) (рис.2.19).

Рис. 2.19 С 4 – путь фотосинтеза

ФЕП образуется из пировиноградной или 3-фосфоглицериновой кислоты. В результате β-карбоксилирования ФЕП превращается в четырехуглеродную щавелевоуксусную кислоту:

ФЕП + СО 2 + Н 2 О → ЩУК + Ф н

Фермент, который катализирует присоединение СО 2 к ФЕП – фосфоенолпируваткарбоксилаза – найден сейчас у многих одно- и двудольных растений. Образовавшаяся ЩУК при участии НАДФН (продукта световой реакции фотосинтеза) восстанавливается до яблочной кислоты (малата):

ЩУК + НАДФН + Н + → малат + НАДФ +

Реакция катализируется НАДФ + -зависимой малатдегидрогеназой, локализованной в хлоропластах клеток мезофилла.

У некоторых растений, образовавшаяся ЩУК в процессе восстановительного аминирования с участием аспартатаминотрансферазы преобразуется в аспарагиновую кислоту. В дальнейшем яблочная (или аспаргиновая) кислоты декарбоксилируются, образуется СО 2 и трехуглеродное соединение. СО 2 включается в цикл Кальвина, присоединяясь к рибулозо-5-фосфату, а трехуглеродное соединение используется для регенерации фосфоенолпирувата.

В настоящее время в зависимости от того, какая из органических кислот (малат или аспартат) декарбоксилируется, С 4 -растения делят на два типа: малатный тип (кукуруза, тростник) и аспартатный (сорго и др.) типы.

В свою очередь растения последнего типа подразделяют на две группы: растения, которые используют в реакции НАД-зависимую малатдегидрогеназу и растения, которые используют фосфоенолпируват-карбоксикиназу.

Как отмечалось, С 4 -растения отличаются от С 3 -растений и по анатомии листовой пластины. Фотосинтез идет в клетках обкладки и в клетках мезофилла. Оба типа фотосинтезирующих тканей отличаются по строению хлоропластов. Хлоропласты клеток мезофилла имеют строение, присущее большинству растений: они содержат два типа тилакоидов – тилакоиды гран и тилакоиды стромы (гранальные хлоропласты). Клетки обкладки содержат более крупные хлоропласты, часто наполненные крахмальными зернами и не имеющими гран, т. е. эти хлоропласты содержат только тилакоиды стромы (агранальные).

Считают, что агранальные хлоропласты образуются в процессе онтогенеза листа из обычных гранальных хлоропластов, так как на ранних стадиях развития эти хлоропласты также имеют граны.

Таким образом, для С 4 -растений характерны следующие особенности в строении:

– многочисленные воздушные полости, по которым воздух из атмосферы подходит непосредственно к большому количеству фотосинтезирующих клеток, обеспечивая эффективное поглощение углекислоты;

– слой клеток обкладки сосудистых пучков, плотно упакованных около проводящих пучков;

– клетки мезофилла, которые располагаются менее плотными слоями около клеток обкладки сосудистых пучков;

– большое количество плазмодесм между клетками обкладки сосудистых пучков и клетками мезофилла;

Для малатного типа растений характерен следующий путь фотосинтеза. Гранальные и агранальные хлоропласты отличаются и по характеру проходящих в них реакций фотосинтеза. В клетках мезофилла с мелкими гранальными хлоропластами происходит карбоксилирование ФЕП с образованием ЩУК (первичное карбоксилирование), а затем образуется малат. Малат перемещается в клетки обкладки. Тут малат окисляется и декарбоксилируется с участием малатдегидрогеназы. Образуется СО 2 и пируват. СО 2 используется для карбоксилирования рибулозо-1,5-дифосфата (вторичное карбоксилирование) и таким образом включается С 3 -цикл, который идет в агранальных хлоропластах клеток обкладки. Пируват возвращается в клетки мезофилла, где фосфорилируется за счет АТФ, что приводит к регенерации ФЕП, и цикл замыкается (рис. 2.20).

Рис. 2.20. Фотосинтез С 4 -растений, которые используют в реакциях декарбоксилирования НАДФ-зависимый «яблочный фермент» (малатдегидрогеназа *)

Таким образом, в С 4 -растениях карбоксилирование происходит два раза: в клетках мезофилла и в клетках обкладки.

Что происходит в растениях, в которых из ЩУК образуется аспартат (аспарагиновая кислота)? У тех растений, которые используют для реакций декарбоксилирования НАД-зависимую малатдегидрогеназу, ЩУК трансаминируется под воздействием цитоплазматической аспартаминотрансферазы, которая использует в качестве донора аминогруппы глутаминовой кислоты (ГК-глутаминовая, ОГК-2-оксоглутаминовая кислота) (рис. 2.21).

Рис. 2.21. Фотосинтез С 4 -растений, которые используют в реакциях декарбоксилирования НАД-зависимый «яблочный фермент» (малатдегидрогеназа):

Образовавшаяся АК переходит из цитоплазмы клеток мезофилла в митохондрии клеток обкладки сосудистого пучка, вероятно, через плазмодесмы. Там происходит противоположная реакция трансаминирования, которая приводит к образованию ЩУК. Затем митохондриальная малатдегидрогеназа восстанавливает ЩУК до ЯК. ЯК декарбоксилируется НАД-зависимой малатдегидрогеназой с образованием ПВК и СО 2 .

СО 2 диффундирует из митохондрий в хлоропласты, где включается в цикл Кальвина. ПВК поступает в цитоплазму, где трансаминируется аминотрансферазой и превращается в аланин (АЛ); донором аминогруппы является ГК.

Аланин переносится из цитоплазмы клеток обкладки в цитоплазму клеток мезофилла (вероятно, через плазмодесмы). В дальнейшем он преобразуется в ПВК (аланинаминотрансфераза); акцептором аминогруппы является ОГК (оксаглутаровая кислота). Затем ПВК переходит в хлоропласты мезофилла и превращается в ФЕП.

В С 4 -растениях, использующих в реакции декарбоксилирование фосфоенолпируват-карбоксикиназу, последовательность реакций напоминает предыдущие. Только в этом случае ЩУК декарбоксилируется фосфоенолпируваткарбоксикиназой с образованием СО 2 и ФЕП (рис. 2.22).

Рис. 2.22. Фотосинтез С 4 -растений, использующих в реакции декарбоксилирования фермент фосфоенолпируват-карбрксикиназу*

Внутриклеточная локализация ФЕП-карбоксикиназы и аспартат-аминотрансферазы в этом случае пока неизвестна. Неизвестна и судьба ФЕП; однако, как считают, он превращается в ПВК (эти реакции обозначены вопросительным знаком).

Образовавшийся в ходе реакции СО 2 используется в качестве субстрата в реакциях цикла Кальвина в хлоропластах клеток обкладки сосудистого пучка. Аланин из клеток обкладки пучка превращается в ФЕП в клетках мезофилла листа; это происходит в той же последовательности реакций, что и в предыдущих циклах.

В настоящее время пришли к выводу, что основная функция С 4 -цикла, который идет в клетках мезофилла листа – концентрирование СО 2 для С 3 -цикла. С 4 -цикл является своеобразным насосом – «углекислотной помпой». Находящаяся в мезофильных клетках ФЕП-карбоксилаза очень активна. Она может фиксировать СО 2 , включая его в органические кислоты при более низких концентрациях СО 2 , чем это делает РДФ-карбоксилаза, и активность последней у С 4 -растений небольшая. Благодаря функционированию этой углекислотной помпы у С 4 -растений концентрация СО 2 в клетках обкладки, где идет цикл Кальвина, в несколько раз выше, чем в среде. Это очень важно, так как С 4 -растения живут в условиях повышенных температур, когда растворимость СО 2 значительно ниже.

Кооперация между двумя циклами связана не только с перекачкой СО 2 . Для восстановления ФГК в цикле Кальвина необходимы АТФ и НАДФН. Агранальные хлоропласты клеток обкладки содержат ФС I, поэтому в них происходит только циклическое фотофосфорилирование; это означает, что в этих клетках не восстанавливается НАДФ + . Гранальные хлоропласты мезофильных клеток содержат обе фотосистемы, в них идет циклическое и нециклическое фотофосфорилирование с образованием АТФ и НАДФН.

Когда малат, образованный в мезофильных клетках, поступает в клетки обкладки, то при его декарбоксилировании происходит и окисление, и восстанавливается НАДФ + , необходимый для восстановления ФГК.

Таким образом, С 4 -цикл поставляет в цикл Кальвина и водород для восстановления СО 2 .

Эволюционно С 3 -цикл появился раньше, чем С 4 , он есть у водорослей. В древесных растениях цикла Хетча – Слека нет. Это тоже подтверждает, что этот цикл возник позднее.

В заключение отметим, что, циклы Кальвина и Хетча – Слека действуют не изолированно, а строго координировано. Взаимосвязь этих двух циклов получила название «кооперативного» фотосинтеза.