Самые интересные открытия и изобретения человечества. Eureka, или Открытия, сделанные случайно. Беспорядок в лаборатории

О творческой активности разума. Творческая активность ума по-разному реализуется в той или иной сфере материальной или духовной культуры - в науке, технике, экономике, искусстве, политике и т.д. К примеру, в естествознании наиболее значимым результатом творчества является открытие - установление новых, ранее не известных фактов, свойств и закономерностей реального мира. И. Кант проводит такое разграничение между открытием и изобретением: открывают то, что существует само по себе, оставаясь неизвестным, например Колумб открыл Америку. Изобретение есть создание ранее не существовавшего, например порох был изобретен. Открытие и изобретение всегда есть завершение искомого. Подлинно научное открытие состоит в том, чтобы найти принципиальное решение еще не решенных задач, еще не раскрытых проблем. Бывает так, что новое есть лишь оригинальная комбинация старых элементов. Творческая мысль та, которая ведет к новым результатам или посредством комбинаций обычных способов, или совершенно новым методом, нарушающим ранее принятые. Как только найден принцип решения задачи, она перестает быть творческой. Движение мысли по проторенным путям - это уже не творческое мышление. Именно благодаря творчеству и осуществляется прогресс в науке, технике, искусстве, политике и во всех других сферах общественной жизни. Корни всякого открытия, по мысли В.И. Вернадского, лежат далеко в глубине, и, как волны, бьющиеся с разбега о берег, много раз плещется человеческая мысль около подготовленного открытия, пока придет девятый вал.

Пути, ведущие к открытию, бывают очень причудливыми. На эти пути иногда наводит случай. Например, датский физик X. Эрстед однажды показывал студентам опыты с электричеством. Рядом с проводником, входящим в электрическую цепь, оказался компас. Когда цепь замкнулась, магнитная стрелка компаса отклонилась. Заметив это, один любознательный студент попросил ученого объяснить данное явление. Эрстед повторил опыт: вновь замкнул цепь, и стрелка компаса вновь отклонилась. В результате повторных опытов и логических рассуждений ученый сделал великое открытие, заключающееся в установлении связи между магнетизмом и электричеством. Это открытие в свою очередь послужило важнейшим этапом и других открытий, в частности изобретения электромагнита.

В творческой деятельности ученого нередки случаи, когда самому автору результат представляется так, как будто его вдруг "осенило". Но за способностью "внезапно" схватывать суть дела и чувствовать "полную уверенность в правильности идеи" стоят накопленный опыт, приобретенные знания и упорная работа ищущей мысли.

Логический путь научного и технического творчества, связанного с открытием и изобретением, начинается с возникновения соответствующей догадки, идеи, гипотезы. Выдвинув идею, сформулировав задачу, ученый отыскивает ее решение, а затем уточняет его путем расчетов, проверки опытом. От возникновения идеи до ее осуществления и проверки на практике нередко лежит мучительно долгий путь исканий.

Открытие как разрешение противоречий. Одной из характерных черт творческой работы мысли является разрешение противоречий. Это и понятно: любое научное открытие или техническое изобретение представляет собой создание нового, которое неизбежно связано с отрицанием старого. В этом и состоит диалектика развития мысли. Творческий процесс вполне логичен. Это цепь логических операций, в которой одно звено закономерно следует за другим: постановка задачи, предвидение идеального конечного результата, отыскание противоречия, мешающего достижению цели, открытие причины противоречия и, наконец, разрешение противоречия.

Приведем примеры. В кораблестроении для обеспечения мореходных качеств корабля необходим оптимальный учет противоположных условий: чтобы корабль был устойчивым, выгодно его делать шире, а чтобы он был быстроходнее, целесообразно делать его длиннее и уже. Эти требования противоположны. В горной технике увеличение размера сечения и глубины шахт вступило в противоречие с растущим давлением горных пород. Для разрешения этого противоречия пришлось перейти от квадратного сечения шахт к круглому и заменить деревянное крепление стволов металлическим. Пожалуй, особенно наглядно проявляются технические противоречия в самолетостроении. Самолет представляет собой такое сооружение, в котором непримиримо борются два начала: прочность и вес. Машину необходимо сделать прочной и легкой, а прочность и легкость все время "воюют" между собой.

История науки и техники свидетельствует, что подавляющее большинство изобретений - результат преодоления противоречий. П. Капица однажды сказал, что для физика интересны не столько сами законы, сколько отклонения от них. И это верно, так как, исследуя их, ученые обычно открывают новые закономерности.

Сделать открытие - значит правильно установить надлежащее место нового факта в системе теории в целом, а не просто обнаружить его. Осмысление новых фактов нередко ведет к построению новой теории.

В физической концепции мира долгое время господствовала идея эфира. Открытие, "снявшее" идею эфира, осуществил американский физик А.А. Майкель-сон. Если свет распространяется в неподвижном эфире, а Земля летит сквозь эфир, то два световых луча - один, пущенный по направлению полета Земли, а другой в противоположном направлении - должны двигаться относительно Земли с разными скоростями. Очень точный эксперимент показал, что разницы в скоростях нет. Идея неподвижного эфира вступила в противоречие с прямым опытом и была отвергнута.

Творческое воображение, фантазия тесно связаны с развитием способности человека изменять, преобразовывать мир. С ее помощью человек осуществляет и вымыслы, и замыслы, столь высоко поднявшие человека над животным. Фантазия, мечта связаны с предвосхищением будущего. Д.И. Писарев писал:

"Если бы человек был совершенно лишен способности мечтать... если бы он не мог изредка забегать вперед и созерцать воображением своим в цельной и законченной красоте то самое творение, которое только что начинает складываться под его руками, - тогда я решительно не могу себе представить, какая побудительная причина заставляла бы человека предпринимать и доводить до конца обширные и утомительные работы в области искусства, науки и практической жизни" .

1 Писарев Д.М. Избранные сочинения: В 2 т. М., 1935. Т. II. С. 124.

Фантазия имеет свои собственные законы, отличные от законов обычной логики мышления. Творческое воображение позволяет по едва заметным или совсем незаметным для простого глаза деталям, единичным фактам улавливать общий смысл новой конструкции и пути, ведущие к ней. При прочих равных условиях богатое воображение предохраняет ученого от избитых путей. Человек, лишенный творческого воображения и руководящей идеи, в обилии фактов может не увидеть ничего особенного: он к ним привык. Привычки в научном мышлении - это костыли, на которых, как правило, держится все старое. Для свершения великого нужна независимость от установившихся предрассудков .

1 Так, характеризуя достижения отечественной астрофизики, В.А. Амбарцу-мян отметил, что у нас успешно развивается точка зрения, согласно которой мощные процессы, происходящие во Вселенной, связаны с переходом от более плотного к менее плотному состоянию. Наши ученые утверждают, что в ядрах галактик происходят колоссальные взрывы. Под напором фактов к тому же выводу пришли американские астрономы, хотя они еще несколько лет назад категорически отрицали, что радиогалактика - результат взрывов. В этом сыграло роль то, что наши ученые отвергли предрассудок, который жил в науке и согласно которому вообще все существующее надо объяснять исходя из чего-то диффузного, хаотического, имеющего ничтожную плотность (см.: Амбарцумян В.А. Марксистско-ленинская методология и прогресс науки // Методологические проблемы науки. Материалы заседания президиума Академии наук СССР. М., 1964. С. 19).

Сила творческого воображения позволяет человеку взглянуть на примелькавшиеся вещи по-новому и различить в них черты, доселе никем не замеченные.

Английскому инженеру Брауну было поручено построить через реку Твид мост, который отличался бы прочностью и в то же время не был слишком дорог. Как-то, прогуливаясь по своему саду, Браун заметил паутину, протянувшуюся над дорожкой. В ту же минуту ему пришла в голову мысль, что подобным образом можно построить и висячий мост на железных цепях.

Творческое воображение воспитывается всем ходом жизни человека, усвоением накопленных человечеством сокровищ духовной культуры. Существенное значение в воспитании творческого воображения играет искусство. Оно развивает фантазию и дает большой простор для творческой изобретательности. Далеко не случаен тот факт, что великие мыслители и ученые обладают исключительно высокой эстетической культурой, а ряд крупных физиков и математиков считают красоту и развитое чувство красоты эвристическим принципом науки, существенным атрибутом научной интуиции. Известно, что П. Дирак выдвинул идею о существовании протона по соображениям чисто эстетическим. К.Э. Циолковский не раз говорил, что основные идеи его концепции о космических путешествиях сформировались под сильнейшим воздействием научно-фантастической литературы.

Открытия никогда не вырастают на пустом месте. Они - результат постоянной заполненности сознания ученого напряженными поисками решения каких-либо творческих задач.

В научных открытиях и технических изобретениях немалую роль, как отмечают многие ученые, играет аналогия. Она присутствует почти во всех открытиях, но в некоторых она является основой. Например, в знаменитом открытии всемирного тяготения, когда Ньютон, в отличие от всех своих предшественников, видевших падение яблока на землю, усмотрел притяжение яблока землей, имела место и аналогия между движением небесных и подброшенных кверху тел. К достижениям нового ведет острая наблюдательность: шерлокохолмсовское внимание к "мелочам", умение подметить то, мимо чего сотни и тысячи людей проходят без внимания . В процессе научного исследования - экспериментального или теоретического - ученый ищет решение проблемы. Этот поиск может вестись ощупью, наугад, и целенаправленно. Во всяком творении есть направляющая идея. Она является своего рода руководящей силой: без нее ученый неизбежно обрекает себя на блуждание в потемках.

1 Однажды, идя по улице в дождь, русский ученый Н.Е. Жуковский, погруженный в свои размышления, остановился перед ручьем, через который ему нужно было перешагнуть. Вдруг его взгляд упал на кирпич, лежавший посреди потока воды. Жуковский стал внимательно всматриваться в то, как под напором воды изменялось положение кирпича, вместе с тем изменялся и характер обегающей кирпич струи воды... Это наблюдение подсказало ученому решение гидродинамической задачи.

Независимо от содержания любое научное открытие имеет некоторую общую логику движения: от поисков и вычленения фактов, их отбора к обработке полученных данных в результате наблюдения и эксперимента. Далее мысль движется к классификации, обобщению и выводам. На этой основе возникают гипотезы, производятся их отбор и последующая проверка на практике, в эксперименте. Затем формулируется теория и осуществляется предсказание.

Но логика далеко не исчерпывает духовных ресурсов творческого мышления.

"Нельзя недооценивать необходимой роли воображения и интуиции в научном исследовании. Разрывая с помощью иррациональных скачков... жесткий круг, в который нас заключает дедуктивное рассуждение, индукция, основанная на воображении и интуиции, позволяет осуществить великие завоевания мысли; она лежит в основе всех истинных достижений науки... Таким образом (поразительное противоречие!), человеческая наука, по существу рациональная в своих основах и по своим методам, может осуществлять свои наиболее замечательные завоевания лишь путем опасных внезапных скачков ума, когда проявляются способности, освобожденные от тяжелых оков строгого рассуждения, которые называют воображением, интуицией, остроумием" .

2 Бройль Л. де. По тропам науки. М., 1962. С. 294-295.

В открытии нередко участвует несколько человек. Прежде чем получить окончательную форму, оно питается такими предшественниками:

1. Фантазер, возбуждающий мысль и желание осуществить ее. Таковы талантливые сказочники без всякого образования и с образованием.

2. То же, но с более умеренной фантазией. Примеры: Жюль Верн, Уэллс, Эдгар По, Фламмарион.

3. Даровитый мыслитель, независимо от своего образования.

4. Составитель планов и рисунков.

5. Моделисты.

6. Первые неудачные исполнители.

7. Осуществление.

Иногда одно лицо проходит несколько этапов, и даже все. Но такое явление не часто.

Все эти выдающиеся люди не объединены ни временем, ни местом.

Для успешного хода изобретений и открытий хорошо бы их соединить для коллективной работы.

Ведь все таланты, необходимые для открытия, так редко объединяются в одном человеке!

Общество, двигающее вперед человечество, должно жить вместе или часто собираться для совещаний. Верхний этап, то есть этап фантазеров, выбирает из своей среды фантазии, которые сами фантазеры по своей пылкости считают наиболее основательными. Они в форме доклада отправляются в общества второго разряда, состоящие из людей менее увлекающихся. Они обсуждают все поступившие к ним сказки и некоторые из них, которые покажутся им наиболее исполнимыми, отправляют на рассмотрение обществ третьего разряда, где уже сидят люди более знающие. Они выбирают несколько лучших проектов и отправляют их на просмотр следующим обществам, имеющим всякого рода специалистов, которые выбирают годное, по их мнению, и составляют точные расчеты и чертежи. Наконец, то и другое переходит к талантливым исполнителям, которые успешно осуществляют часть этих проектов, остальные же считают или неисполнимыми, или откладывают их исполнение на будущее время.

Как же это осуществить на деле?

Неосновательных изобретателей и открывателей всего больше.

Пусть каждое небольшое местечко укажет на своих выдающихся людей. Число их будет пропорционально населению, например, на каждую его сотню или тысячу выбирают одного человека.



Фантазеры эти, между которыми могут быть и дельные люди, собираются в группы человек по сто, по тысяче. Они живут в особых деревнях или во дворцах, как и другие, но каждая группа живет в одной деревне. Таких деревень или местечек может быть множество. Каждое из них отбирает из своей среды наиболее талантливых представителей. Их гораздо меньше, но они тоже составят много местечек, рассеянных по стране далеко друг от друга. Так, идем далее. Последняя избранная группа составит один городок и будет уже реализовывать все изобретения и проверять все открытия. Им на помощь пойдет вся страна своими силами и средствами.

Основные законы всех групп следующие:

1. Выборные половину своего времени проводят среди выборщиков (для испытания и проверки), а половину – в сообществе себе подобных, то есть в своем селении, где собираются выбранные определенной категории.

2. Выборного не может изгнать общество равных ему. Но его может не выбрать вторично селение, куда он возвратился по окончании срока. Цель этого закона – препятствовать исполнению пословицы «Рука руку моет».

3. Ни одна группа не может выбирать себе равных или исключать их. Ее право выбирать высших для высшей следующей группы.

Общая цель этих законов – выборное начало, или право иметь своих руководителей по выбору, то есть по желанию. Ведь и всякий талант или сила приобретают авторитет хотя бы согласием немногих. Еще будет лучше, если авторитет будет выбираться согласно общему желанию всего человечества.

Условная истина

Настоящей (абсолютной) истины нет, потому что она основывается на полном познании космоса. Но такого полного познания нет и никогда не будет. Наука, которая дает знание, непрерывно идет вперед, отвергает или утверждает старое и находит новое. Каждое столетие меняет науку. Не отвергает, а именно изменяет более или менее ее содержание, вычеркивая одно и прибавляя другое. Конца этому не будет, как нет конца векам и развитию мозга.

Значит, истина может быть только условная, временная и переменная.

Религиозные веры называют свои догматы истиной. Но может ли какая-либо вера быть истиной? Число вер выражается тысячами. Они противоречат друг другу, часто опровергаются наукой и потому не могут быть приняты даже за условную истину. Политические убеждения также более или менее несогласны. Поэтому и про них мы скажем то же. Философские размышления создавали мировоззрения. Несогласие их также заставляет смотреть на них как на личное мнение.

Некоторые философы не принимали ничего для своих выводов, кроме точного научного знания. Но и их выводы не достойны названия условной истины, так как не были согласны между собой. Наконец, нет человека, который бы не понимал истину по-своему. Сколько людей, столько и истин. Какая же это истина?!

Однако мы должны сначала условиться о том, что мы хотим подразумевать под условной истиной.

Философы, мудрецы и ученые, конечно, способствуют распространению познаний о вселенной и потому совершенствуют представление людей об условной истине.

Условная истина может быть земная, народная, городская, волостная, сельская, деревенская, семейная и личная.

Личная – это та, которую приобретает человек разными путями и считает за самое лучшее, самое верное и самое справедливое. В среднем это есть наиболее низший сорт условной истины. Она изменяется с возрастом и познанием человека. Истина деревенская есть та, которую готова принять деревня и подчиниться ей.

Как это может быть? Деревня, значительным большинством (0,6, 0,7, 0,8 и т. д.) голосов, выбирает из своей среды человека, которого она считает во всех отношениях самым высоким. Она поручает ему выработать кодекс истины, как он умеет. Принятый кодекс будет условной деревенской истиной. Разумеется, она меняется с изменением выборного лица. Все же эта истина несколько выше личных взглядов заурядных членов деревни. Подразумеваю средние величины.

Выборные из нескольких деревень, живущие вместе, знающие друг друга, поручают отыскивать истину особому лицу из их же среды, которого они считают за самого умного. Так получается истина сельская.

Теперь понятно, как создать условную истину: городскую, национальную и земную.

Все эти истины будут условны, потому что несогласны, переменны и несовершенны. Высшая истина, понятно, будет земной, полученной человеком, избранным от всех людей, то есть всеми народностями.

Может быть, некоторые личные истины (в общем, самого низкого сорта) на деле окажутся выше самой высшей избранной. Но утверждать и доказать этого никто не может. И потому для людей истина будет та, которая выбрана их представителем.

Человек принимает то, что постигает. Остальное, навязанное ему, в глазах его есть заблуждение и насилие, хотя бы он тысячу раз ошибался.

В самом деле, мы не имеем права навязывать ему нашу личную истину, даже истину города или страны. Он требует истины всего мира, даже от всей вселенной, если бы это только было возможно.

Навязанная истина нарушит мир, возбудит несогласие и недовольство.

Итак, условная высшая истина есть та, которая вырабатывается деревней, потом селом, уездом, городом, округом, нацией и, наконец, выборным от всех наций.

Как я могу выдавать свои убеждения за истину и на основании их насиловать, если эта истина не утверждена всем миром.

Так действовали и заблуждались вожди, императоры, завоеватели и пр. Мы должны не подражать им, а смиренно отступить и предоставить выборы и определение истины всему человечеству.

Нужно только, чтобы каждая община, выбирая лучшее лицо, имела его периодически перед глазами и делала ему непрерывную оценку: изменился к худшему – и вон его. Чтобы это лицо было всегда на виду, надо, чтобы выборных и в одном обществе было несколько: одни управляют общиной, а другие идут на выборы в высшее общество. Каждый выборный половину времени проводит в своем обществе, а половину – в высшем.

Еще надо, чтобы высшее общество не могло его исключать без согласия низшего. Да, нужно, чтобы число членов в каждой общине было невелико. Тогда члены могут изучить друг друга, определить взаимные достоинства и сделать верный выбор. С этой точки зрения, чем меньше число членов, тем лучше. Но все же их не должно быть меньше 100-1000. На это хватит средней человеческой памяти и наблюдательности. Разумных выборов нет нигде в целом мире. Но если бы они и были, то едва ли и наша планетная истина была бы высшей. На практике пока овладевает человечеством индивидуальная истина. Отсюда – источник насилия над человечеством. Эта истина в некоторых случаях может быть много выше общей планетной и потому как будто может быть оправдана. Тут как бы высший человек насильно спасает остальное человечество. Так пастух управляет стадом и спасает его от хищных зверей. Теоретически это можно допустить, и в истории нечто подобное бывает.

1932 г.

Род или характеристика познания*

К разделу гносеологии

По свойству знаний их можно разделить на следующие категории.

1. Непосредственные знания . Например, мы можем простой накладкой меры измерить расстояние между двумя городами. Можно непосредственно взвесить предмет, определить его плотность, объем и пр. Множество научных знаний следует причислить к этой категории.

2. Знание теоретическое, которое можно непосредственно проверить . Например, геометрия дает способы измерять расстояние до предметов, а также величину их, не подходя к ним. Непосредственная проверка подтверждает геометрический метод. Также объем можно смерить погружением в воду и весом вытесненной воды. Все отделы наук пользуются косвенными способами измерения величин. Результаты можно подтвердить непосредственно.

3. Знания теоретические или посредственные, которые проверить пока нельзя . Например, мы знаем вещественный состав небесных тел, но непосредственно этого проверить нельзя до тех пор, пока не найдут способа посетить небесные тела или достать оттуда вещество. Также известны расстояние, величина, плотность, масса и тяжесть небесных тел, но доказать непосредственно верность таких исследований пока невозможно. Громадное количество таких знаний относится к астрономии.

4. Знания несомненные и точные, но проверить их непосредственно наши чувства не приспособлены . Таковы познания о массе атомов и расположении их в молекулах.

5. Знания вероятные, или приблизительные, которые проверить можно . Примером могут служить статистические данные, например, о средней продолжительности жизни, о числе самоубийств в течение года и пр.

6. Такие же приблизительные, или вероятные, знания, которые пока проверить невозможно .

Приведем пример. В нашем Млечном Пути насчитывают 500 миллиардов солнц. Наше солнце имеет более тысячи планет. Имеют ли другие солнца свои планеты? В связи с астрономическими знаниями мы можем с огромной степенью вероятности сказать, что имеют. Второй пример: есть ли существа на этих планетах? Опять, в связи с другими космическими познаниями, мы должны ответить с такою же большою степенью вероятности, что имеют. Проверить это несомненно верное решение пока невозможно.

Можно еще ответить верно на множество иных вопросов такого же рода. Но это отвлекло бы нас далеко от поставленной задачи.

7. Знание несомненно, но проверить и утвердить его совсем невозможно . Например, бесконечность времени указывает на беспредельную сложность каждого атома. Если же это так, то каждый атом есть сложный мир, подобный Земле или другой планете. На нем должны быть и особые разумные существа, подобные людям или другим животным. Проверить эти идеи ни теперь, ни в будущем совершенно невозможно. Вот более простой пример несомненности таких знаний. Чувствуют ли радость и горе прочие люди и животные, или они автоматы? Конечно, чувствуют, но доказать это прямо нельзя. Прибегают к теории вероятности.

8. Знания фактические, но противоречащие наукам , то есть другим фактам. Если это не обман чувств, то отвергать их нельзя. На них нужно смотреть как на доказательство неполноты существующих научных сведений. Упорно отрицать несомненные явления только потому, что они необъяснимы с точки зрения современной науки, неразумно. Человек склонен к отрицанию всего нового. Но такое упрямое отрицание вредит развитию науки. Настоящее ее состояние есть только один этап, за которым последуют другие высшие этапы.

9. Предположения, или гипотезы , то есть полузнания, которые объясняют некоторые явления, но не все и смутно. Они с развитием знаний или отвергаются, заменяясь другими гипотезами, или становятся более вероятными, даже утверждаются как несомненно научные истины. Гипотезы, вообще, относятся уже к области сомнительных знаний.

10. Народные предания, суеверия, предрассудки, мифы, большинство исторических сведений и пр . Им каждый считает себя вправе не верить. Но все же находятся верующие или полуверующие. Это еще ниже.

Первые 8 категорий знаний могут считаться строго научными. Они могут быть приняты и имеют огромное значение для всех мыслящих существ. Ничего общего они не имеют с фантазиями, религиозными доводами и бездоказательными мнениями и утверждениями авторитетов.

1932 г.

Космическая философия

1. Мы сомневаемся в повсюду распространенной жизни. Конечно, на планетах нашей системы возможно если не отсутствие жизни, то ее примитивность, слабость, может быть, уродливость и, во всяком случае, отсталость от земной, как находящейся в особенно благоприятных условиях температуры и вещества. Но млечные пути, или спиральные туманности, имеют миллиарды солнц. Группа же их заключает миллионы миллиардов светил. У каждого из них множество планет, и хотя [бы] одна из них имеет планету в благоприятных условиях. Значит, по крайней мере миллион миллиардов планет имеют жизнь и разум не менее совершенные, чем наша планета. Мы ограничились группой спиральных туманностей, то есть доступной нам вселенной. Но ведь она безгранична. Как же в этой безграничности отрицать жизнь?

Какой бы смысл имела вселенная, если бы не была заполнена органическим, разумным, чувствующим миром? Зачем были бы бесконечные пылающие солнца? К чему их энергия? Зачем она пропадает даром? Неужели звезды сияют для украшения неба, для услаждения человека, как думали в Средние века, времена инквизиции и религиозного безумия?

2. Мы склонны думать также, что наиболее высокое развитие жизни принадлежит Земле. Но животные ее и человек сравнительно недавно зародились и пребывают сейчас в периоде развития. Солнце еще просуществует как источник жизни биллионы лет, и человечеству предстоит в этот невообразимый период идти вперед и прогрессировать – в отношении тела, ума, нравственности, познания и технического могущества. Впереди его ждет нечто блестящее, невообразимое. По истечении тысячи миллионов лет ничего несовершенного, вроде современных растений, животных и человека, на Земле уже не будет. Останется одно хорошее, к чему неизбежно приведет нас разум и его сила.

Но все ли планеты космоса имеют такой же малый возраст, как Земля? Все ли они находятся в периоде развития, в периоде несовершенства? Как знаем из астрономии, возраст солнц самый разнообразный: от только что родившихся разреженных гигантских светил до погасших черных карликов. Старики имеют многие биллионы лет, молодые солнца даже еще не родили своих планет.

Какой же вывод? Выходит, что должны быть и планеты всех возрастов: от пылающих, подобно солнцам, до омертвевших, благодаря угасанию своих солнц. Одни планеты, значит, еще не остыли, другие имеют примитивную жизнь, третьи доросли до развития на них низших животных, четвертые имеют уже разум, подобный человеческому, пятые еще шагнули вперед и т. д. Отсюда видно, что мы должны отречься от мнения, будто наиболее совершенная жизнь принадлежит нашей планете.

Все же мы приходим к выводу не совсем утешительному: во Вселенной несовершенная, неразумная и мучительная жизнь распространена в такой же степени, как и высшая, разумная, могущественная и прекрасная.

3. Но верен ли этот вывод? Нет, он неверен, и мы сейчас это выясним. Мы нашли, что возраст планет самый разнообразный. Из этого следует, что есть планеты, которые по развитию разума и могущества достигли высшей степени и опередили все планеты. Они, пройдя все муки эволюции, зная свое печальное прошедшее, свое былое несовершенство, захотели другие планеты избавить от мук развития.

Если мы, земные жители, уже мечтаем о межпланетных путешествиях, то чего же достигли в этом отношении планеты, которые на миллиарды лет старше нас! Для них это путешествие так же просто и легко, как для нас проезд по железной дороге из одного города в другой.

На этих передовых зрелых планетах размножение идет в миллионы раз быстрее, чем на Земле. Впрочем, оно регулируется по желанию: нужно совершенное население – его нарождают быстро и в каком угодно числе.

Посещая окружающие их незрелые миры с примитивной животной жизнью, они уничтожают ее по возможности без мучений и заменяют своей совершенной породой. Хорошо ли это, не жестоко ли? Если бы не было их вмешательства, то мучительное самоистребление животных продолжалось бы миллионы лет, как оно и сейчас продолжается на Земле. Их же вмешательство в немногие годы, даже дни, уничтожает все страдания и ставит вместо них разумную, могущественную и счастливую жизнь. Ясно, что последнее в миллионы раз лучше первого.

Что же из этого следует? А то, что в космосе нет несовершенной и страдальческой жизни: ее устраняет разум и могущество передовых планет. Если она и есть, то на немногих планетах. В общей гармонии Вселенной она незаметна, как незаметна пылинка на белоснежном поле.

Но как же понять присутствие страданий на Земле? Почему высшие планеты не ликвидируют нашу несчастную жизнь, не прекратят ее и не заменят своей прекрасной? Есть и другие планеты, подобные Земле. Зачем они страдают? В мире совершенном кроме преобладающего прогресса есть и регресс, попятный ход. Помимо того, цветы жизни так прекрасны, так разнообразны, что лучшие из них нужно вырастить, дождаться семян и плодов. Хотя передовые планеты и опередили другие, но ведь это, может быть, объясняется их старым возрастом. Могут быть поздние планеты с лучшими плодами. Необходимо исправлять регресс Вселенной этими ее запоздавшими плодами. Вот почему оставлено без вмешательства небольшое число планет, обещающих дать необыкновенные результаты. Между ними и Земля. Она страдает, но недаром. Плоды ее должны быть высокими, если ее предоставили самостоятельному развитию и неизбежным мучениям. Опять скажу, что сумма этих страданий незаметна в океане счастья всего космоса.

4. Иные думают: мы имеем годы жизни и дециллионы лет небытия! Не есть ли это, в сущности, небытие, так как бытие в массе небытия незаметно и то же, что капля в океане воды?

Но дело в том, что небытие не отмечается временем и ощущением. Поэтому оно как бы не существует, а существует одна жизнь. Кусочек материи подвержен бесчисленному ряду жизней, хотя и разделенных громадными промежутками времени, но сливающимися субъективно в одну непрерывную и, как мы доказали, прекрасную жизнь.

Что же выходит? А то, что общая биологическая жизнь Вселенной не только высока, но и кажется непрерывной. Всякий кусочек материи непрерывно живет этой жизнью, так как промежутки долгого небытия проходят для него незаметно: мертвые не имеют времени и получают его только тогда, когда оживают, то есть принимают высшую органическую форму сознательного животного.

Может быть, скажут: разве доступна органическая жизнь центрам солнц, планет, газовых туманностей и комет? Не обречена ли их материя на вечную смерть, то есть небытие?.. И Земля, и мы, и все люди, и вся органическая современная жизнь Земли были когда-то веществом Солнца. Однако это не помешало нам выбраться оттуда и получить жизнь. Материя непрерывно перемешивается: одни ее части уходят в солнца, а другие выходят из них. Всякой капле вещества, где бы она ни находилась, неизбежно придет очередь жить. Ждать ее придется долго. Но это ожидание и огромное время существуют только для живого и есть их иллюзия. Наша же капля не испытает мучительного ожидания и не заметит миллионов лет.

Опять говорят: я умру, вещество мое рассеется по всему земному шару, как же я могу ожить?

До вашего зарождения вещество ваше тоже было рассеяно, однако это не помешало вам родиться. После каждой смерти получается одно и то же – рассеяние. Но, как мы видим, оно не препятствует оживлению. Конечно, каждое оживление имеет свою форму, не сходную с предыдущими. Мы всегда жили и всегда будем жить, но каждый раз в новой форме и, разумеется, без памяти о прошедшем.

5. Грядущие тысячи и миллионы лет усовершенствуют природу человека и его общественную организацию. Человечество обратится как бы в одно могущественное существо под управлением своего президента. Это самый лучший из всех людей в физическом и умственном отношении. Но если члены общества высоки по своим качествам, то как же высок высший, научно избранный из них!

Так организуются неизбежно населения и других планет. Могущественному населению высшей планеты каждой солнечной системы будут доступны не только планеты этой системы, но и все околосолнечное пространство. Оно эксплуатируется на пользу населения, как и вся солнечная энергия. Ясно, что одна планета есть кроха в солнечной системе. Она не составляет центра. Население рассеивается по всему околосолнечному пространству. Объединению подлежит не только каждая планета, но и вся их совокупность и все эфирное население, живущее вне планет в искусственных жилищах. Итак, после объединения каждой планеты неизбежно настанет объединение каждой солнечной системы.

Могущество их так велико, что они сносятся между собою не только особыми телеграммами, но и лично, непосредственно, как знакомые. Тысячи лет требуется для этого путешествия, но и тысячи лет живут иные жители солнечных систем, ибо миллиарды лет грядущего развития любой планеты дадут населению каждой и неопределенно долгую жизнь. Катастрофы солнц, их взрывы, повышения и понижения температур заставляют население все предвидеть и все знать о соседних солнцах, чтобы заранее удаляться от угрожающей опасности.

Образуется союз ближайших солнц, союз союзов и т. д. Где предел этим союзам – трудно сказать, так как Вселенная бесконечна.

Мы видим бесчисленное множество президентов разной степени совершенства. А так как этим категориям нет конца, то нет и пределов совершенству личному – индивидуальному…

6. Мы говорили пока только о вещах и существах из обычной материи. Она содержит 92 или более элементов, а последние составлены из соединения водородных атомов.

Итак, мы говорили про водородные существа, про водородный мир.

Но нет ли еще какого-нибудь другого вещества? Есть у нас такое вещество – малопостижимый светоносный эфир, заполняющий все пространство между солнцами и делающий материю и Вселенную непрерывной.

Есть основания предполагать, что солнца и вообще все тела теряют материю тем сильнее, чем они горячее. Куда девается эта материя? Мы думаем, что она разлагается на более простую и упругую, которая и распространяется в космосе. Может быть, это и есть эфир или другое неводородное вещество.

Но откуда же появились солнца, газообразные туманности и весь водородный мир? Если материя разлагается, то должен быть и обратный процесс – ее синтез, то есть образования вновь из ее обломков известной нам водородной материи 92 сортов.

Обратимость мы наблюдаем во всех механических, физических и биологических явлениях. Нужно ли об этом говорить? Кому не известны явления обратимости кругового процесса, когда разрушенное вновь возникает? Подразумеваю это явление в широком значении, в приблизительном, а не точно математическом, потому что точно ничего не повторяется. При этих явлениях, однако, соблюдается закон сохранения энергии. Но тут вмешивается скрытая потенциальная внутриатомная энергия вещества, и явление иногда запутывается. Так, радиоактивность на первых порах запутала ученых. Приведем простейшие приметы обратимости. Большая скорость тел переходит в малую и обратно. Из жидкости получается пар и обратно. Происходит химическое соединение и обратно. Все 92 элемента разлагаются на водород, а из последнего получается 92 элемента. Органическая материя переходит в неорганическую (разрушение, смерть), а неорганическая – в органическую.

Так, вероятно, и разложение солнц в одном месте сопровождается образованием их в другом.

Раз обратимость так обычна, то почему не допустить ее и в деле разрушения водородной материи?

Она обращается в энергию, но надо думать, что энергия – особый вид простейшей материи, которая рано или поздно опять даст известную нам водородную материю.

Что же такое есть самый атом водорода – начало всего известного вещественного мира?

Он создан прошедшим временем, а оно бесконечно велико. Следовательно, и атом бесконечно сложен. У водорода были более простые родители, еще более простые деды и т. д.

Не подобно ли этому происхождение человека? Не были ли его предки все более и более простыми по мере удаления от нашего времени? Родоначальник человека – водород, а более близкие предки – 92 элемента. Но человек отдален от этих предков всего на несколько сотен миллионов или миллиардов лет. Это так мало в сравнении с бесконечностью! Каковы же были предки водорода несколько дециллионов лет назад?

Одним словом, если разделить бесконечное время на ряд бесконечностей, то каждой из этих бесконечностей будет соответствовать своя материя, свои солнца, свои планеты и свои существа.

«Каждая эпоха по отношению ко всем предыдущим грубоматериальна, и та же эпоха по отношению к последующим – эфемерна. Все они материальны, но условно, в силу чрезвычайного различия в плотностях этих миров, одни можно назвать духовными, другие – материальными. В отношении нашего водородного мира все предыдущие эпохи духовны. И наша, когда пройдет бесконечность времени и наступит эпоха более плотного вещества, сделается духовной. Она та же, но это относительно».

Осталось ли что-нибудь от прежних эпох: более простая материя, легкие эфирные существа и т. д.? Мы видим световой эфир. Не есть ли это один из осколков первобытной материи? Мы видим порою необыкновенные явления. Не есть ли они результат деятельности уцелевших разумных существ иных эпох?

Возможно ли, чтобы остались следы их? Приведем пример. Наши земные существа стали возникать со времени остывания земной коры. Но одни из них доросли до высших животных, а другие остались теми же инфузориями и бактериями, какими и были. Время-то прошло одно и то же, но какое различие в достижениях! Так, может быть, часть вещества каждой эпохи оставила некоторое количество и свойственной ей материи, и свойственных ей живых существ?

Выходит, что существует бесчисленное множество иных космосов, иных существ, которых условно мы можем назвать нематериальными, или духами.

Каковы они: совершенны или представляют уродливые явления вроде наших несчастных земных животных?

Мы уже доказывали, что зрелый разум нашей эпохи, выделяемый космосом, ликвидирует все несовершенное. Так что наша водородная эпоха заключает в себе прекрасное, сильное, могущественное, разумное и счастливое. Говорю про общее состояние эпохи. Также разум иных эпох выделил одно хорошее. Стало быть, мы окружены совершенными духами.

Еще вопрос: имеют ли они влияние на нас и друг на друга? В сущности, духи разных бесконечностей все материальны. Но материя не может не влиять на материю. Следовательно, влияние духов на нас и друг на друга весьма возможно. Грубый пример: ветер волнует воду, океаны изменяют сушу.

Можем ли мы превратиться в этих духов и жить их жизнью? Материя то усложняется, то разлагается. И то и другое происходит одновременно и всегда. Чем больше пройдет времени, тем больше шансов получиться иной материи: более простой или более сложной. В первом случае из нашего вещества могут возникнуть духи, во втором – более плотные вещества, чем водородные. Конечно, наиболее возможное и близкое есть возникновение из 92 элементов. Второе – возникновение в элементах ближайшей бесконечности.

Еще больше надо времени для возникновения в элементах бесконечности второго порядка, более отдаленной и т. д.

7. Резюмируем изложенное:

А. По всей Вселенной распространена органическая жизнь.

Б. Наиболее сильное развитие жизни принадлежит не Земле.

8. Разум и могущество передовых планет Вселенной заставляют ее утопать в совершенстве. Короче, органическая жизнь ее, за незаметными исключениями, зрела, а потому могущественна и прекрасна.

Г. Эта жизнь для каждого существа кажется непрерывной, так как небытие не ощущается.

Д. Всюду в космосе распространены общественные организации, которые управляются президентами разного достоинства. Один выше другого, и, таким образом, нет предела личному или индивидуальному развитию. Если нам непонятно высок каждый зрелый член космоса, то как же непостижим президент первого, второго, десятого, сотого ранга?

Е. Бесконечность истекшего времени заставляет предполагать существование еще ряда своеобразных миров, разделенных бесконечностями низшего порядка. Эти миры, усложняясь, оставили часть своего вещества и часть своих животных в первобытном виде.

Они совершенны в своем роде и могут быть названы условно, вследствие своей малой плотности, духами. Мы окружены сонмами духов разных эпох и можем превратиться также и в них, хотя бесконечно вероятнее возникновение в образе плотной современной материи. И все же от превращения в условный дух мы не гарантированы, а рано или поздно это неизбежно.

8. Отсюда видна бесконечная сложность явлений космоса, которую, конечно, мы не можем постигнуть в должной мере, так как она еще выше, чем мы думаем. По мере расширения ума увеличиваются знания и раскрывается для него Вселенная все более и более.

Сомнения и колебания

Есть явления, которые можно объяснить только вмешательством иных существ. Например, разумное и умеренное обращение к высшим силам исполняется кем-то, в особенности когда просящий получил их расположение и действительно нуждается в поддержке. С нашей точки зрения, это если не совсем ясно и фактически не доказано, то возможно.

Но вот как понять помощь от умерших родственников и ушедших из нашей жизни высоких людей, когда вы к ним обращаетесь, измученные несчастьями и несправедливостью? По нашей теории, они живут блаженною жизнью, но теряют все свое прошлое и вас в том числе. Следовательно, тут обращение к ним бессмысленно.

Как же они нам могут помочь?

Возможно, что они, принимая другой образ, остаются наблюдателями нашей жизни. Но кто им может указать на их родство, если сами они, как и все другие, свое прошедшее потеряли?

Да и само родство за гробом уже не имеет смысла.

Один человек, очень доброй жизни, рассказывал, что всегда получал помощь в своих страданиях от умерших родственников. Но когда он хотел убедиться в этом без нужды, производя эксперименты, то тотчас же потерял поддержку, то есть не получил отклика.

Вполне ли верны наши утешительные выводы (монизм)? Не остается ли после смерти что-нибудь от человека, какая-нибудь часть его земной нервной жизни? Но тогда мы то же должны допустить и для всех животных, хотя в самой разнообразной и низшей степени. Современная наука не может признать возможность таких остатков, то есть остатков памяти от какого-либо существования. Наконец, если бы это было возможно, то и в настоящей жизни у нас осталось бы воспоминание о бесчисленном количестве прошедших существований. Это немыслимо уже потому, что ни одна память не вместит бесконечности прошедших ощущений.

Возможно, что помощь дают не родственники (в чем нет научного смысла), а другие существа, видя наши страдания. Это вполне допустимо. Мы только думаем на родственников, а дело-то не в них.

Я много работал над целесообразностью природы и пришел к положительному выводу. Это длинная тема и заслуживает особых исследований. Когда-нибудь поделюсь своими работами.

Но если вселенная целесообразна, то почему не допустить хотя и совершенно непонятные для нас вещи, но полезные для человечества?

Так, на Земле дурные поступки находят возмездие, выходящее естественно из них самих. Но ведь есть и преступления, которые проходят безнаказанными до самой смерти. Все это знают и потому не воздерживаются от дурного. Целесообразность и общее благо требуют, чтобы человек страшился малейшего уклонения от истины. Хорошо, если бы он был уверен в возмездии после смерти, в возмездии неуклонном, во что бы то ни стало. Это удержало бы многих от преступлений. Это хорошо, полезно, целесообразно. Но раз оно так, то почему бы этому не быть! Мы только не понимаем, как это происходит.

С научной точки зрения, возмездие нам кажется невозможным, с этической же – другое дело.

Также полезны были бы награды за подвиги – во что бы то ни стало: если не в этой жизни, то в следующей. С нашей научной точки зрения, наказаний нет, но награды есть (монизм). Неприятно только, что эти награды без различия получают и преступник, и самоотверженный полезный деятель.

Как допустить, например, что виновники империалистических войн получают ту же награду, что и Галилей, Коперник, Джордано Бруно, Гус и пр. Сколько жертв и палачей… и в результате всем одно: счастье и совершенная жизнь после смерти. Идея об индивидуальных наградах полезна, но ненаучна. С точки же зрения целесообразности допустима.

Разные вероисповедания распространяли идею о наградах и наказаниях. Многие верили в них, и потому эта идея, если и ошибочная, была в свое время полезна.

И теперь массы им верят. Однако наука не может их подтвердить. Возможно, что они, сыграв свою целесообразную роль, рассеются знанием и заменятся какими-нибудь другими убеждениями, действующими также в пользу доброй жизни. Например, благодарностью к природе, обещающей высшее блаженство. Благодарность и восторг будущего посмертного жития могут так же послужить воздержанию от зла, как и страх наказаний.

Многие умоляют высшие силы о прощении и лучшей посмертной судьбе своих близких: родителей, супругов, детей, друзей. Они не очень верят, но любовь к родственникам заставляет их тревожить высшие силы. Многие рационалисты не могут отрешиться от таких молений. Наука считает это бессмысленным, так как все умершие без различия должны погрузиться в совершенство вселенной (и не к чему просить).

Мы сомневаемся и в науке. Какой-то врожденный инстинкт заставляет нас, хотя и смутно, не крепко, с колебаниями – верить в разумность наших молитв. Конечно, наука непрерывно развивается, не стоит на одном месте, не сказала последнего слова. На всякий случай люди делают как бы несообразное, не веря и в науку: в ее непогрешимость и окончательность. Во всяком случае, если мы и ошибаемся, то большого вреда от подобных ошибок нет.

История человечества тесно связана с постоянным прогрессом, развитием технологий, новыми открытиями и изобретениями. Некоторые технологии устарели и стали историей, другие, такие как колесо или парус, используются до сих пор. Бесчисленное количество открытий было утрачено в водовороте времени, иные, не оценённые современниками, ждали признания и внедрения десятки и сотни лет.

Редакция Samogo.Net провела собственное исследование, призванное ответить на вопрос о том, какие же изобретения считаются нашими современниками наиболее значимыми.

Обработка и анализ результатов интернет-опросов показали, что единого мнения на этот счёт попросту нет. Тем не менее, нам удалось сформировать общий уникальный рейтинг величайших изобретений и открытий в истории человечества. Как оказалось, не смотря на то, что наука давно ушла вперёд, базовые открытия в умах наших современников остаются наиболее значимыми.

Первое место бесспорно занял Огонь

Люди рано открыли полезные свойства огня - его способности освещать и согревать, изменять к лучшему растительную и животную пищу.

"Дикий огонь", который вспыхивал во время лесных пожаров или извержений вулканов, был страшен для человека, но, принеся огонь в свою пещеру, человек "приручил" его и "поставил" себе на службу. С этого времени огонь стал постоянным спутником человека и основой его хозяйства. В древние времена он был незаменимым источником тепла, света, средством для приготовления пищи, орудием охоты.
Однако и дальнейшие завоевания культуры (керамика, металлургия, сталеварение, паровые машины и т.п.) обязаны комплексному использованию огня.

Долгие тысячелетия люди пользовались "домашним огнем", поддерживали его из года в год в своих пещерах, прежде чем научились добывать его сами при помощи трения. Вероятно, это открытие произошло случайно, после того как наши предки научились сверлить дерево. Во время этой операции происходило нагревание древесины и при благоприятных условиях могло произойти воспламенение. Обратив на это внимание, люди стали широко пользоваться трением для добывания огня.

Простейший способ состоял в том, что брались две палочки сухого дерева, в одной из которых делали лунку. Первая палочка клалась на землю и прижималась коленом. Вторую вставляли в лунку, а затем начинали быстро-быстро вращать между ладонями. В то же время необходимо было с силой давить на палочку. Неудобство такого способа заключалось в том, что ладони постепенно сползали вниз. Приходилось то и дело поднимать их вверх и снова продолжать вращение. Хотя, при известной сноровке, это можно делать быстро, все же из-за постоянных остановок процесс сильно затягивался. Гораздо проще добыть огонь трением, работая вдвоем. При этом один человек удерживал горизонтальную палочку и давил сверху на вертикальную, а второй - быстро-быстро вращал ее между ладонями. Позже вертикальную палочку стали обхватывать ремешком, двигая который вправо и влево можно ускорить движение, а на верхний конец для удобства стали накладывать костяной колпачок. Таким образом, все устройство для добывания огня стало состоять из четырех частей: двух палочек (неподвижной и вращающейся), ремешка и верхнего колпачка. Таким способом можно было добывать огонь и в одиночку, если прижимать нижнюю палочку коленом к земле, а колпачок - зубами.

И только уже потом, с развитием человечества стали доступны иные способы получения открытого огня.

Второе место в ответах интернет-сообщества заняли Колесо и Повозка



Считается, что его прообразом, возможно, стали катки, которые подкладывались под тяжелые стволы деревьев, лодки и камни при их перетаскивании с места на место. Возможно, тогда же были сделаны первые наблюдения над свойствами вращающихся тел. Например, если бревно-каток по какой-то причине в центре было тоньше, чем по краям, оно передвигалось под грузом более равномерно и его не заносило в сторону. Заметив это, люди стали умышленно обжигать катки таким образом, что средняя часть становилась тоньше, а боковые оставались неизменными. Таким образом получилось приспособление, которое теперь называется "скатом".В ходе дальнейших усовершенствований в этом направлении от цельного бревна остались только два валика на его концах, а между ними появилась ось. Позднее их стали изготовлять отдельно, а затем жестко скреплять между собой. Так было открыто колесо в собственном смысле этого слова и появилась первая повозка.

В последующие века множество поколений мастеров потрудились над усовершенствованием этого изобретения. Первоначально сплошные колеса жестко скреплялись с осью и вращались вместе с ней. При передвижении по ровной дороге такие повозки были вполне пригодны для использования. На повороте, когда колеса должны вращаться с разной скоростью, это соединение создает большие неудобства, так как тяжело груженная повозка может легко сломаться или перевернуться. Сами колеса были еще очень несовершенны. Их делали из цельного куска дерева. Поэтому повозки были тяжелыми и неповоротливыми. Передвигались они медленно, и обычно в них запрягали неторопливых, но могучих волов.

Одна из древнейших повозок описываемой конструкции найдена при раскопках в Мохенджо-Даро. Крупным шагом вперед в развитии техники передвижения стало изобретение колеса со ступицей, насаживающегося на неподвижную ось. В этом случае колеса вращались независимо друг от друга. А чтобы колесо меньше терлось об ось, ее стали смазывать жиром или дегтем.

Ради уменьшения веса колеса в нем выпиливали вырезы, а для жесткости укрепляли поперечными скрепами. Ничего лучшего в эпоху каменного века придумать было нельзя. Но после открытия металлов стали изготавливать колеса с металлическим ободом и спицами. Такое колесо могло вращаться в десятки раз быстрее и не боялось ударов о камни. Запрягая в повозку быстроногих лошадей, человек значительно увеличил скорость своего передвижения. Пожалуй, трудно найти другое открытие, которое дало бы такой мощный толчок развитию техники.

Третье место по праву заняла Письменность



Нет нужды говорить о том, какое великое значение в истории человечества имело изобретение письменности. Невозможно даже представить себе, каким путем могло пойти развитие цивилизации, если бы на определенном этапе своего развития люди не научились фиксировать с помощью определенных символов нужную им информацию и таким образом передавать и сохранять ее. Очевидно, что человеческое общество в таком виде, в каком оно существует сегодня, просто не могло бы появиться.

Первые формы письменности в виде особым образом начертанных знаков появилась около 4 тысяч лет до Р.Х. Но уже задолго до этого существовали различные способы передачи и хранения информации: с помощью определенным образом сложенных ветвей, стрел, дыма костров и тому подобных сигналов. Из этих примитивных систем оповещения позже появились более сложные способы фиксирования информации. Например, древние инки изобрели оригинальную систему "записи" с помощью узелков. Для этого использовались шнурки шерсти разного цвета. Их связывали разнообразными узелками и крепили на палочку. В таком виде "письмо" посылалось адресату. Существует мнение, что инки с помощью такого "узелкового письма" фиксировали свои законы, записывали хроники и стихи. "Узелковое письмо" отмечено и у других народов - им пользовались в древнем Китае и Монголии.

Однако письменность в собственном смысле этого слова появилась лишь после того, как люди для фиксации и передачи информации изобрели особые графические знаки. Самым древним видом письма считается пиктографическое. Пиктограмма представляет собой схематический рисунок, который непосредственно изображает вещи, события, и явления, о которых идет речь. Предполагается, что пиктография была широко распространена у различных народов на последней стадии каменного века. Это письмо очень наглядно, и поэтому ему не надо специально учиться. Оно вполне пригодно для передачи небольших сообщений и для записи несложных рассказов. Но когда возникала потребность передать какую-нибудь сложную абстрактную мысль или понятие, сразу ощущались ограниченные возможности пиктограммы, которая совершенно не приспособлена к записи того, что не поддается рисунчатому изображению (например, таких понятий, как бодрость, храбрость, зоркость, хороший сон, небесная лазурь и т.п.). Поэтому уже на ранней стадии истории письма в число пиктограмм стали входить особые условные значки, обозначающие определенные понятия (например, знак скрещенных рук символизировал обмен). Такие значки называются идеограммами. Идеографическое письмо возникло и пиктографического, причем можно вполне отчетливо представить себе, как это произошло: каждый изобразительный знак пиктограммы стал все более обособляться от других и связываться с определенным словом или понятием, обозначая его. Постепенно этот процесс настолько развился, что примитивные пиктограммы утратили свою прежнюю наглядность, но зато обрели четкость и определенность. Процесс этот занял долгое время, быть может, несколько тысячелетий.

Высшей формой идеограммы стало иероглифическое письмо. Впервые оно возникло в Древнем Египте. Позже иероглифическая письменность получила широкое распространение на Дальнем Востоке - в Китае, Японии и Корее. С помощью идеограмм можно было отразить любую, даже самую сложную и отвлеченную мысль. Однако для не посвященных в тайну иероглифов смысл написанного был совершенно непонятен. Каждый, кто хотел научиться писать, должен был запомнить несколько тысяч значков. Реально на это уходило несколько лет постоянных упражнений. Поэтому писать и читать в древности умели немногие.

Только в конце 2 тыс. до Р.Х. древние финикийцы изобрели буквенно- звуковой алфавит, который послужил образцом для алфавитов многих других народов. Финикийский алфавит состоял из 22 согласных букв, каждая из которых обозначала отдельный звук. Изобретение этого алфавита стало для человечества большим шагом вперед. При помощи нового письма легко было передать графически любое слово, не прибегая к идеограммам. Обучиться ему было очень просто. Искусство письма перестало быть привилегией просвещенных. Оно стало достоянием всего общества или, по крайней мере, большей его части. Это послужило одной из причин быстрого распространения финикийского алфавита по всему миру. Как считают, четыре пятых всех известных ныне алфавитов возникло из финикийского.

Так, из разновидности финикийского письма (пунического) развилось ливийское. Непосредственно от финикийского произошло древнееврейское, арамейское и греческое письмо. В свою очередь, на основе арамейского письма сложились арабская, набатейская, сирийская, персидская и другие письменности. Греки внесли в финикийский алфавит последнее важное усовершенствование - они стали обозначать буквами не только согласные, но и гласные звуки. Греческий алфавит лег в основу большинства европейских алфавитов: латинского (от которого в свою очередь произошли французский, немецкий, английский, итальянский, испанский и др. алфавиты), коптского, армянского, грузинского и славянского (сербского, русского, болгарского и др.).

Четвертое место, вслед за письменностью занимает Бумага


Ее создателями были китайцы. И это не случайно. Во-первых, Китай уже в глубокой древности славился книжной премудростью и сложной системой бюрократического управления, требовавшей от чиновников постоянной отчетности. Поэтому здесь всегда ощущалась потребность в недорогом и компактном материале для письма. До изобретения бумаги в Китае писали или на бамбуковых дощечках, или на шелке.

Но шелк был всегда очень дорогим, а бамбук - очень громоздким и тяжелым. (На одной дощечке помещалось в среднем 30 иероглифов. Легко представить, сколько места должна была занимать такая бамбуковая "книга". Не случайно пишут, что для перевозки некоторых сочинений требовалась целая телега.) Во-вторых, одни только китайцы долгое время знали секрет производства шелка, а бумажное дело как раз и развивалось из одной технической операции обработки шелковых коконов. Эта операция заключалась в следующем. Женщины, занимавшиеся шелководством, варили коконы шелкопряда, затем, разложив их на циновку, опускали в воду и перетирали до образования однородной массы. Когда массу вынимали и отцеживали воду, получалась шелковая вата. Однако после такой механической и тепловой обработки ни циновках оставался тонкий волокнистый слой, превращавшийся после просушки в лист очень тонкой бумаги, пригодной для письма. Позже работницы стали использовать бракованные коконы шелкопряда для целенаправленного изготовления бумаги. При этом они повторяли уже знакомый им процесс: варили коконы, промывали и измельчали до получения бумажной массы, наконец, высушивали получившиеся листы. Такая бумага называлась "ватной" и стоила достаточно дорого, так как дорого было само сырье.

Естественно, что в конце концов возник вопрос: можно ли бумагу делать только из шелка или для приготовления бумажной массы может подойти любое волокнистое сырье, в том числе растительного происхождения? В 105 г. некто Цай Лунь, важный чиновник при дворе ханьского императора, приготовил новый сорт бумаги из старых рыболовных сетей. По качеству она не ступала шелковой, но была значительно дешевле. Это важное открытие имело огромные последствия не только для Китая, но и для всего мира - впервые в истории люди получили первоклассный и доступный материал для письма, равноценной замены которому не и по сей день. Имя Цай Луня поэтому по праву входит в число имен величайших изобретателей в истории человечества. В последующие века в процесс изготовления бумаги было внесено несколько важных усовершенствований, благодаря чему оно стало быстро развиваться.

В IV веке бумага совершенно вытеснила из употребления бамбуковые дощечки. Новые опыты показали, что бумагу можно делать из дешевого растительного сырья: древесной коры, тростника и бамбука. Последнее было особенно важно, так как бамбук произрастает в Китае в огромном количестве. Бамбук расщепляли на тонкие лучинки, замачивали с известью, а полученную массу вываривали затем в течение нескольких суток. Отцеженную гущу выдерживали в специальных ямах, тщательно размалывали специальными билами и разбавляли водой до образования клейкой, кашицеобразной массы. Эту массу зачерпывали с помощью специальной формы - бамбукового сита, укрепленного на подрамнике. Тонкий слой массы вместе с формой клали под пресс. Затем форма вытаскивалась и под прессом оставался только бумажный лист. Спрессованные листы снимали с сита, складывали в кипу, сушили, разглаживали и резали по формату.

С течением времени китайцы достигли высочайшего искусства в изготовлении бумаги. На протяжении нескольких веков они, по своему обыкновению, тщательно хранили секреты бумажного производства. Но в 751 году во время столкновения с арабами в предгорьях Тянь-Шаня несколько китайских мастеров попали в плен. От них арабы научились сами делать бумагу и в течение пяти веков очень выгодно сбывали ее в Европу. Европейцы были последними из цивилизованных народов, которые научились сами изготавливать бумагу. Первыми это искусство переняли от арабов испанцы. В 1154 году бумажное производство было налажено и в Италии, в 1228-м в Германии, в 1309-м в Англии. В последующие века бумага получила во всем мире широчайшее распространение, постепенно завоевывая все новые и новые сферы применения. Значение ее в нашей жизни столь велико, что, по мнению известного французского библиографа А. Сима, нашу эпоху можно с полным правом назвать "бумажной эрой".

Пятое место заняли Порох и Огнестрельное оружие



Изобретение пороха и распространение его в Европе имело огромные последствия для дальнейшей истории человечества. Хотя европейцы последними из цивилизованных народов научились делать эту взрывчатую смесь, именно они сумели извлечь из ее открытия наибольшую практическую пользу. Бурное развитие огнестрельного оружия и революция в военном деле были первыми следствиями распространения пороха. Это в свою очередь повлекло за собой глубочайшие социальные сдвиги: закованные в латы рыцари и их неприступные замки оказались бессильны перед огнем пушек и аркебуз. Феодальному обществу был нанесен такой удар, от которого оно уже не смогло оправиться. В короткое время многие европейские державы преодолели феодальную раздробленность и превратились в могущественные централизованные государства.

В истории техники найдется мало изобретений, которые привели бы к таким грандиозным и далеко идущим изменениям. До того как порох стал известен на западе, он уже имел многовековую историю на востоке, а изобрели его китайцы. Важнейшей составной частью пороха является селитра. В некоторых областях Китая она встречалась в самородном виде и была похожа на хлопья снега, припорошившего землю. Позже открыли, что селитра образуется в местностях, богатых щелочами и гниющими (доставляющими азот) веществами. Разжигая огонь, китайцы могли наблюдать вспышки, возникавшие при горении селитры с углем.

Впервые свойства селитры описал китайский медик Тао Хун-цзин, живший на рубеже V и VI столетий. С этого времени она применялась как составная часть некоторых лекарств. Алхимики часто пользовались ей, проводя опыты. В VII веке один из них, Сунь Сы-мяо, приготовил смесь из серы и селитры, добавив к ним несколько долей локустового дерева. Нагревая эту смесь в тигле, он вдруг получил сильнейшую вспышку пламени. Этот опыт он описал в своем трактате "Дань цзин". Считается, что Сунь Сы-мяо приготовил один из первых образцов пороха, который, правда, не обладал еще сильным взрывчатым эффектом.

В дальнейшем состав пороха был усовершенствован другими алхимиками, установившими опытным путем три его основных компонента: уголь, серу и калиевую селитру. Средневековые китайцы не могли научно объяснить, что за взрывная реакция происходит при воспламенении пороха, но они очень скоро научились использовать ее в военных целях. Правда, в их жизни порох вовсе не имел того революционного влияния, которое оказал позже на европейское общество. Объясняется это тем, что мастера долгое время готовили пороховую смесь из неочищенных компонентов. Между тем неочищенная селитра и сера, содержащая посторонние примеси, не давали сильного взрывного эффекта. Несколько веков порох использовался исключительно в качестве зажигательного средства. Позднее, когда его качество улучшилось, порох стали применять как взрывчатое вещество при изготовлении фугасов, ручных гранат и взрывпакетов.

Но и после этого долгое время не догадывались использовать силу возникавших при горении пороха газов для метания пуль и ядер. Только в XII-XIII веках китайцы стали пользоваться оружием, очень отдаленно напоминавшем огнестрельное, но зато они изобрели петарду и ракету. От китайцев секрет пороха узнали арабы и монголы. В первой трети XIII века арабы достигли большого искусства в пиротехнике. Они употребляли селитру во многих соединениях, мешая ее с серой и углем, добавляли к ним другие компоненты и устраивали фейерверки удивительной красоты. От арабов состав пороховой смеси стал известен европейским алхимикам. Один из них, Марк Грек, уже в 1220 году записал в своем трактате рецепт пороха: 6 частей селитры на 1 часть серы и 1 часть угля. Позже достаточно точно о составе пороха писал Роджер Бэкон.

Однако прошло еще около ста лет, прежде чем рецепт этот перестал быть тайной. Это вторичное открытие пороха связывают с именем другого алхимика, фейбургского монаха Бертольда Шварца. Однажды он стал толочь в ступке измельченную смесь из селитры, серы и угля, в результате чего произошел взрыв, опаливший Бертольду бороду. Этот или другой опыт подал Бертольду мысль использовать силу пороховых газов для метания камней. Считается, что он изготовил одно из первых в Европе артиллерийских орудий.

Первоначально порох представлял собой тонкий мукообразный порошок. Пользоваться им было не удобно, так как при зарядке орудий и аркебузов пороховая мякоть липла к стенкам ствола. Наконец заметили, что порох в виде комочков гораздо удобнее - он легко заряжался и при воспламенении давал больше газов (2 фунта пороха в комьях давали больший эффект, чем 3 фунта в мякоти).

В первой четверти XV века для удобства стали употреблять зерновой порох, получавшийся путем раскатывания пороховой мякоти (со спиртом и другими примесями) в тесто, которое затем пропускали через решето. Чтобы зерна не перетирались при транспортировке, их научились полировать. Для этого их помещали в специальный барабан, при раскручивании которого зерна ударялись и терлись друг о друга и уплотнялись. После обработки их поверхность становилась гладкой и блестящей.

Шестое место в опросах заняли: телеграф, телефон, интернет, радио и прочие виды современной коммуникации



Вплоть до середины XIX века единственным средством сообщения между европейским континентом и Англией, между Америкой и Европой, между Европой и колониями оставалась пароходная почта. О происшествиях и событиях в других странах узнавали с опозданием на целые недели, а порой и месяцы. Например, известия из Европы в Америку доставлялись через две недели, и это был еще не самый долгий срок. Поэтому создание телеграфа отвечало самым настоятельным потребностям человечества.

После того, как это техническая новинка появилась во всех концах света и земной шар опоясали телеграфные линии, требовались только часы, а порой и минуты, на то, чтобы новость по электрическим проводам из одного полушария примчалась в другое. Политические и биржевые сводки, личные и деловые сообщения в тот же день могли быть доставлены заинтересованным лицам. Таким образом, телеграф следует отнести к одному из важнейших изобретений в истории цивилизации, потому что вместе с ним человеческий разум одержал величайшую побед над расстоянием.

С изобретением телеграфа была решена задача передачи сообщений на большие расстояния. Однако телеграф мог переслать только письменные депеши. Между тем многие изобретатели мечтали о более совершенном и коммуникабельном способе связи, с помощью которого можно было бы передавать на любые расстояния живой звук человеческой речи или музыку. Первые эксперименты в этом направлении предпринял в 1837 году американский физик Пейдж. Суть опытов Пейджа была очень проста. Он собрал электрическую цепь, в которую входили камертон, электромагнит, и гальванические элементы. Во время своих колебаний камертон быстро размыкал и замыкал цепь. Этот прерывистый ток передавался на электромагнит, который так же быстро притягивал и отпускал тонкий стальной стержень. В результате этих колебаний стержень производил поющий звук, подобный тому, который издавал камертон. Таким образом, Пейдж показал, что передавать звук с помощью электрического тока в принципе возможно, надо только создать более совершенные передающие и принимающие устройства.

И уже в последствии, в результате долгих поисков, открытий и изобретений, появились мобильный телефон, телевидение, интернет и прочие средства коммуникации человечества, без которых невозможно себе представить нашу современную жизнь.

Седьмое место в топ-10 по результатам опросов занял Автомобиль



Автомобиль принадлежит к числу тех величайших изобретений, которые, подобно колесу, пороху или электрическому току, имели колоссальное влияние не только на породившую их эпоху, но и на все последующие времена. Его многогранное воздействие далеко не ограничивается сферой транспорта. Автомобиль сформировал современную индустрию, породил новые отрасли промышленности, деспотически перестроил само производство, впервые придав ему массовый, серийный и поточный характер. Он преобразил внешний облик планеты, которая опоясалась миллионами километров шоссейных дорог, оказал давление на экологию и поменял даже психологию человека. Влияние автомобиля сейчас настолько многопланово, что ощущается во всех сферах человеческой жизни. Он сделался как бы зримым и наглядным воплощением технического прогресса вообще, со всеми его достоинствами и недостатками.

В истории автомобиля было много удивительных страниц, но, возможно, самая яркая из них относится к первым годам его существования. Не может не поражать стремительность, с которой это изобретение прошло путь от появления до зрелости. Понадобилась всего четверть века на то, чтобы автомобиль из капризной и еще ненадежной игрушки превратился в самое популярное и широко распространенное транспортное средство. Уже в начале XX века он был в главных чертах идентичен современному автомобилю.

Непосредственным предшественником бензинового автомобиля стал паромобиль. Первым практически действовавшим паровым автомобилем считается паровая телега, построенная французом Кюньо в 1769 году. Перевозя до 3 тонн груза, она передвигалась со скоростью всего 2‑4 км/ч. Были у нее и другие недостатки. Тяжелая машина очень плохо слушалась руля, постоянно наезжала на стены домов и заборы, производя разрушения и терпя немалый урон. Две лошадиные силы, которые развивал ее двигатель, давались с трудом. Несмотря на большой объем котла, давление быстро падало. Через каждые четверть часа для поддержания давления приходилось останавливаться и разжигать топку. Одна из поездок закончилась взрывом котла. К счастью, сам Кюньо остался жив.

Последователи Кюньо оказались удачливее. В 1803 году уже известный нам Тривайтик построил первый в Великобритании паровой автомобиль. Машина имела огромные задние колеса около 2, 5 м в диаметре. Между колесами и задней частью рамы крепился котел, который обслуживал стоявший на запятках кочегар. Паромобиль был снабжен единственным горизонтальным цилиндром. От штока поршня через шатунно‑кривошипный механизм вращалось ведущее зубчатое колесо, которое находилось в зацеплении с другим зубчатым колесом, укрепленным на оси задних колес. Ось этих колес шарнирно соединялась с рамой и поворачивалась при помощи длинного рычага водителем, сидящим на высоком облучке. Кузов подвешивался на высоких С‑образных рессорах. С 8‑10 пассажирами автомобиль развивал скорость до 15 км/ч, что, несомненно, являлось очень неплохим для того времени достижением. Появление этой удивительной машины на улицах Лондона привлекало массу зевак, не скрывавших своего восторга.

Автомобиль в современном смысле этого слова появился только после создания компактного и экономичного двигателя внутреннего сгорания, который произвел подлинный переворот в транспортной технике.
Первый автомобиль с бензиновым двигателем построил в 1864 году австрийский изобретатель Зигфрид Маркус. Увлекаясь пиротехникой, Маркус однажды поджег электрической искрой смесь паров бензина и воздуха. Пораженный силой последовавшего взрыва, он решил создать двигатель, в котором бы этот эффект нашел применение. В конце концов ему удалось построить двухтактный бензиновый двигатель с электрическим зажиганием, который он и установил на обыкновенную повозку. В 1875 году Маркус создал более совершенный автомобиль.

Официальная слава изобретателей автомобиля принадлежит двум немецким инженерам - Бенцу и Даймлеру. Бенц конструировал двухтактные газовые двигатели и являлся хозяином небольшого завода по их производству. Двигатели имели хороший спрос, и предприятие Бенца процветало. Он имел достаточно средств и досуга для других разработок. Мечтой Бенца было создание самодвижущегося экипажа с двигателем внутреннего сгорания. Собственный двигатель Бенца, как и четырехтактный двигатель Отто, для этого не годился, поскольку они имели малую скорость хода (около 120 оборотов в минуту). При некотором понижении числа оборотов они глохли. Бенц понимал, что машина, снабженная таким мотором, будет останавливаться перед каждым бугорком. Нужен был быстроходный двигатель с хорошей системой зажигания и аппаратом для образования горючей смеси.

Автомобили быстро совершенствовались Еще в 1891 году Эдуард Мишлен, владелец завода резиновых изделий в Клермон‑Ферране, изобрел съемную пневматическую шину для велосипеда (камера Данлопа заливалась в покрышку и приклеивалась к ободу). В 1895 году начался выпуск съемных пневматических шин для автомашин. Впервые эти шины были опробованы в том же году на гонке Париж - Бордо - Париж. Оснащенный ими «Пежо» с трудом доехал до Руана, а потом был вынужден сойти с дистанции, так как шины беспрерывно прокалывались. Тем не менее специалисты и автолюбители были поражены плавностью хода машины и комфортностью езды на ней. С этого времени пневматические шины постепенно вошли в жизнь, и ими стали оснащаться все автомобили. Победителем же на этих гонках был опять Левассор. Когда он остановил машину на финише и ступил на землю, то сказал: «Это было безумие. Я делал 30 километров в час!» Сейчас на месте финиша стоит памятник в честь этой знаменательной победы.

Восьмое место - Электрическая лампочка


В последние десятилетия XIX века в жизнь многих европейских городов вошло электрическое освещение. Появившись сначала на улицах и площадях, оно очень скоро проникло в каждый дом, в каждую квартиру и сделалось неотъемлемой частью жизни каждого цивилизованного человека. Это было одно из важнейших событий в истории техники, имевшее огромные и многообразные последствия. Бурное развитие электрического освещения привело к массовой электрификации, перевороту в энергетике и крупным сдвигам в промышленности. Однако всего этого могло и не случиться, если бы усилиями многих изобретателей не было создано такое обычное и привычное для нас устройство, как электрическая лампочка. В числе величайших открытий человеческой истории ей, несомненно, принадлежит одно из самых почетных мест.

В XIX веке получили распространение два типа электрических ламп: лампы накаливания и дуговые. Дуговые лампочки появились немного раньше. Свечение их основано на таком интересном явлении, как вольтова дуга. Если взять две проволоки, подключить их к достаточно сильному источнику тока, соединить, а затем раздвинуть на расстояние нескольких миллиметров, то между концами проводников образуется нечто вроде пламени с ярким светом. Явление будет красивее и ярче, если вместо металлических проводов взять два заостренных угольных стержня. При достаточно большом напряжении между ними образуется свет ослепительной силы.

Впервые явление вольтовой дуги наблюдал в 1803 году русский ученый Василий Петров. В 1810 году то же открытие сделал английский физик Деви. Оба они получили вольтову дугу, пользуясь большой батареей элементов, между концами стерженьков из древесного угля. И тот, и другой писали, что вольтова дуга может использоваться в целях освещения. Но прежде надо было найти более подходящий материал для электродов, поскольку стержни из древесного угля сгорали за несколько минут и были малопригодны для практического использования. Дуговые лампы имели и другое неудобство - по мере выгорания электродов надо было постоянно подвигать их навстречу друг другу. Как только расстояние между ними превышало некий допустимый минимум, свет лампы становился неровным, она начинала мерцать и гасла.

Первую дуговую лампу с ручным регулированием длины дуги сконструировал в 1844 году французский физик Фуко. Древесный уголь он заменил палочками из твердого кокса. В 1848 году он впервые применил дуговую лампу для освещения одной из парижских площадей. Это был, короткий и весьма дорогой опыт, так как источником электричества служила мощная батарея. Затем были придуманы различные приспособления, управляемые часовым механизмом, которые автоматически сдвигали электроды по мере их сгорания.
Понятно, что с точки зрения практического использования желательно было иметь лампу, не осложненную дополнительными механизмами. Но можно ли было обойтись без них? Оказалось, что да. Если поставить два уголька не друг против друга, а параллельно, притом так, чтобы дуга могла образовываться только между двумя их концами, то при этом устройстве расстояние между концами углей всегда сохраняется неизменным. Конструкция такой лампы кажется очень простой, однако создание ее потребовало большой изобретательности. Она была придумана в 1876 году русским электротехником Яблочковым, который работал в Париже в мастерской академика Бреге.

В 1879 году за усовершенствование электрической лампочки взялся знаменитый американский изобретатель Эдисон. Он понимал: для того, чтобы лампочка светила ярко и долго и имела ровный немигающий свет, необходимо, во‑первых, найти подходящий материал для нити, и, во‑вторых, научиться создавать в баллоне сильно разреженное пространство. Было проделано множество экспериментов с различными материалами, которые ставились со свойственным для Эдисона размахом. Подсчитано, что его помощники опробовали не менее 6000 различных веществ и соединений, при этом на опыты было израсходовано свыше 100 тысяч долларов. Сначала Эдисон заменил ломкий бумажный уголек более прочным, приготовленным из угля, потом стал делать опыты с различными металлами и наконец остановился на нити из обугленных бамбуковых волокон. В том же году в присутствии трех тысяч человек Эдисон публично демонстрировал свои электрические лампочки, осветив ими свой дом, лабораторию и несколько прилегающих улиц. Это была первая лампочка с продолжительным сроком службы, пригодная для массового производства.

Предпоследнее, девятое место в нашем топ-10 занимают Антибиотики, и в частности - пеницилин



Антибиотики - одно из замечательнейших изобретений XX века в области медицины. Современные люди далеко не всегда отдают себе отчет в том, сколь многим они обязаны этим лечебным препаратам. Человечество вообще очень быстро привыкает к поразительным достижениям своей науки, и порой требуется сделать некоторое усилие для того, чтобы представить себе жизнь такой, какой она была, к примеру, до изобретения телевизора, радио или паровоза. Так же быстро вошло в нашу жизнь огромное семейство разнообразных антибиотиков, первым из которых был пенициллин.

Сегодня нам кажется удивительным, что еще в 30‑х годах XX столетия ежегодно десятки тысяч людей умирали от дизентерии, что воспаление легких во многих случаях кончалось смертельным исходом, что сепсис был настоящим бичом всех хирургических больных, которые во множестве гибли от заражения крови, что тиф считался опаснейшей и трудноизлечимой болезнью, а легочная чума неизбежно вела больного к смерти. Все эти страшные болезни (и многие другие, прежде неизлечимые, например, туберкулез) были побеждены антибиотиками.

Еще более поразительно влияние этих препаратов на военную медицину. Трудно поверить, но в прежних войнах большинство солдат гибло не от пуль и осколков, а от гнойных заражений, вызванных ранением. Известно, что в окружающем нас пространстве находятся мириады микроскопических организмов микробов, среди которых немало и опасных возбудителей болезней.

В обычных условиях наша кожа препятствует их проникновению внутрь организма. Но во время ранения грязь попадала в открытые раны вместе с миллионами гнилостных бактерий (кокков). Они начинали размножаться с колоссальной быстротой, проникали глубоко внутрь тканей, и через несколько часов уже никакой хирург не мог спасти человека: рана гноилась, повышалась температура, начинался сепсис или гангрена. Человек погибал не столько от самой раны, сколько от раневых осложнений. Медицина оказывалась бессильна перед ними. В лучшем случае врач успевал ампутировать пораженный орган и тем останавливал распространение болезни.

Чтобы бороться с раневыми осложнениями, надо было научиться парализовать микробов, вызывающих эти осложнения, научиться обезвреживать попавших в рану кокков. Но как этого достигнуть? Оказалось, что воевать с микроорганизмами можно непосредственно с их же помощью, так как одни микроорганизмы в процессе своей жизнедеятельности выделяют вещества, способные уничтожать другие микроорганизмы. Идея использовать микробов в борьбе с микробами появилась еще в XIX веке. Так, Луи Пастер открыл, что бациллы сибирской язвы погибают под действием некоторых других микробов. Но понятно, что разрешение этой проблемы требовало огромного труда.

Со временем, после ряда опытов и открытий был создан пенициллин. Пенициллин показался видавшим виды полевым хирургам настоящим чудом. Он вылечивал даже самых тяжелых больных, уже болевших заражением крови или воспалением легких. Создание пенициллина оказалось одним из важнейших открытий в истории медицины и дало огромный толчок для дальнейшего ее развития.

Ну и последнее, десятое место в результатах опросов заняли Парус и корабль



Считается, что прообраз паруса появился в глубокой древности, когда человек только начал строить лодки и отважился выйти в море. В начале парусом служила просто натянутая звериная шкура. Стоявшему в лодке человеку приходилось обеими руками держать и ориентировать ее относительно ветра. Когда люди придумали укреплять парус с помощью мачты и рей, неизвестно, но уже на древнейших дошедших до нас изображениях кораблей египетской царицы Хатшепсут можно видеть деревянные мачты и реи, а также штаги (тросы, удерживающие от падения назад мачту), фалы (снасти для подъема и спуска парусов) и другой такелаж.

Следовательно, появление парусного судна надо отнести к доисторическим временам.

Многое свидетельствует о том, что первые большие парусные корабли появились в Египте, и Нил был первой многоводной рекой, на которой стало развиваться речное судоходство. Каждый год с июля по ноябрь могучая река выходила из берегов, заливая своими водами всю страну. Селения и города оказывались отрезанными друг от друга подобно островам. Поэтому суда были для египтян жизненной необходимостью. В хозяйственной жизни страны и в общении между людьми они играли гораздо большую роль, чем колесные повозки.

Одной из ранних разновидностей египетских кораблей, появившихся около 5 тысяч лет до Р.Х., была барка. Она известна современным ученым по нескольким моделям, установленным в древних храмах. Поскольку Египет очень беден лесом, для строительства первых кораблей широко применялся папирус Особенности этого материала определили конструкцию и форму древнеегипетских судов. Это была серповидная, связанная из пучков папируса ладья с изогнутыми кверху носом и кормой. Для предания кораблю прочности корпус стягивался тросами. Позже, когда наладилась регулярная торговля с финикийцами и в Египет начал поступать в большом количестве ливанский кедр, дерево стало широко применяться при кораблестроении.

Представление о том, какие типы судов строились тогда, дают настенные рельефы некрополя близ Саккары, относящиеся к середине 3‑го тысячелетия до Р.Х. В этих композициях реалистически отображены отдельные стадии постройки дощатого корабля. Корпуса кораблей, не имевшие ни киля (в древности это была балка, лежащая в основании днища судна), ни шпангоутов (поперечных кривых брусьев, обеспечивающих прочность бортов и днища), набирались из простых плашек и конопатились папирусом. Укреплялся корпус посредством канатов, обтягивавших судно по периметру верхнего пояса обшивки. Такие суда едва ли обладали хорошими мореходными качествами. Однако для плаванья по реке они вполне годились. Используемый египтянами прямой парус позволял им плыть только по ветру. Такелаж крепился на двуногой мачте, обе ноги которой устанавливались перпендикулярно средней линии судна. В верхней части они плотно связывались. Степсом (гнездом) для мачты служило балочное устройство в корпусе судна. В рабочем положении эту мачту удерживали штаги - толстые тросы, шедшие от кормы и носа, а в сторону бортов ее поддерживали ноги. Прямоугольный парус крепился на двух реях. При боковом ветре мачту поспешно убирали.

Позднее, примерно к 2600 году до Р.Х., на смену двуногой мачте пришла применяемая и поныне одноногая. Одноногая мачта облегчала хождение под парусами и впервые дала судну возможность маневрировать. Однако прямоугольный парус был ненадежным средством, которым можно было пользоваться только при попутном ветре.

Основным двигателем корабля оставалась мускульная сила гребцов. По‑видимому, египтянам принадлежит важное усовершенствование весла - изобретение уключин. Их еще не было в Древнем царстве, но затем весло стали крепить с помощью веревочных петель. Это сразу позволило увеличить силу гребка и скорость судна. Известно, что отборные гребцы на судах фараонов делали 26 гребков в минуту, что позволяло развивать скорость 12 км/ч. Управляли такими кораблями с помощью двух рулевых весел, расположенных на корме. Позднее их стали крепить к балке на палубе, вращая которую можно было выбирать нужное направление (этот принцип управления судном с помощью поворота пера руля остается неизменным по сей день). Древние египтяне не были хорошими мореходами. На своих кораблях они не решались выходить в открытое море. Однако вдоль берега их торговые суда совершали далекие путешествия. Так, в храме царицы Хатшепсут есть надпись, сообщающая о морском походе, совершенном египтянами около 1490 года до Р.Х. в таинственную страну благовоний Пунт, находившуюся в районе современного Сомали.

Следующий шаг в развитии кораблестроения был сделан финикийцами. В отличие от египтян, финикийцы в избытке имели для своих судов прекрасный строительный материал. Их страна тянулась узкой полосой вдоль восточных берегов Средиземного моря. Обширные кедровые леса росли здесь почти у самого берега. Уже в древности финикийцы научились делать из их стволов высококачественные долбленные лодки‑однодревки и смело выходили на них в море.

В начале 3‑го тысячелетия до Р.Х., когда стала развиваться морская торговля, финикийцы начали строить корабли. Морское судно значительно отличается от лодки, для его сооружения необходимы свои конструкционные решения. Важнейшие открытия на этом пути, определившие всю дальнейшую историю судостроения, принадлежат финикийцам. Может быть, скелеты животных навели их на мысль установить на однодревках ребра жесткости, которые покрывали сверху досками. Так впервые в истории кораблестроения были применены шпангоуты, до сих пор имеющие широкое использование.

Точно так же финикийцы впервые построили килевое судно (первоначально килем служили два ствола, соединенные под углом). Киль сразу придал корпусу устойчивость и позволил установить продольные и поперечные связи. К ним крепились доски обшивки. Все эти новшества явились решающей основой для быстрого развития судостроения и определили облик всех последующих кораблей.

Так же вспоминались и иные изобретения в разных областях науки, таких как: химия, физика, медицина, образование и прочие.
Ведь как мы и говорили ранее, это неудивительно. Ведь любое открытие или изобретение - это очередной шаг в будущее, которое улучшает нашу жизнь, а зачастую его и продлевает. И если не каждое, то очень и очень многие открытия достойны называться великими и крайне необходимымы в нашей жизни.

Александр Озеров, по материалам книги Рыжкова К.В. "Сто великих изобретений"
Самые великие открытия и изобретения человечества © 2010

День изобретателя и рационализатора отмечается в России в последнюю субботу июня. По предложению Академии наук СССР в конце 1950-х годов был введен День изобретателя и рационализатора. Первоначально День изобретателя и рационализатора представлял собой советское подобие присуждения Нобелевской премии. 25 июня Академия наук рассматривала все рационализаторские предложения, выдвинутые за прошедший год, отбирала лучшие и награждала их авторов.

История изобретательства

С прошествием времени потерялось первоначальное значение Дня изобретателя и рационализатора, начиная с 1979 года этот день стал просто «профессиональным» праздником всех изобретателей и рационализаторов. Сейчас День изобретателя и рационализатора отмечается в нашей стране. В России изобретены множество технических средств, изменившие историю человечества: талантливый русский ученый Д.И. Виноградов открыл секрет изготовления фарфора, русский ученый-агроном А.Т. Болотов предложил использовать многопольные системы в земледелии взамен патриархальному трехполью, ученый с мировым именем В.Н. Ипатьев работал в области органической химии, и открыл гетерогенный катализ, Н.И. Кибальчич за несколько дней до казни разработал проект реактивного летающего аппарата для полета в космос, персональный компьютер, по мнению некоторых авторов, был изобретен в 1968 году советским конструктором А.А. Гороховым, который назывался «программирующий прибор» и многие другие открытия и изобретения.

В истории развития советского изобретательства период 1924 - 1931 гг. - так называемый «патентный период» - занимает особое место. В связи с переходом от военного коммунизма к новой экономической политике в нашей стране возник новый хозяйственный механизм, основанный на самостоятельности предприятии, на дальнейшем развитии товарно-денежных отношений, на конкурентных отношениях между предприятиями. Он требовал своего закрепления в виде новой патентной охраны изобретений. Разработанный в 1921-1924 гг. и принятый 12 сентября 1924 г. Закон «О патентах на изобретения» был приспособлен к условиям производства с привлечением частного капитала к хозяйственному строительству и на условиях и в границах, установленных советской властью. Патентным законом 1924 г. предусматривалась только одна форма охраны изобретений - патент, право на изобретение закреплялось за патентообладателем.

Патент - документ, удостоверяющий признание предложения изобретением, приоритет изобретения, авторство на изобретение, исключительное право патентообладателя на изобретение.

В 1924-1931 гг. сложилась целая сеть изобретательских органов - Высшие (всесоюзные и республиканские) руководящие органы по изобретательству, изобретательские органы среднего звена управления (при краевых, областных СНХ, трестах, главных управлениях, синдикатах), местные изобретательские органы (при производственных и транспортных предприятиях).

Большая роль в развитии изобретательства принадлежала массовым общественным организациям - Всесоюзному обществу изобретателей (ВОИЗ) (1932-1938 гг.), Всесоюзному обществу изобретателей и рационализаторов (ВОИР) - с 1959 г. по 1992 г., а с 1992 г. - Всероссийскому обществу изобретателей и рационализаторов.

Указом Президиума Верховного Совета СССР от 24 января 1979 г. был учрежден ежегодный Всесоюзный день изобретателя и рационализатора, который празднуется в последнюю субботу июня месяца, и этот праздник пока никто не отменял.

В настоящее время выдачей патентов занимается Федеральная служба по интеллектуальной собственности, патентам и товарным знакам. Присуждаются почетные звания «Заслуженный изобретатель Российской Федерации» и «Заслуженный рационализатор Российской Федерации». В 2005 году в Роспатент от российских изобретателей поступило около 24 тысяч заявок на выдачу патентов, было выдано 19,5 патентов на изобретения.

Интеллектуальная собственность

Понятие «интеллектуальная собственность» является обобщающим по отношению к целому ряду правовых институтов, из которых наиболее значимыми являются институт коммерческой тайны, патентное право, авторские права и товарные знаки. Законодательство о коммерческой тайне и патентное право способствуют исследованиям и развитию новых идей. Авторское право способствует созданию литературных, художественных и музыкальных произведений, а также программного обеспечения для компьютеров. Законодательство о товарных знаках «увязывает» продукт с его производителем.

Коммерческая тайна в форме производственных секретов существовала с незапамятных времен. Древние мастера, несомненно, охраняли приемы, с помощью которых они превращали камни в орудия. Эти мастера задолго до возникновения какой бы то ни было правовой защиты знали, какое преимущество они получали от знания этих секретов. Однако обладание секретами, в сущности, дает лишь ограниченную защиту. Только тысячелетия спустя возникло право, охраняющее секреты производства. Охрана секретов развилась в отрасль небывалого значения, а технические знания и коммерческая тайна превратились в наиболее существенные ценности многих отраслей бизнеса.

Патентное право стало развиваться относительно недавно. Можно сказать, что патентное право служит определенным признанием несовершенства системы рыночной экономики, ибо рыночная экономика, хорошо приспособленная для обеспечения производства и распределения товаров, малопригодна для того, чтобы побуждать к созданию новых и лучших товаров. Это связано с тем, что при изобретении нового продукта в чисто рыночной системе конкуренты тотчас его копируют и сводят его цену до стоимости производственных затрат, тем самым снижая прибыль до уровня, на котором невозможно возместить расходы на исследования и разработки, приведшие к появлению изобретения. Патентное право как раз и возникло для разрешения этой проблемы. Обеспечивая охрану изобретения от конкурентов на долгие годы вперед, патент увеличивает шансы получения прибыли и, тем самым, стимулирует изобретательство.

Точно так же, как институт патентования способствует развитию и исследованиям нового, авторское право содействует созданию литературных произведений. На написание книги могут уйти годы. В рыночной системе в чистом виде, если книга успешно продается, другие издатели сразу же издадут ту же самую книгу. Такая конкуренция приведет к снижению цены, что, соответственно, породит нежелание авторов и издателей затрачивать много времени и денег, требующихся для написания и издания книги. Обеспечивая охрану прав автора и издателя, авторское право создает экономический стимул к созданию новых произведений.

Товарный знак имеет совсем иную функцию. Когда еще торговля велась на уровне деревенского рынка, простыми товарами, покупатели лично знали продавцов и легко могли оценивать качество товаров (например, ощупывать фрукты). Со временем рынки развились до уровня национальных и международных, возникло массовое производство товаров, зачастую дорогих и сложных, и определение производителя конкретного продукта стало чрезвычайно важным вопросом. Товарный знак с пользой служил как производителю, так и покупателю. Производители высококачественных товаров начали ставить свой товарный знак, и поскольку они уже имели завоеванную репутацию, то могли назначать более высокую цену. Покупатель же мог относиться к товару с доверием, ибо знал репутацию конкретного производителя.

История открытия новой клетки

Клеточная теория или клеточная доктрина гласит, что все организмы состоят из аналогичных организованных единиц под названием клетки. Идея была официально сформулирована в 1839 году Шлейденом и Шванном и является основой современной биологии. Этой идее предшествовали другие биологические парадигмы, такие как Теория эволюции Дарвина (1859), Теория наследственности Менделя (1865) и создание сравнительной биохимии (1940).

В 1838 году Теодор Шванн и Маттиас Шлейден наслаждались послеобеденным кофе за разговором о клеточных исследованиях. Считается, что Шванн, услышав описание Шлейдена о клетках растения с ядром, был просто поражен сходством этих растительных клеток с клетками, которые он обнаружил в тканях животных. Оба ученных незамедлительно направились в лабораторию Шванна, чтобы посмотреть на его образцы. В следующем году Шванн опубликовал книгу о животных и растительных клетках (Шванн 1839), но в этом трактате не назывались имена других, внесших вклад в данные знания, в том числе не упоминалось и имя Шлейдена (1838). Он обобщил свои наблюдения в трех выводах о клетках:

Сегодня мы знаем, что первые два тезиса правильны, но третий полностью ошибочен. Правильная интерпретация образования клеток путем деления была, в конце концов, сформулирована другими учеными и официально провозглашена в знаменитом изречении Рудольфа Вирхова: «Все клетки возникают только из уже существующих клеток».

Хронология событий

1858 – Рудольф Вирхов (врач, патологоанатом и антрополог) произносит свою знаменитую фразу «omnis cellula e cellula», что означает, что каждая клетка может образовываться только уже из существующей клетки.

1957 – Мезельсон, Сталь и Виноград разрабатывают градиент плотности центрифугирования хлорида цезия для разделения нуклеиновых кислот.

1965 – Хэм представляет бессывороточный носитель. Компания Cambridge Instruments выпускает первый коммерческий сканирующий электронный микроскоп.

1976 – Сато и его коллеги публикуют документы, показывающие, что разные клеточные линии требуют различного состава гормонов и различных факторов роста в сывороточной среде.

1981 – Выращены первые трансгенные мыши и дрозофилы. Получена первая эмбриональная стволовая клеточная линия мыши.

1999 – Гамильтон и Болкомб открывают малые интерферирующие РНК как пост-транскрипционное подавление экспрессии генов у растений.

История приручения электричества

Сила электрического разряда была известна давно, но уловить его и поставить на службу человечеству не удавалось. В начале 19 века опыты с электрическим током привлекали внимание ученых из разных стран. В 1820 году датский физик Ганс Христиан Эрстед описал явление отклонения магнитной стрелки компаса под влиянием электрического тока, протекавшего по расположенному вблизи проводнику. Позже это и ряд других открытий послужило основой для создания трех главных устройств электротехники – электрического генератора, электрического трансформатора и электрического двигателя.

У истоков освещения с помощью электричества стоял Василий Владимирович Петров (1761-1834), профессор медицинско-хирургической Академии в Петербурге. Он был преемником и продолжателем трудов М.В. Ломоносова. Исследуя световые явления, вызываемые электрическим током, В.В.Петров сделал свое знаменитое открытие - электрическую дугу, сопровождающуюся появлением яркого свечения и высокой температуры. Это произошло в 1802 г. и имело огромное историческое значение. Наблюдения и анализ Петровым свойств электрической дуги легли в основу создания электродуговых ламп, ламп накаливания, электросварки металлов и многого другого.

Александр Николаевич Лодыгин ещё в 1872 году предложил вместо угольных электродов использовать нить накаливания, которая при протекании электрического тока ярко светилась. В 1874 году Лодыгин получил патент на изобретение лампы накаливания с угольным стерженьком и ежегодную Ломоносовскую премию Академии наук. Устройство было запатентовано также в Бельгии, Франции, Великобритании, Австро-Венгрии. В 1875 г. Павел Николаевич Яблочков (1847-1894), создает электрическую свечу, состоящую из двух угольных стержней, расположенных вертикально и параллельно друг другу, между которыми проложена изоляция из каолина (глины). Чтобы горение (свечение) было более продолжительным, на одном подсвечнике помещалось четыре свечи, которые горели последовательно (во времени).

В 1876 году Павел Яблочков завершил разработку конструкции электрической свечи, начатой в 1875 г. и 23 марта получил французский патент, содержащий краткое описание свечи в её первоначальных формах и изображение этих форм. «Свеча Яблочкова» оказалась проще, удобнее и дешевле в эксплуатации, чем лампа А. Н. Лодыгина. Под названием «русский свет» свечи Яблочкова использовались позже для уличного освещения во многих городах мира. Так же Яблочков предложил первые практически применявшиеся трансформаторы переменного тока с разомкнутой магнитной системой.

Тогда же в 1876 году в России была сооружена первая электростанция на Сормовском машиностроительном заводе, ее прародительница была построена в 1873 году под руководством бельгийско-французского изобретателя З.Т. Грамма для питания системы освещения завода, так называемая блок-станция.

В то время массовыми потребителями электроэнергии были источники света – дуговые лампы и лампы накаливания. Первые электростанции Петербурга вначале размещались на баржах у причалов рек Мойки и Фонтанки. Мощность каждой станции составляла примерно 200 кВт.

Первая в мире центральная станция была пущена в работу в 1882 году в Нью-Йорке, она имела мощность 500 кВт.

История изобретения радио

Создателем первой успешной системы обмена информацией с помощью радиоволн (радиотелеграфии) традиционно считается итальянский инженер Гульельмо Маркони (1896). Однако у Маркони, как и у большинства авторов крупных изобретений, были предшественники. В России «изобретателем радио» считается А.С. Попов, создавший в 1895 г. практичный радиоприёмник. В США таковым считается Никола Тесла, запатентовавший в 1893 году радиопередатчик, а в 1895 г. приёмник; его приоритет перед Маркони был признан в судебном порядке в 1943 году. Во Франции изобретателем беспроволочной телеграфии долгое время считался создатель когерера (1890) Эдуард Бранли. Первым же изобретателем способов передачи и приёма электромагнитных волн
(которые длительное время назывались «Волнами Герца - Hertzian Waves»), является сам их первооткрыватель, немецкий учёный Генрих Герц (1888).

Принцип работы

Передача происходит следующим образом: на передающей стороне формируется сигнал с требуемыми характеристиками (частота и амлитуда сигнала). Далее передаваемый сигнал модулирует более высокочастотное колебание (несущее). Полученный модулированный сигнал излучается антенной в пространство. На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей - несущей). Таким образом, происходит извлечение полезного сигнала.

Распространение радиоволн

Радиоволны распространяются в пустоте и в атмосфере; земная твердь и вода для них непрозрачны. Однако, благодаря эффектам дифракции и отражения, возможна связь между точками земной поверхности, не имеющими прямой видимости (в частности, находящимися на большом расстоянии).

История изобретения фотографии

Фотография, как и другие великие изобретения XIX века, была открыта не сразу. С давних пор людям известно свойство темной комнаты воспроизводить световые рисунки внешнего мира. С помощью камер-обскур в России, например, в XVIII веке были документально зарисованы виды Петербурга, Кронштадта, Петергофа. Это была «фотография до фотографии»: рисовальщику уже не нужно было задумываться о соблюдении пропорций, его труд упростился в разы. Но люди продолжали думать над тем, как полностью механизировать процесс рисования, научиться не только фокусировать оптический рисунок на плоскости, но и надежно закреплять его химическим способом.

Такую возможность наука предоставила в первой трети девятнадцатого века. В 1818 году русский ученый X. Гротгус указал на связь фотохимических превращений в веществах с поглощением света. В скором времени ту же особенность установили американский химик Д. Дрейпер и английский ученый Д. Гершель. Так был открыт основной закон фотохимии.

Первый в мире снимок был получен Н. Ньепсом. На нём было запечатлено изображение крыши соседнего дома. Этот снимок ещё в 1826 году подтвердил возможность «механического рисования» с помощью солнца.

Датой рождения светописи считается 1839 год. И автором изобретения фотографии историки признают не только Н. Ньепса, но и Л. Дагерра и Ф. Тальбота, чьи первые снимки появились гораздо позже.

Происходит это из-за того, что гелиографический метод Н. Ньепса был несовершенен, непригоден для практического фотографирования из-за выдержки в 8 часов. К тому же Н. Ньепс не опубликовал при жизни свой способ. О нём знал лишь Л. Дагерр, с которым Ньепс вступил в договорные отношения по совершенствованию фотопроцесса. Именно Даггер и прославил своё имя как человек, изобрётший фотографию!

Фотоаппарат (фотографический аппарат, фотокамера) - устройство, осуществляющее формирование и последующую фиксацию статического изображения реального сюжета.

Принцип работы

Преобразование светового потока.

Световой поток от реального сюжета преобразуется съёмочным объективом в действительное изображение; калибруется по интенсивности (диафрагмой объектива) и времени воздействия (выдержкой); балансируется по цвету светофильтрами.

Фиксация светового потока.

В плёночном фотоаппарате запоминание изображения происходит на фотоматериале (фотоплёнке, фотопластинке и т. п.).
В цифровом фотоаппарате изображение воспринимается электронной матрицей, полученный с матрицы сигнал подвергается оцифровке, запоминание происходит в буферном ОЗУ и затем сохраняется на каком-либо носителе, обычно съемном. В простейших или специализированных камерах цифровой образ может сразу передаваться на компьютер.

История изобретения автомобиля

Первые известные чертежи автомобиля (с пружинным приводом) принадлежат Леонардо да Винчи (стр. 812R Codex Atlanticus), однако ни действующего экземпляра, ни сведений о его существовании до наших дней не дошло. В 2004 году эксперты Музея истории науки из Флоренции смогли восстановить по чертежам этот автомобиль, доказав тем самым правильность идеи Леонардо. В эпоху Возрождения и позже в ряде европейских стран «самодвижущиеся» тележки и экипажи с пружинным двигателем строились в единичных количествах для участия в маскарадах и парадах.

В 1769 году французский изобретатель Кюньо испытал первый образец машины с паровым двигателем, известный как «малая телега Кюньо», а в 1770 году - «большую телегу Кюньо». Сам изобретатель назвал её «Огненная телега» - она предназначалась для буксировки артиллерийских орудий.

«Тележку Кюньо» считают предшественницей не только автомобиля, но и паровоза, поскольку она приводилась в движение силой пара. В XIX веке дилижансы на паровой тяге и рутьеры (паровые тягачи, то есть безрельсовые паровозы) для обычных дорог строились в Англии, Франции и применялись в ряде европейских стран, включая Россию, однако они были тяжёлыми, прожорливыми и неудобными, поэтому широкого распространения не получили.

Появление лёгкого, компактного и достаточно мощного двигателя внутреннего сгорания открыло широкие возможности для развития автомобиля. В 1885 году немецкий изобретатель Г. Даймлер, а в 1886 году его соотечественник К. Бенц изготовили и запатентовали первые самодвижущиеся экипажи с бензиновыми двигателями. В 1895 году К. Бенц изготовил первый автобус с ДВС. В 1896 году Г. Даймлер изготовил первое такси и грузовик. В последнем десятилетии XIX века в Германии, Франции и Англии зародилась автомобильная промышленность.

Немалый вклад в широкое распространение автомобильного транспорта внёс американский изобретатель и промышленник Г. Форд, широко применивший конвейерную систему сборки автомобилей.

В России автомобили появились в конце XIX века. (Первый иностранный автомобиль в России появился в 1891 г. Его привез из Франции на пароходе издатель и редактор газеты «Одесский листок» В. В. Навроцкий). Первый русский автомобиль был создан Яковлевым и Фрезе в 1896 году и показан на Всероссийской выставке в Нижнем Новгороде.

В первой четверти XX века широкое распространение получили электромобили и автомобили с паровой машиной. В 1900 году примерно половина автомобилей в США была на паровом ходу, в 1910-х в Нью-Йорке в такси работало до 70 тыс. электромобилей.

В том же 1900 году Фердинанд Порше сконструировал электромобиль с четырьмя ведущими колёсами, в которых располагались приводящие их в движение электродвигатели. Через два года голландская фирма Spyker выпустила гоночный автомобиль с полным приводом, оснащённый межосевым дифференциалом.
В 1906 году паровой автомобиль фирмы Stanley установил рекорд скорости - 203 км/ч. Модель 1907 года проезжала на одной заправке водой 50 миль. Необходимое для движения давление пара достигалось за 10-15 минут от запуска машины. Это были любимые машины полицейских и пожарных Новой Англии. Братья Стэнли производили около 1000 автомобилей в год. В 1909 году братья открыли первую в Колорадо гостиницу люкс-класса. От железнодорожной станции до гостиницы гостей возил паровой автобус, что стало фактическим началом автомобильного туризма. Фирма Stanley выпускала автомобили на паровом ходу до 1927 года. Несмотря на ряд достоинств (хорошая тяга, многотопливность) паровые автомобили сошли со сцены к 1930-м из-за своей неэкономичности и сложностей при эксплуатации.

В 1923 году фирма Бенца изготовила первый грузовой автомобиль с двигателем Дизеля.

В России в 1780-е годы над проектом автомобиля работал известный русский изобретатель Иван Кулибин.

В 1791 году им была изготовлена повозка-самокатка, в которой он применил маховое колесо, тормоз, коробку скоростей, подшипники качения и т. д.
Немалый вклад в широкое распространение автомобильного транспорта внёс американский изобретатель и промышленник Г.Форд, широко применивший конвейерную систему сборки автомобилей.

История изобретения компьютера

В далёком феврале 1946 года мир узнал о том, что в Соединенных Штатах запущен первый в мире электронный компьютер ENIAC, строительство которого обошлось почти в полмиллиона долларов.

Агрегат, оборудование для которого монтировалось в течение трех лет (с 1943 по 1945 годы), поражал воображение современников своими размерами. Electronic Numerical Integrator And Computer (ENIAC) – электронный цифровой интегратор и компьютер весил 8 тонн, потреблял 140 кВт энергии и охлаждался авиационными двигателями Chrysler. В этом году компьютер ENIAC отпразднует своё шестидесятичетырёхлетие.

Все компьютеры, изобретённые до него, были лишь его вариантами и прототипами и рассматривались как экспериментальные. Да и сам ENIAC, равный по мощности тысячам арифмометров, назывался сначала «электронным вычислителем».

«Бабушкой» именинника и «прабабушкой» нынешних современных компьютеров можно было бы с полной уверенностью назвать аналитическую машину Бэббиджа, до изобретения которой уже создавалась не одна счетная механическая машина: арифмометр Кальмара, устройство Блеза Паскаля, машина Лейбница.

Но их можно отнести, разве что к обычным «калькуляторам», в то время как аналитическое устройство Бэббиджа являлось уже, по сути, полноценным компьютером, а астроном (и даже основатель Королевского астрономического общества) Чарльз Бэббидж вошел в историю как изобретатель первого прообраза компьютера.

Движимый желанием и необходимостью автоматизировать свой труд, в котором было много рутинных математических вычислений, Бэббидж искал решения этой проблемы. И хотя к 1840 году он далеко продвинулся в теоретических рассуждениях и почти полностью закончил разработку аналитической машины, но построить ему её так и не удалось по причине множества технологических проблем.

Его идеи слишком опережали технические возможности того времени, и потому подобные, пусть даже полностью спроектированные устройства построить в ту эпоху было невозможно. Количество деталей машины было более 50000. Устройство должно было приводиться в действие энергией пара, что не требовало присутствия людей, и потому вычисления были бы полностью автоматизированы. Аналитическая машина могла выполнять конкретную программу (определенный набор инструкций) и записывала её на перфокарты (прямоугольнички из картона).

В машине имелись все основные компоненты, составляющие сегодня современный компьютер. И когда в 1991 г. к двухсотлетию со дня рождения изобретателя сотрудниками лондонского Музея науки были созданы по его чертежам «Разностная машина №2», а через несколько лет и принтер (весом 2,6 и 3,5 тонн соответственно; с использованием технологий середины XIX века), - оба устройства отлично заработали, что наглядно продемонстрировало: история компьютеров могла бы начаться раньше на целую сотню лет. Но, как уже было сказано, при жизни изобретателя его детищу так и не суждено было увидеть мир. И только после смерти Бэббиджа, когда его сын Генри собрал центральный блок аналитической машины, было очевидно, что машина работоспособна. Тем не менее, многие идеи Чарльза Бэббиджа внесли значительный вклад в вычислительную науку и нашли свое место в будущих конструкциях других инженеров.

И всё же первым, реально работающим на практических задачах компьютером, был именно ENIAC, разработанный специально для нужд армии и предназначавшийся тогда для обсчета баллистических таблиц артиллерии и авиации. На тот момент времени это была одна из самых важных и серьезных задач. Мощностей и производительности «вычислительного армейского ресурса», который состоял из людей, стало катастрофически не хватать, и потому в начале 1943 года учёные-кибернетики занялись разработкой нового вычислительного устройства – компьютера ENIAC (позже суперкомпьютер применялся, кроме баллистики, для анализа космических излучений, а также для проектирования водородной бомбы).

История открытия Пенициллина

В 1928 году Александр Флеминг проводил рядовой эксперимент в ходе многолетнего исследования, посвященного изучению борьбы человеческого организма с бактериальными инфекциями. Вырастив колонии культуры Staphylococcus, он обнаружил, что некоторые из чашек для культивирования заражены обыкновенной плесенью Penicillium - веществом, из-за которого хлеб при долгом лежании становится зеленым. Вокруг каждого пятна плесени Флеминг заметил область, в которой бактерий не было. Из этого он сделал вывод, что плесень вырабатывает вещество, убивающее бактерии. В последствии он выделил молекулу, ныне известную как «пенициллин». Это и был первый современный антибиотик.

В течение 1930-х годов предпринимались безуспешные попытки улучшить качество пенициллина и других антибиотиков, научившись получать их в достаточно чистом виде. Первые антибиотики напоминали большинство современных противораковых препаратов - было неясно, убьет ли лекарство возбудителя болезни до того, как оно убьет пациента. И только в 1938 году двум ученым Оксфордского университета, Говарду Флори (Howard Florey, 1898-1968) и Эрнсту Чейну (Ernst Chain, 1906-79), удалось выделить чистую форму пенициллина. Первые инъекции нового средства были сделаны человеку 12 февраля 1941 года. Через несколько месяцев ученым удалось накопить такое количество пенициллина, которого могло с избытком хватить для спасения человеческой жизни. Счастливцем был пятнадцатилетний мальчик, больной заражением крови, которое не поддавалось лечению. Это был первый человек, которому пенициллин спас жизнь. В это время весь мир уже три года был охвачен пожаром войны. От заражения крови и гангрены гибли тысячи раненых. Требовалось огромное количество пенициллина. Флори выехал в Соединенные Штаты Америки, где ему удалось заинтересовать производством пенициллина правительство и крупные промышленные концерны. У нас в изучении свойств пенициллина и получении этого препарата многого достигла Зинаида Виссарионовна Ермольева. В 1943 году она поставила целью освоить приготовление пенициллина сначала лабораторным, а потом и фабричным путем. Видоизменяя предложенные иностранными авторами методы, Ермольева получила активный пенициллин. Не дождавшись фабричного его изготовления, она вылетела в Восточную Пруссию, чтобы вместе с главным хирургом Советской Армии Н. Н. Бурденко испытать действие пенициллина на раненых. Советский пенициллин дал при лечении раненых прекрасные результаты. Только в течение первых двух месяцев пользования им в госпиталях Москвы из 1 420 раненых и больных поправилось 1 227 человек. Пенициллин положил начало новой эре в медицине - лечению болезней антибиотиками. За огромные заслуги перед человечеством Флеминг, Чейн и Флори были в 1945 году удостоены Нобелевской премии. Благодаря пенициллину и другим антибиотикам было спасено бесчисленное количество жизней. Кроме того, пенициллин стал первым лекарством, на примере которого было замечено возникновение устойчивости микробов к антибиотикам.

Изобретение фонендоскопа

Способ диагностики через прослушивание грудной клетки был известен ещё Гиппократу. В 1816 г. доктор Лаэннек обратил внимание на ребят, игравших вокруг бревен строительного леса. Одни дети царапали и колотили палками по одному концу бревна, а другие слушали, приложив ухо к другому. Звук проводился через дерево. Лаэннек туго свернул тетрадь и, приложив один её конец к груди больной, а другой к собственному уху, с удивлением и радостью услышал биение сердца гораздо громче и отчетливее, чем раньше. На следующий день врач с успехом применил этот способ в своей клинике в госпитале Неккер.

В настоящее время стетоскоп (его усовершенствованная разновидность - фонендоскоп) считается классическим символом профессии врача.

История изобретения микроскопа

Невозможно точно определить, кто изобрёл микроскоп. Считается, что голландский мастер очков Ханс Янсен и его сын Захарий Янсен изобрели первый микроскоп в 1590 году, но это было заявление самого Захария Янсена в середине ХVII века. Дата, конечно, неточна, так как оказалось, что Захарий родился около 1590 г. Другим претендентом на звание изобретателя микроскопа был Галилео Галилей. Он разработал «occhiolino» («оккиолино»), или составной микроскоп с выпуклой и вогнутой линзами в 1609 г. Галилей представил свой микроскоп публике в Академии деи Линчей, основанной Федерико Чези в 1603 г. Десятью годами позже Галилея Корнелиус Дреббель изобретает новый тип микроскопа, с двумя выпуклыми линзами. Кристиан Гюйгенс, другой голландец, изобрел простую двулинзовую систему окуляров в конце 1600-х, которая ахроматически регулировалась. Окуляры Гюйгенса производятся и по сей день, но им не хватает широты поля обзора, а расположение окуляров неудобно для глаз по сравнению с современными широкообзорными окулярами. В 1665 году англичанин Роберт Гук сконструировал собственный микроскоп и опробовал его на пробке. В результате этого исследования появилось название «клетки». Антон Ван Левенгук (1632-1723) считается первым, кто сумел привлечь к микроскопу внимание биологов, несмотря на то, что простые увеличительные линзы уже производились с 1500-х годов, а увеличительные свойства наполненных водой стеклянных сосудов упоминались ещё древними римлянами (Сенека). Изготовленные вручную, микроскопы Ван Левенгука представляли собой очень небольшие изделия с одной очень сильной линзой. Они были неудобны в использовании, однако позволяли очень детально рассматривать изображения лишь из-за того, что не перенимали недостатков составного микроскопа (несколько линз такого микроскопа удваивали дефекты изображения). Понадобилось около 150 лет развития оптики, чтобы составной микроскоп смог давать такое же качество изображения, как простые микроскопы Левенгука. Так что, хотя Антон Ван Левенгук был великим мастером микроскопа, он не был его изобретателем вопреки широко распространённому мнению.

В группе немецкого учёного Штефана Хелля из Института Биофизической Химии научного сообщества Макса Планка (Гёттинген) в сотрудничестве с аргентинским учёным Мариано Босси в 2006 году был разработан оптический микроскоп под названием Наноскоп, позволяющий преодолевать барьер Аббе и наблюдать объекты размером около 10 нм (а на 2010 год и ещё меньше), оставаясь в диапазоне видимого излучения, получая при этом высококачественные трёхмерные изображения объектов, ранее недоступных для обычной световой и конфокальной микроскопии.

История изобретения подзорной трубы

Имя изобретателя подзорной трубы доподлинно неизвестно, оно кануло в веках, а сам прибор оброс множеством легенд и самых невероятных историй. Самый ранний документ датируется 1268 годом и принадлежит перу англичанина Роджера Бэкона - монаха францисканского ордена, в котором он теоретически описывает её действие. В начале XVI века голландский оптик Липперсгей, а вслед за ним и Галилей применили на практике изыскания предшественников и создали настоящую подзорную трубу для наблюдения за отдаленными объектами на суше и на море. Несколько лет спустя Галилей усовершенствовал свой прибор, сконструировав первый телескоп.

Изобретение стеклянных очков

Хотя очки как таковые были изобретены только в XIII веке, ещё в Древнем Риме богатые персоны использовали особым образом ограненные драгоценными камни для того, чтобы смотреть через них на солнце.Первые стеклянные очки появились в XIII веке в Италии. В это время итальянские стеклянные мастера считались искуснейшими в мире изготовителями, шлифовальщиками и полировщиками стекла. Особенно славилось венецианское стекло, изделия из которого часто имели очень сложную, замысловатую форму. Постоянно обрабатывая сферические, изогнутые и выпуклые поверхности, то и дело поднося их к глазам, мастера в конце концов заметили оптические возможности стекла. Изобретателем стеклянных очков считается мастер Сальвино Армати из Флоренции. В 1285 году ему пришла мысль соединить две линзы с помощью оправы.В самые первые очки вставляли длиннофокусные выпуклые, собирающие линзы, и служили они для исправления дальнозоркости. Гораздо позже было открыто, что с помощью тех же очков, вставив в них вогнутые рассеивающие линзы, можно исправлять близорукость. Первые описания таких очков относятся только к XVI веку.Долгое время очки были очень дорогими, что объяснялось трудностью изготовления по-настоящему чистых и прозрачных стекол. Их наряду с драгоценностями включали в свои завещания короли, князья и другие богатые люди.Самое первое изображение очков приписывают Томасо Да Модена, - на фреске 1352 года им написан портрет кардинала Уго ди Прованс, пишущего с очками на носу.Следующим шагом в истории очковой оптики было изобретение двухфокусной (бифокальной) очковой линзы. Считается, что это изобретение в 1784-1785 гг. сделал знаменитый американский деятель и изобретатель Бенджамин Франклин, который страдал слабым зрением и постоянно носил с собой две пары очков – одну для рассматривания удаленных объектов, другую – для чтения. Свое изобретение он осуществил, будучи в преклонном 78-летнем возрасте, поняв, что для коррекции возрастной дальнозоркости желательно иметь в очковых линзах зоны разной рефракции. Для этого он просто вставил половинки двух линз в оправу. В письме своему другу он сообщал о том, что придумал очки, через которые можно хорошо видеть объекты как вдали, так и вблизи.

Изобретение телескопа

Часто изобретение первого телескопа приписывают Гансу Липпершлею из Голландии, 1570-1619 годы. Скорее всего, его заслуга в том, что он первый сделал новый прибор телескоп популярным и востребованным. Именно он подал в 1608 году заявку на патент на пару линз, размещенных в трубке. Он назвал устройство подзорной трубой.В августе 1609 года Галилео изготовил первый в мире полноценный телескоп. Сначала это была всего лишь зрительная труба - комбинация очковых линз, сегодня бы ее назвали рефрактор. Благодаря прибору сам Галилей открыл горы и кратеры на Луне, доказал сферичность Луны, открыл четыре спутника Юпитера, кольца Сатурна и сделал множество других полезных открытий.

Изобретение сотового телефона

3 апреля 1973 года глава подразделения мобильной связи Motorola Мартин Купер, гуляя по центру Манхеттена, еще за 10 лет до появления коммерческой сотовой телефонии, позвонил своему конкуренту и рассказал, что звонит с улицы с помощью «ручного» сотового телефона. Первый образец был похож на килограммовый кирпич высотой в 25 см, толщиной и шириной около 5 см.Основные принципы мобильной телефонии были разработаны компанией AT&T Bell Labs еще в 1946 г. Тогда эта фирма создала первый в мире радиотелефонный сервис. Это был гибрид телефона и радиопередатчика - с помощью радиостанции, установленной в машине, можно было передать сигнал на АТС и совершить обычный телефонный звонок. Позвонить на радиотелефон было значительно сложнее: абоненту требовалось дозвониться до телефонной станции и сообщить номер телефона, установленного в машине. Возможности таких радиотелефонов были ограничены: мешали помехи и небольшой радиус действия радиостанции. До начала 1960-х годов многие компании отказывались проводить исследования в области создания сотовой связи, поскольку приходили к выводу, что в принципе невозможно создать компактный сотовый телефонный аппарат. В это время компания AT&T и решила развивать сотовую телефонию в стиле автомобильных радиостанций. 12-килограммовый прибор размещался в багажнике машины, пульт управления и трубка - в салоне. Для антенны приходилось высверливать отверстие в крыше. Несмотря на то, что владельцам не приходилось таскать тяжести в руках, устройство связи не достигло заметного коммерческого успеха.Первый коммерческий сотовый телефон появился на рынке только 6 марта 1983 года. В этот день компания Motorola представила аппарат DynaTAC 8000Х - результат 15 лет разработок, на которые было потрачено более $100 млн. Первый «мобильник» весил гораздо меньше прототипа - 794 грамма и продавался за три с половиной тысячи долларов. Даже несмотря на высокую цену сама идея быть всегда на связи настолько воодушевила пользователей, что в очередь на покупку DynaTAC 8000X записывались тысячи американцев. В 1983 году в мире насчитывался 1 млн. абонентов, в 1990 году - 11 млн. Распространение сотовых технологий делало этот сервис все более дешевым, качественным и доступным. В результате, по данным Международного Телекоммуникационного Союза – International Telecommunication Union, в 1995 году в мире насчитывалось уже 90,7 млн. владельцев сотовых телефонов, за последующие шесть лет их число выросло более чем в 10 раз – до 956,4 млн. По состоянию на сентябрь 2003 года в мире насчитывалось 1,29 млрд. пользователей «трубок», а в начале 2011 года число абонентов мобильной связи превысило 5 миллиардов.

Изобретение токарно-винторезного станка

Русский механик Андрей Нартов разработал конструкцию первого в мире токарно-винторезного станка с механизированным суппортом и набором сменных зубчатых колёс (1738). Работая в артиллерийском ведомстве, Нартов создал новые станки, оригинальные запалы, предложил новые способы отливки пушек. Им был изобретен оригинальный оптический прицел. Значение изобретений Нартова было столь велико, что 2 мая 1746 года был издан указ о награждении А.К. Нартова за артиллерийские изобретения пятью тысячами рублями, кроме этого, ему отписали несколько деревень в Новгородском уезде.

Изобретение рентгена

В 1896 году мировая общественность ученых была взбудоражена сенсационным известием: некий немецкий профессор открыл лучи, которые были недоступны человеческому глазу, но они действовали на фотографическую пластинку. Звали этого профессора Вильгельм Конрад Рёнтген. Он сделал это удивительное открытие, изучая явления, происходящие в трубке Крукса (трубка из стекла с откаченным воздухом). В трубку с обоих концов впаяны металлические электроды, подводя к ним ток, в разряженном воздухе происходит электрический разряд. Из-за чего воздух в трубке и ее стенки светятся холодным светом.Открытие произошло так: однажды Рёнтген работал с трубкой Крукса, обернутой черной бумагой. После окончания работ, уходя из лаборатории, ученый погасил свет, но обнаружил, что забыл выключить индукционную катушку, которая была присоединена к круксовой трубке. И тут он заметил, что недалеко от трубки что-то светится неярким холодным светом - это был лист бумаги, покрытый платиносинеродистым барием (фосфоресцирующее вещество способное излучать собственный холодный свет). Трубка была завернута в светонепроницаемую бумагу, и катодные лучи не могли пройти сквозь нее. Значит, это новый вид лучей, пока еще абсолютно неизвестный науке? Значит, ученый на пороге крупного открытия?С того момента Рёнтген почти полтора года работал в лаборатории, не покидая ее. В то время он даже и не подозревал, что его открытие станет началом новой науки - ядерной физики. Профессор писал своему другу - зоологу Бовери: «Я открыл что-то интересное, но я еще не знаю, точны ли мои наблюдения». И вот в 1896 году общественность была взбудоражена сообщением об икс-лучах. Полтора года упорных исследований понадобилось Рёнтгену, чтобы доказать, что икс-лучи поглощаются предметами и обладают ионизирующей способностью. Он сделал открытие, что лучи свободно могут проходить через дерево, бумагу, металл и т. д., но удерживаются свинцом.Рёнтген описал сенсационный опыт: «Если держать между разрядной трубкой и экраном руку, то видны темные тени костей в слабых очертаниях тени самой руки». Это явилось первым рентгеноскопическим исследованием человеческого организма. Ученый описал действие лучей и предложил конструкцию рентгеновской трубки, которая дошла до наших дней, абсолютно не изменившись. Сам Рёнтген был человеком скромным и запрещал называть икс-лучи рентгеновскими, как теперь называет их весь мир.

Клятва Гиппократа

Каждый врач при получении диплома производит клятву Гиппократа.Гиппократ (около 460 лет – ок.370 до н.э.) – древнегреческий врач, реформатор античной медицины, материалист.

В трудах Гиппократа, ставших основой дальнейшего развития клинической медицины, отражены представления о целостности организма; индивидуальный подход к больному и его лечению; понятие об анамнезе; учения об этиологии, прогнозе, темпераментах.

С именем Гиппократа связано представление о высоком моральном облике и образце этического поведения врача.Заслугой Гиппократа было освобождение медицины от влияний жреческой, храмовой медицины и определение пути её самостоятельного развития.

Гиппократ учил, что врач должен лечить не болезнь, а больного.

Изобретение компаса

Компас, как и бумагу, еще в глубокой древности изобрели китайцы. В III веке до Р.Х. китайский философ Хэнь Фэй-цзы так описывалустройство современного ему компаса: он имел вид разливательной ложки из магнетита с тонким черенком и шарообразной, тщательно отполированной выпуклой частью. Этой выпуклой частью ложка устанавливалась на столь же тщательно отполированной медной или деревянной пластине, так что черенок не касался пластины, а свободно висел над ней, и при этом ложка легко могла вращаться вокруг оси своего выпуклого основания. На пластине были нанесены обозначения стран света в виде циклических зодиакальных знаков. Подтолкнув черенок ложки, ее приводили во вращательное движение. Успокоившись, компас указывал черенком (который играл роль магнитной стрелки) точно на юг. Таким был самый древний прибор для определения сторон света. В XI веке в Китае впервые появилась плавающая стрелка компаса, изготовленная из искусственного магнита. Обычно она делалась в форме рыбки. Эту рыбку опускали в сосуд с водой. Здесь она свободно плавала, указывая своей головой в ту сторону, где находился юг. Несколько разновидностей компаса придумал в том же XI веке китайский ученый Шэнь Гуа, который много работал над исследованием свойств магнитной стрелки. Он предлагал, например, намагнитить о природный магнит обычную швейную иглу, затем прикрепить ее с помощью воска в центре корпуса к свободно висящей шелковой нити. Этот компас указывал направление более точно, чем плавающий, так как испытывал гораздо меньшее сопротивление при своем повороте. Другая конструкция компаса, предложенная Шэнь Гуа, была еще ближе к современной: намагниченная иголка здесь насаживалась на шпильку. Во время своих опытов Шэнь Гуа установил, что стрелка компаса показывает не точно на юг, а с некоторым отклонением, и правильно объяснил причину этого явления тем, что магнитный и географический меридианы не совпадают между собой, а образуют угол. В начале XIII века «плавающая игла» стала известна европейцам. Поначалу компас состоял из намагниченной иголки и кусочка дерева (пробки), плававшего в сосуде с водой. Вскоре догадались закрывать этот сосуд стеклом, чтобы защитить поплавок от действия ветра. В середине XIV века придумали помещать магнитную стрелку на острие в середине бумажного круга (картушки). Затем итальянец Флавио Джойя усовершенствовал компас, снабдив его картушкой, разделенной на 16 частей (румбов) по четыре на каждую часть света. Это нехитрое приспособление стало большим шагом в усовершенствовании компаса. Позже круг был разделен на 32 равных сектора. В XVI веке для уменьшения воздействия качки стрелку стали крепить на кардановый подвес, а век спустя компас снабдили вращающейся линейкой с визирами на концах, что позволило точнее отсчитывать направления.

Первая звукозапись. Фоноаутограф.

Когда: 9 апреля 1860 года, найдена в 2008-м. Виновник события: Книгоиздатель и коммерсант Эдуард-Леон Скотт де Мартинвилль. Кого опередил: Томаса Эдисона с его фонографом (1877 год). Работа француза де Мартинвилля, автора первой звукозаписи, преследовала цель – понять, как устроен звук с точки зрения физики. Его прибор процарапывал кривые на бумаге, покрытой сажей. Способа прослушать такую запись не существовало, но изобретателю он и не был нужен: все выводы о природе звука Мартинвилль намеревался сделать, разглядывая кривые. В этом смысле прибор Эдисона был изощренней: музыку он умел и писать, и считывать – и именно от него справедливо отсчитывают историю звукозаписи, какой мы её знаем.

Переливание крови.

Идея непосредственного введения жидкости в кровоток возникла у английского врача-физиолога и анатома Вильяма Гарвея (1578-1657), который в 1628 году создал учение о системе кровообращения. Открытие В. Гарвея имело большое значение для деятельности английских ученых Оксфордского университета, основным вдохновителем которой был Роберт Бойль (1627-1691). В 1656 г. ученый, архитектор, астроном, один из основателей Английского Королевского научного общества, член Оксфордской группы Кристофер Рэн, соединяя гусиное перо с удаленным мочевым пузырем свиньи, переливал пиво, вино и опиум собакам. К.Рэн являлся одним из основоположников инфузионной терапии. В 1666 году анатом и врач Ричард Ловер (1631-1691), также являющийся членом Оксфордской группы, впервые произвел переливание крови у собак. Деятельность этих великих английских естествоиспытателей явилась стимулом для попыток переливания крови человеку. В 1667 году врачом Жаном-Батистом Дени (1640-1704) во Франции была предпринята первая попытка переливания крови от овцы обескровленному человеку. Им же были отмечены первые осложнения при переливании крови. Хирург М.Пурман в 1670 году решил провести опыт на самом себе, поручив одному из своих ассистентов ввести ему собственноручно составленную инфузионную смесь. Однако эти эксперименты не всегда заканчивались для больных и исследователей удачно, так как только в 1907 году Я.Янский впервые открыл четыре основные группы крови, а в 1940 году К. Ландштейнер и А.Виннер открыли новую систему групповых антигенов крови - резус. В России эта проблема также волновало многих естествоиспытателей. Поэтому в 1796 году Российская академия наук объявила конкурсную тему: «О химическом составе крови и возможности создать искусственный заменитель». За более чем 200 лет, прошедших с тех пор, никто не стал лауреатом этого конкурса, хотя определённые успехи в решении этой проблемы имеются. В России первые исследования по переливанию крови связано с именем Г.Хотовицкого, который в 1830 году предложил производить гемотрансфузию для спасения рожениц, погибающих от кровотечения. Далее, в 1847 году российский учёный И.М.Соколов произвел первое в мире переливание сыворотки человеческой крови. В 1874 году впервые в России доктором Н.И.Студенским было произведено внутриартериальное переливание крови. Следует отметить создание в 1926 году в Москве первого в мире Научно-исследовательского института переливания крови (ныне ПК ГНЦ РАМН). Но, тем не менее, первое переливание крови от человека человеку было произведено английским хирургом и акушером Джеймсом Блонделлом (1790-1877) в 1819 году.

Выдающиеся педагоги губернии

(11 (23) октября 1846, село Старое Тезиково Наровчатского уезда Пензенской губернии - 16 ноября 1924, Прага) - русский хоровой дирижёр, композитор и педагог. Заслуженный артист РСФСР (1921).

Организовал в 1880 году в Петербурге смешанный хор, обладавший обширным репертуаром (обработки народных песен, хоровая классика, сочинения современных композиторов) и высокой музыкальной культурой. В практике церковного пения Архангельский сделал нововведения, заменив в церковных хорах детские голоса мальчиков на женские голоса.

В историю музыки Архангельский вошел как реформатор хорового дела и выдающийся педагог. Что и стало основанием для присвоения имен Архангельского Пензенскому музыкальному колледжу в 2002 году.

(16 (28) января 1841, село Воскресеновка Пензенской губернии - 12 (25) мая 1911, Москва) - выдающийся русский историк и педагог. Академик (1900), почётный академик (1908) Петербургской Академии наук.

Автор множества научных работ, в том числе фундаментального «Полного курса русской истории», не утратившего своей актуальности в качестве учебного пособия и поныне. В своей научной работе, при рассмотрении русской истории, на первый план выдвигал политические и экономические события.

Был известен активной общественной позицией. Участвовал в работе Комиссии по пересмотру законов о печати и в совещаниях по проекту учреждения Государственной думы и её полномочий. Но отказался войти в Государственный Совет, поскольку не находил участие в совете «достаточно независимым для свободного… обсуждения возникающих вопросов государственной жизни».

11 октября 2008 года в Пензе, напротив здания Училища культуры и искусств, был установлен первый в России памятник В. О. Ключевскому.

(14 (26) июля 1831, Астрахань - 12 (24) января 1886, Симбирск) - государственный деятель, педагог. В основном известен, как отец основателя Советского государства Владимира Ильича Ленина. При этом оставалась в тени его собственная деятельность, направленная на достижение всеобщего, равного для всех национальностей образования. С Пензенской землей связано начало педагогической деятельности Ильи Ульянова, заступившего после университета на должность старшего учителя математики в высших классах Пензенского дворянского Института. Главные его же достижения связаны с деятельностью на посту инспектора и директора народных училищ Симбирской губернии. Благодаря его энергии городские думы и сельские общества увеличили отпуск средств на школьные нужды более чем в 15 раз. Было построено более 150 школьных зданий, а количество учащихся в них возросло до 20 тыс. человек. И это при том, что качество образования стало соответствовать принятым нормам, школы получили грамотных учителей и приемлемые для учебного процесса и проживания учителей здания.

Выдающиеся ученые губернии

Герой высоких широт

Бадигин Константин Сергеевич (29 ноября 1910 г., Пенза - 17 марта 1984, Москва) известный исследователь Арктики, капитан дальнего плавания. В 1937 году он стал капитаном исследовательского судна «Седов» и отвечал за успешный дрейф через Северный Ледовитый океан, продолжавшийся 812 дней. Ведя океанологические исследования в море Лаптевых, «Седов» задержался и не смог своевременно вернуться в порт. То же случилось и с ледокольными пароходами «Садко» и «Малыгин». Для взаимной помощи все три корабля соединились и попробовали пробиться сквозь замерзающее море, но были зажаты льдами. 153 раза седовцы переживали сжатия льдов. Легендарный дрейф «Седова» вписал ценнейший вклад в науку о Севере. За свой подвиг Константин Бадигин награжден орденом Героя Советского Союза.

Основоположник географии растительности

Бекетов Андрей Николаевич (26 ноября (8 декабря) 1825, с.Алферьевка, Пензенская губ. - 1 (14) июля 1902, Шахматове, Московская губ.) - русский ботаник, педагог, популяризатор и организатор науки. Брат известного химика Н.Н. Бекетова и дед поэта А. А.Блока.

Выдвинул представление о «биологических комплексах», как группах растений, распространяющихся под воздействием суммы внешних условий, к которым тот или иной вид растения приспособился в процессе своего исторического развития. Установил самостоятельный зональный подтип растительности «предстепь» (то есть лесостепь). Различал ботанический и географический аспекты геоботаники. Разрабатывал многие вопросы экологической географии растений: экологический вариант, влияние света на образование жизненных форм растений и др. Автор первого в России полного систематического учебника ботаники и учебника по географии растений.

- (1 января (13) 1827, Альфёрьевка (Новая Бекетовка), Пензенская губерния - 30 ноября (13 декабря) 1911, Санкт-Петербург) - один из основоположников физической химии и химической динамики, заложил основы принципа алюминотермии. Русский физико-химик, академик Петербургской АН (1886). Открыл вытеснение металлов из растворов их солей водородом под давлением и установил, что магний и цинк при высоких температурах вытесняют другие металлы из их солей. В 1859-1865 годах показал, что при высоких температурах алюминий восстанавливает металлы из их оксидов. Позднее эти опыты послужили отправной точкой для возникновения алюминотермии. Огромной заслугой Бекетова является развитие физической химии как самостоятельной научной и учебной дисциплины. По предложению Бекетова в Харьковском Императорском университете учреждено физико-химическое отделение, на котором наряду с чтением лекций был введён практикум по физической химии и проводились физико-химические исследования.

В борьбе со слепотой

Беллярминов Леонид Георгиевич (1859, Сердобский уезд Саратовской губернии, ныне Пен­зенской области - 1930, Ленинград) - создатель школы оф­тальмологов, доктор медицины, профессор. Много лет пре­подавал в Петербургской военно-медицинской академии. В 1893-1914 по инициативе Беллярминова были организованы «летучие глазные отряды» по борьбе со слепотой в России. Под его руководством выпущено более 250 научных работ. Леонид Беллярминов был соредактором коллективного ру­ководства «Глазные болезни». В течение 32 лет был предсе­дателем Петербургского, затем Ленинградского офтальмо­логического общества.

Рентгенолог на полях сражения

Белов Николай Петрович (19 декабря 1894, Нижний Ломов – 17 марта 1953, Пенза) – врач-рентгенолог. Окончил Петербургскую медико-хирургическую академию. Участник 1-й мировой, Гражданской, Великой Отечественной войн. В 1924 организовал и возглавил рентгенологический кабинет в пензенской больнице Красного Креста (ныне больница им. Семашко). В годы войны Николай Белов служил подполковником медицинской службы в госпиталях Западного, Сталинградского, Прибалтийского фронтов. Он одним из первых разработал методику операций перед экраном рентгеновской установки в полевых условиях. В послевоенное время Белов работал врачом-рентгенологом гарнизонного госпиталя. Награжден Орденом Отечественной войны 2-й степени, Орденом Красной Звезды.

(22 мая (3 июня) 1876, село Каменка, Нижнеломовский уезд, Пензенская губерния - 11 ноября, 1946 год, Москва) - русский и советский хирург, организатор здравоохранения, основоположник российской нейрохирургии. Николай Бурденко создал школу хирургов экспериментального направления, разработал методы лечения онкологии центральной и вегетативной нервной системы, патологии ликворообращения, мозгового кровообращения и др. Производил операции по лечению мозговых опухолей, которые до Бурденко насчитывались во всем мире единицами. Он впервые разработал более простые и оригинальные методы проведения этих операций, сделав их массовыми, разработал операции на твёрдой оболочке спинного мозга, производил пересадку участков нервов. Разработал бульботомию - операцию в верхнем отделе спинного мозга по рассечению перевозбуждённых в результате травмы мозга проводящих нервных путей.

Именем Владимирова

Владимиров Владимир Дмитриевич (1837 – 1903). Самой большой удачей для Пензы было назначение в 1874 году на должность старшего врача губернской больницы доктора медицины Владимира Дмитриевича Владимирова. В 1860 году он окончил Казанский университет. В 1872 году был утвержден в степени доктора медицины. В городе на Суре Владимиров впервые в России ввел практику учеников фельдшерской школы и выполнил внутрибрюшные и внутригрудные операции. Он получил всемирную известность своей операцией при туберкулезе голеностопного сустава и опухоли пятки. В 1885 году эта операция названа Владимирова-Микулича.

В космических лучах


Добротин Николай Алексеевич
(18 июня 1908, Н.Ломов - 2002, Санкт-Петербург) - российский физик. Совместно с Д.В. Скобельцыным и Г.Т. Зацепиным открыл (1949) и изучил электронно-ядерные ливни, вызываемые космическими лучами и ядерно-каскадный процесс (Государственная премия СССР, 1951), открыл асимметричные ливни. Установил характерную особенность множественной генерации вторичных частиц через образование и распад кластеров. Создатель Памирской высокогорной обсерватории по изучению космических лучей и Тань-Шанской обсерватории. Автор более 20 научных работ.

(25 июля1915 г., Большая Садовка Сосновоборского района Пензенской области – 2 октября 1990 г.) - математик, крупный советский геометр. В Пензенском педагогическом институте, возглавляя кафедру высшей математики, Егоров И.П. создал Пензенскую математическую школу по движениям в обобщённых пространствах. С 1960 года в институте функционировала аспирантура под его руководством. Более 70 научных работ учёного получили широкую известность и признание не только в СССР, но и за рубежом, вызвав появление новых исследований в Японии, Румынии, США и других странах.

Иван Петрович Егоров дважды избирался Депутатом Верховного Совета СССР (1962 – 1970), был членом постоянной комиссии Совета Союза Верховного Совета по делам молодежи, входил в Бюро Геометрического семинара при ВИНИТИ АН СССР (с 1963 года).

Основы здравоохранения

Еше Егор Богданович (1815 -1876). Ученик Н.И. Пирогова, по праву считается одним из основателей здравоохранения Пензенской губернии. В 1846-1855 годах он работает старшим врачом Пензенской больницы приказа общественного призрения, которая позже стала называться губернской земской, а потом - областной, Егор Богданович проводил операции, доступные только ведущим клиникам того времени. Он выступил одним из организаторов научно-медицинского общества.В 1847 году он вместе с ординатором А.И. Циммерманом внедрил в хирургическую практику эфирный наркоз. В Пензе опубликованы 5 отчётов о работе больницы и 100 научных статей.

Основатель клинической школы

Захарьин Григорий Антонович (1829, Пенза -1898, Москва) - выдающийся русский врач-терапевт, основатель московской клинической школы, почётный член Императорской Санкт-Петербургской Ака¬демии Наук (1885). Захарьин был одним из самых выдающихся клиницистов-практиков своего времени и внес огромный вклад в создание анамнестического метода исследования больных. Изложил свои приемы диагностики и взгляды на лечение в «Клинических лекциях», получивших широчайшую известность. Эти лекции выдержали много изданий, в том числе на английском, французском, немецком языках, и до сих пор считаются образцовыми. Методика исследования по Захарьину составляла многоступенчатый расспрос врачом больного, «возведенный на высоту искусства» (А. Юшар), и позволявший составить представление о течение болезни и факторах риска. Имя Г.А. Захарьина носит Городская клиническая больница скорой помощи в Пензе.

Четвертое состояние вещества

Борис Борисович Кадомцев (9 ноября 1928, Пенза – 19 августа 1998) - российский учёный-физик. Основные исследования посвящены физике плазмы и проблеме управляемого термоядерного синтеза. Предсказал некоторые виды неустойчивости плазмы и заложил основы теории явлений переноса (диффузии и теплопроводности) в турбулентной плазме. Открыл неустойчивость плазмы на так называемых «запертых частицах». Дал количественное объяснение явления аномального поведения плазмы в магнитном поле. Ряд работ посвящен проблеме термоизоляции плазмы в тороидальных магнитных камерах - токамаках.

Разработал теорию слабой турбулентности, учитывающей рассеяние волн на частицах и так называемые процессы распада волн. Создал теорию самоорганизации плазмы в токамаке.

(19 июля 1849, Беково - 6 октября 1908) - русский врач, окулист. В 1873 стал доктором медицины за диссертацию «Объективное цветоощущение на периферических частях сетчатки». В 1874 совместно с немецким ученым Лебером опубликовал работу «О проникновении жидкостей через роговую оболочку». Крюков обнародовал 38 самостоятельных работ на русском и немецком языках и в течение многих лет в прекрасных рефератах знакомил иностранную литературу с русскими работами по офтальмологии. Кроме того, он был известен как отличный практик: лечебница глазных болезней, перешедшая к нему от доктора Воинова, которой он заведовал, пользовалась в своё время широкой известностью. Издал «Шрифты и таблицы для исследования зрения» (1882), «Курс глазных болезней» (1892, выдержал 12 изданий). Особенно значительный вклад внес Крюков в изучение глаукомы.

Знаток человеческого мышления

Ладыгина-Котс Надежда Николаевна (6 мая 1889 г. Пенза – 3 сентября 1963, Москва) советский зоопсихолог, доктор биологических наук, заслуженный деятель науки РСФСР (1960). Окончила с золотой медалью 1-ю Пензенскую женскую гимназию, Московские высшие женские курсы (1916) и Московский вуз (1917). Работала в Дарвинском музее старшим научным сотрудником сектора психологии Института философии Академии наук СССР, возглавляла секцию Всесоюзного общества психологов, была представителем СССР в секции психологии животных Международного объединения биологических наук. Идеи Ладыгиной-Котс сыграли важную роль в изучении человеческой психики. Ею разработаны оригинальные методики исследований, получившие широкое признание в России и за рубежом.

Изучая историю родного края

Лебедев Виталий Иванович (р. 28 февраля 1932 года, Пенза - 1995, Пенза) - историк. В 1967 году защитил диссертацию на соискание звания кандидата исторических наук, в 1985 стал доцентом. С 1992 года Виталий Лебедев - профессор ПГПИ. Он внес весомый вклад в изучение засечных памятников русского фортификационного искусства 16-17 веков. Профессор Лебедев проводил полевые исследования в Пензенской, Рязанской, Тамбовской, Нижегородской, Ульяновской и других областях, а также в Мордовской, Татарской и Чувашской республиках. Принимал участие в создании «Пензенской энциклопедии». Ученый опубликовал более 100 научных работ, в том числе 5 монографий. В память историка с 2000 года проводятся научные Лебедевские чтения.

Матвеев Борис Павлович (родился 1934, Керенск (в наст. Вадинск)) – основатель онкоурологического направления в РФ, основатель онкоурологического отделения в Научном центре им. Н.Н. Блохина. Заслуженный деятель науки РФ, президент Всероссийского общества онкоурологов, доктор медицинских наук, профессор, заведующий отделением урологии РОНЦ им. Н.И. Блохина РАМН. Автор многих медицинских трудов «Клиническая онкоурология», Москва, 2003, «Диагностика и лечение онкоурологических заболеваний» 1987.

Благодаря деятельности Матвеева, достигнуты большие успехи в лечении таких заболеваний как рак мочевого пузыря, рак простаты и многих других.

Немчинов Василий Сергеевич (2 января 1894, с. Грабово Пензенской губернии – 5 ноября 1964, Москва) – экономист, статистик, академик Академии наук СССР. Под его руководством в 1929–1931 гг. были произведены первые сплошные обследования совхозов и колхозов. Автор метода инструментального измерения урожайности путем небольшого числа выборочных проб – «метровок», сменившего приёмы субъективной оценки урожайности.

Автор схемы Немчинова – Перегудова в математической статистике. Один из основоположников экономико-математической статистике. Один из основоположников экономико-математического направления отечественной экономической науки. Организовал первую в стране Лабораторию по применению статистических и математических методов в экономических исследованиях и планировании.

(р. 14 марта 1914 г. в с. Чернышево Чембарского уезда Пензенской губернии) российский почвовед-агрохимик, академик ВЛСХНИЛ (с 1967), ее вице-президент (с 1969 г.). С 1969 г. – директор Всесоюзного института удобрений и агропочвоведения. Основные научные работы относятся к агрономическому почвоведению, земледелию и агрохимии. Провел сравнительные исследования черноземов и лесостепных почв. Установил, что без применения минеральных удобрений содержание перегноя в почвах на пашне лесостепной зоны уменьшается, а под лиственными лесами происходит накопление перегноя. Показал эволюцию лесостепных почв и их агрохимическую природу, предложил методы повышения их плодородия. Разрабатывал проблемы химизации сельского хозяйства. Изучал эффективность применения минеральных удобрений в различных почвенно-климатических зонах страны. Руководитель географической сети опытов по применению удобрений в СССР. Автор первого учебника по геологии для сельскохозяйственных вузов.

Пустыгин Михаил Андреевич (родился 16.11.1906, деревня Полянщина, ныне село Трескино Колышлейского района), доктор технических наук (1946), профессор (1949), заслуженный деятель науки и техники РСФСР (1968). В 1946 в соавторстве с И.С. Ивановым создает конструкцию первого советского самоходного комбайна (двигался со скоростью от 2 га посевов). За эту работу был удостоен звания лауреата Сталинской премии (1947). Орден Трудового Красного Знамени (1952), Октябрьской Революции (1971), Орден Почета (1996).

Рамеев Башир Искандарович (1 мая 1918 - 16 мая 1994) – первый советский конструктор вычислительной техники, доктор технических наук. Будучи главным конструктором, изобретатель вместе со своим коллективом создал и запустил в производство полтора десятка универсальных и специализированных вычислительных машин и более ста различных периферийных устройств. В 1940 году Башир оказался в Москве, где устроился техником в Центральный научно-исследовательский институт связи. Работая в институте, он сделал два изобретения: предложил способ обнаружения с самолета затемненных объектов - по инфракрасному излучению, проходящему через зашторенные окна, а также создал релейное устройство для включения громкоговорителей в случае воздушной тревоги. Участник Великой Отечественной войны (войска связи). 1944 году его отозвали из армии и отправили на работу в ЦНИИ-108, которым руководил академик А. И. Берг. Работа была связана с проектированием и расчетом электронных элементов радиолокационных устройств. В декабре 1948 года Б. И. Рамеев и И. С. Брук подготовили и послали заявку на изобретение "Автоматическая цифровая вычислительная машина" и получили авторское свидетельство № 10475 с приоритетом от 4 декабря 1948 года - первое в нашей стране свидетельство по электронным цифровым вычислительным машинам. Именно в этот день отмечается в нашей стране День информатики. В стенах Пензенского НИИММ, ныне НПП «Рубин», одним из основателей которого является Башир Рамеев, им предложена и воплощена концепция ряда ЭВМ второго поколения («Урал-11», «Урал-16»), получившая развитие в ЕС ЭВМ. Уже первый "Урал", выпущенный в Пензе в 1957 году, стал "рабочей лошадью" во многих вычислительных центрах страны. Транзисторные "Уралы" - "Урал-П", "Урал-14" и "Урал-16" - в 60-70-е годы работали в каждом втором вычислительном центре и многих других организациях Советского Союза. Автор ряда монографий и более 100 изобретений. Награжден Орденом Трудового Красного Знамени, золотой медалью ВДНХ СССР, Лауреат Сталинской премии. На здании НПП «Рубин» установлена мемориальная доска Баширу Искандаровичу Рамееву.

Первая антисептика

(1834-1897). Упрочению репутации Пензы как одного из научных центров российской провинции содействовал доктор медицины Эрнест Карлович Розенталь, который в 1864 году занял пост старшего врача Пензенской губернской земской больницы. В 1866 году появились его статьи «К статистике каменной болезни, эндемически распространенной в Пензенской губернии», «Об устройстве и содержании больниц в Западной Европе». В 1870 году публикуется статья «Смертность после операции в больнице Пензенского губернского земства». Большим успехом пензенских хирургов Э.К. Розенталя, Д.Я. Диотропова, Н.Г. Славинского, И.И. Мальницкого были операции по камнесечению, методика проведения которых получила освещение в статье Э.К. Розенталя «Статистика 150 камнесечений». В 1867 году, по примеру английского хирурга Д.Листера, он ввел антисептику.

Новатор Пензенской медицины

Савков Николай Мокиевич (1878 - 1938, Пенза) - известный пензенский хирург, автор 35 научных работ, публиковавшихся в т.ч. в Берлине и Париже. В Пензе развил желудочную хирургию. В 1929 г. сделал первое переливание крови. В 1931 открыл пункт скорой помощи. А в 1933 на общественных началах создал раковый пункт, положивший начало областному онкологическому диспансеру.

Укрепляя оборону страны

Сафронов Павел Васильевич (21 января 1914, с. Оленевка Пензенской губернии - 5 мая 1993, Пенза), инженер-конструктор, изобретатель. В 1931 окончил школу ФЗУ, работал на Пензенском заводе имени Фрунзе слесарем, бригадиром, мастером. В 1940-м, по окончанию Ленинградского военно-механического института, вернулся на завод. В 1942 изобрел высоконадежный взрыватель, модернизировал несколько видов оборонной продукции. В 1947 за создание нового изделия (совместно с А.Д.Музыкиным и Г.А.Окунем) ему была присуждена Сталинская премия. В 1957-1963 гг. - гл. конструктор Пензенского СНХ, один из организаторов НИИ электромеханических приборов, где работал заместителем директора и директором с 1968 по 1971. В 1971-1974 гг. зам. начальника конструкторского отдела объединения «Эра».

(7 мая 1873 - 10 февраля 1942, Пенза) - ботаник, исследователь природы Среднего Поволжья, Пензенской области, Средней Азии и Казахстана, один из основоположников природоохранного дела в России. В 1919 году добился организации в губернии заповедника- «Попереченская степь» (по времени возникновения это был третий заповедник в России). В Пензе Иван Спрыгин организовал естественно-исторический музей, ботанический сад, гербарий. Работал над вопросами классификации растительных степных сообществ, изменчивости растений, их полиморфизма, влияния на процессы видообразования. Разработал концепцию реликтовых растений Приволжской возвышенности, а также методику составления карт восстановленного (существовавшего до начала земледелия) растительного покрова. Стал первым директором Средневолжского заповедника, который ныне носит его имя. Была произведена полная инвентаризация флоры заповедника, открыто 5 новых видов растений. Присуждается премия имени И.И. Спрыгина за лучшие работы в области теории и практики заповедного дела и охраны биологического разнообразия.

Станкевич Аполлинарий Осипович (1834-15.09.1892, Городище), лесничий Городищенского уезда Пензенской губернии. Из кратких газетных сообщений известно о его работе с лета 1881 над созданием летательного аппарата. В 1883 его модель была закончена и сделана попытка испытать её в действии.
Однако технические неполадки в конструкции оттянули время старта, а резко испортившаяся погода повредила и сам аппарат. О результатах его трудов 2.3.1885 года была публикация в «Петербургской газете», где говорилось: «Станкевич, служащий в Пензенской губернии, изобрел способ свободного плавания в воздушном пространстве», демонстрировал свой аппарат – «Птицу громадных размеров с бумажными крыльями». Проект был рассмотрен в военном ведомстве и получил положительный отзыв. В дальнейшем проект утонул в бюрократических архивах, а имя самого автора осталось в забвении.

Обгоняя время.

Владимир Евграфович Татлин (28 декабря 1885, Киев - 31 мая 1953, Москва) - живописец, график, дизайнер и художник театра. Видный деятель конструктивизма и футуризма. С 1905 по 1910 годы обучался в Пензенском художественном училище. В честь Татлина в Пензе назван новый бизнес-инкубатор смешанного типа. Владимир Татлин стал знаменит проектами, которые, к сожалению, не были реализованы. Самым известным проектом является винтовая башня Татлина. Основная идея памятника сложилась на основе органического синтеза архитектурных, скульптурных и живописных принципов. Проект памятника представляет собой три больших стеклянных помещения, возведенных по сложной системе вертикальных стержней и спиралей. Помещения эти расположены одно над другим и заключены в различные гармонически связанные формы.

Рентген на Пензенской земле

Трофимов Владимир Кириллович (1872 - 1944) - известный врач. С 1905 г. работал в Пензе. С 1912 г. - главный врач Пензенской общины сестер милосердия Красного Креста и помощник Пензенского губернского врачебного инспектора. После революции - организатор лечебного дела в городе. С 1923 г. - в эмиграции.

Ему принадлежит приоритет операций на почках, мочеточнике, желчных путях, при блуждающей почке. Ввел в практику оперативные вмешательства при желчнокаменной болезни. Одним из первых поставил вопрос о борьбе с хирургическим туберкулезом. В 1908 г. вместе с другим известным пензенским врачом Д.С. Щеткиным организовал в Пензе рентгеновский кабинет и стал первым в Пензе врачом-рентгенологом.

(27 (15) февраля 1875, с. Михайловка Протасовскогй волости Пензенской губернии – 30 октября 1956, Одесса) – офтальмолог, лауреат Государственной премии СССР, академик АМН СССР (1944) и АН УССР (1939), Герой Социалистического Труда. Особой известью пользуется разработанный Филатовым метод пересадки роговицы, при котором пересадочным материалом является донорская роговица. В области восстановительной хирургии предложил метод пересадки кожи при помощи так называемого мигрирующего круглого кожного стебля. Разработал и ввел в практику хирургической офтальмологии методы пересаживания роговицы глаз трупов.

Предложил собственные методы лечения глаукомы, трахомы, травматизма в офтальмологии и т.п.; изобрел много оригинальных офтальмологических инструментов; создал учение о биогенных стимуляторах и разработал методы тканевой терапии (1933), которая широко применяется в медицине и ветеринарии. В 1951 ему была присуждена большая золотая медаль им. Мечникова.

Юрьев Василий Яковлевич (21.02.1879, с. Ивановская Вирга Пензенской губернии – 08.02.1962) – селекционер, дважды Герой Социалистического Труда (1954, 1959), действительный член Украинской Академии Наук (1945), почетный член ВАСХНИЛ (1947). Основным направлением в селекционной работе В.Я. Юрьева было создание высокоурожайных сортов озимой и яровой пшеницы, ячменя, овса, кукурузы. В 1946 г. по инициативе В.Я. Юрьева в Харькове организуется Институт генетики и селекции Академии Наук Украины, который он возглавлял в течение 10 лет. Из-под пера ученого вышло более 100 научных работ. В 1962 г. его имя присвоено Украинскому научно-исследовательскому институту растениеводства, селекции и генетики. В 1965 г. Академия Наук Украины учредила премию им. В.Я. Юрьева за достижения в области биологии.

Выдающиеся изобретатели губернии

(1910-1934) стратонавт, физик, третий член экипажа стратостата «Осоавиахим-1», достигшего рекордной высоты – 22 км. Погиб при его падении. Детские и юношеские годы провел в Пензе. Учился в школе им. Белинского, которую окончил в 1926, в Ленинградском физико-техническом институте и в Московском институте им. Баумана. Был учеником академика А.Ф. Иоффе. С 1932 доцент Ленинградского физико-технического института. Одним из первых ученых приступил к исследованию космических лучей. Создал специальный прибор, который испытал во время полета на стратостате «Осоавиахим-1». В 1995 администрация Классической гимназии №1 им. В.Г. Белинского учредила премию им. И.Д. Усыскина в области физико-математических наук гимназистам по итогам года.

Чернов Яко в (начало 1800-х, деревня Бутурлинка Петровского уезда Саратовской губернии, ныне Шемышейского района Пензенской области), крестьянин, химик-самоучка, кустарь, основатель карандашного промысла в крае (1860-е годы). Плотничал, бондарничал. Изготовлял серные спички. «Случайно разломившийся карандаш навел его на мысль домашнего приготовления их, как более выгодного промысла, чем спички». Опытным путем добился их удовлетворительного качества. Научил изготовлению карандашей односельчан, организовал поставку товара в Москву и другие города.

(1847-1894, д. Жадовка Сердобского уезда Саратовской губернии, ныне с. Яблочково Сердобского р-на Пензенской обл.). Русский изобретатель в области электротехники, военный инженер, предприниматель. Основное изобретение – дуговая лампа без регулятора. «Электрическая свеча», «свеча Яблочкова», запатентованная 23.3.1876, произвела коренные изменения в электротехнике. Триумфальная демонстрация «свечи Яблочкова» на Парижской всемирной выставке 1878 и создание синдиката по эксплуатации патентов Яблочкова привели к широкому применению электрического освещения во всем мире.

7 февраля 1832 года – Николай Лобаческий представляет Академии наук первый труд по неевклидовой геометрии. Историческое её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии и математики вообще. Замечательное приложение геометрия Лобачевского нашла в общей теории относительности. Если считать распределение масс материи во Вселенной равномерным (это приближение в космических масштабах допустимо), то оказывается возможным, что при определённых условиях пространство имеет геометрию Лобачевского. Таким образом, предположение Лобачевского о его геометрии как возможной теории реального пространства оправдалось.

8 февраля 1724 года – (28 января по старому стилю) Указом правительствующего Сената по распоряжению Петра I в России была основана Академия наук. В 1925 году она была переименована в Академию наук СССР, а в 1991 году - в Российскую Академию наук. 7 июня 1999 года Указом президента Российской Федерации был установлен День российской науки с датой празднования 8 февраля. В Указе говорится, что праздник был установлен «учитывая выдающуюся роль отечественной науки в развитии государства и общества, следуя историческим традициям и в ознаменование 275-летия со дня основания в России Академии наук».

8 февраля 1929 года – советский авиаконструктор Николай Ильич Камов дает созданному ему летательному аппарату название «вертолет». Николай Камов вместе с Николаем Скржинским создал первый советский автожир Каскр-1 «Красный инженер». В 1935 под руководством Камова был создан боевой автожир А-7, использовавшийся во время Великой Отечественной войны. В 1940 году Камов стал главным конструктором КБ по вертолётостроению. Под руководством Камова были созданы вертолёты Ка-8 (1948), Ка-10 (1953), Ка-15 (1956), Ка-18 (1960), Ка-25 (1968), Ка-26 (1967), винтокрыл Ка-22 (1964), аэросани Север-2 и Ка-30, глиссер.

12 февраля 1941 года - день рождения пенициллина. Препарата, позволившего лечить заболевания, ранее считавшиеся неизлечимыми, и спасшего жизни тысячам людей во время войны. В СССР первые образцы пенициллина получили в 1942 году микробиологи 3. В. Ермольева и Т. И. Балезина. Зинаида Виссарионовна Ермольева активно участвовала в организации промышленного производства пенициллина. Созданный ею препарат пенициллин-крустозин ВИ ЭМ был получен из штамма гриба вида Penicillium crustosum. Пенициллин применяется для лечения крупозной и очаговой пневмонии, менингита, ангины, гнойных инфекций кожи, мягких тканей и слизистых оболочек, дифтерии, скарлатины, сибирской язвы, сифилиса и др.

22 февраля 1714 года - по указу Петра I в Санкт-Петербурге основан Аптекарский огород с научными, учебными и практическими целями. Главная цель сада состояла в разведении лекарственных трав. Постепенно территория сада расширялась за счёт покупки и присоединения к нему отдельных участков. В 1823 году Аптекарский сад был реорганизован в ботанический; а с 1934 года стал научным отделением Ботанического института им. Комарова РАН. Сегодня площадь сада составляет 22,6 га, включая 16 га парка-дендрария. Коллекция насчитывает свыше 80 тысяч образцов. Экспозиция музея посвящена растительности Земли, истории и эволюции растений, растительным ресурсам России, взаимоотношениям растений и человека.

7 марта 1899 года - открывается первая в России станция «скорой помощи». До этого времени пострадавших, которые обычно подбирались полицейскими, пожарными, а иногда и извозчиками, доставляли в приемные покои при полицейских домах. Необходимый в таких случаях медицинский осмотр на месте происшествия отсутствовал. Часто люди с тяжёлыми телесными повреждениями часами находились без надлежащей помощи в полицейских домах. Сама жизнь требовала создания карет скорой помощи. Первые 5 станций Скорой помощи были открыты 7 марта 1899 года по инициативе доктора-хирурга Н.А.Вельяминова в городе Санкт-Петербурге.

11 марта 1931 года - в СССР введён физкультурный комплекс ГТО (Готов к труду и обороне). ГТО - программа физкультурной подготовки в общеобразовательных, профессиональных и спортивных организациях в СССР, основополагающая в единой и поддерживаемой государством системе патриотического воспитания молодежи. Существовала с 1931 по 1991 гг. Охватывала население в возрасте от 10 до 60 лет. ГТО объективно способствовал физическому развитию и здоровью населения страны.

19 марта 1869 года – на заседании Русского химического общества Н.А. Меншуткиным от имени Д. И. Менделеева сделано сообщение об открытии соотношения между свойствами элементов и их атомными весами. Было положено начало разработке Периодической системе химических элементов (таблица Менделеева). Благодаря ей сложилось современное понятие о химическом элементе, были уточнены представления о простых веществах и соединениях. Прогнозирующая роль периоди¬ческой системы, показанная ещё самим Менделеевым, в XX веке проявилась в оценке химических свойств трансурановых элементов. Появление периодической системы открыло новую, подлинно научную эру в истории химии и ряде смежных наук - взамен разрозненных сведений об элементах и соединениях появилась стройная система, на основе которой стало возможным обобщать, делать выводы, предвидеть.

Март - апрель 1866 года - выход в свет книги И. М. Сеченова «Рефлексы головного мозга». Одной из знаковых книг в истории мировой научной мысли. В ней Сеченов обосновал рефлекторную природу сознательной и бессознательной деятельности, доказав, что в основе всех психических явлений лежат физиологические процессы, которые могут быть изучены объективными методами. «Гениальный взмах сеченовской мысли», - так назвал великий русский ученый Павлов эту вершину научного творчества «отца русской физиологии.

1 апреля 1946 года – в Советском Союзе образуется ядерный центр «Арзамас-16». Теперь - федеральный ядерный центр «Российский научно-исследовательский институт экспериментальной физики». Первоначально у центра была конкретная задача - создание атомной бомбы. Но в дальнейшем в нем начали вестись и разработки, связанные с «мирным атомом». В 1962 году была решена уникальная задача зажигания и горения термоядерного горючего при отсутствии делящихся материалов. Центр расширяет сферу исследований и разработок и быстро осваивает новые области высоких технологий, получает научные результаты мирового уровня, проводит уникальные фундаментальные и прикладные исследования.

26 апреля 1755 года – открылся Московский университет в здании Аптекарского дома у Воскресенских ворот на месте нынешнего Исторического музея на Красной площади. Создание университета было предложено И. И. Шуваловым и М. В. Ломоносовым. Декрет о создании университета был подписан императрицей Елизаветой Петровной 12 (23) января 1755 года. Хотя официально День основания первого российского университета, а заодно и День всех российских студентов, празднуется в знаменитый Татьянин день (день подписания указа о создании), первая лекция в первом российском вузе была прочитана именно 26 апреля.

2 июня 1864 года - в Москве открыт первый в России зоологический сад. Вопреки распространенному мнению, зоосады или зоопарки предназначены не только для демонстрации животных горожанам, но и имеют важное научное значение. Изучение биологии и психологии своих коллекций, а также сохранение видов и их воспроизводство с последующей реинтродукцией в естественные местообитания, помогающие восстановить и сохранить вымирающих представителей животного мира в дикой природе. Пензенский зоопарк имеет одну из богатейших в России историю. Хотя он открыт в 1981 году, но фактически существовал с середины XIX века как Архиерейский сад. Является на сегодняшний день единственным, где имеется положительный опыт по выращиванию птенцов дрофы, одной из редчайших степных птиц, которая на воле почти полностью исчезла.

5 июня 1744 года - в Петербурге основана Порцелиновая мануфактура - первое в России и одно из старейших в Европе фарфоровых производств. С 1925 года - Ленинградский фарфоровый завод, а с 2005 снова Императорский фарфоровый завод. Создателем русского фарфора явился сподвижник Ломоносова Дмитрий Иванович Виноградов. В скором времени русский фарфор стал широко известен в Европе и, благодаря своему высокому качеству, смог соперничать со знаменитым саксонским фарфором.

8 июня 1761 года - во время проводимых опытов Михаил Ломоносов обнаружил атмосферу планеты Венера. А через 200 лет, 17 августа 1970 года, состоялся запуск советского аппарата Венера-7, первого успешно передавшего данные с поверхности другой планеты - Венеры.

8 июня 1843 года - начато строительство Петербург-Московской (впоследствии Николаевской, а затем Октябрьской) дороги - первой двухпутной железной дороги в стране. Движение было открыто в 1851 году. И хотя первоначальные объемы грузоперевозок были незначительны (0,4 млн. т. в сравнении с 1,3 млн. т. привозимых в Петербург водными путями) очень скоро экономическая эффективность железнодорожного сообщения стала очевидной. К концу века железные дороги стали одним из основных факторов, определявших бурный экономический рост в стране.

17 июня 1955 года – состоялся первый полет ТУ-104. Это первый в СССР, и четвертый в мире поднявшийся в воздух реактивный пассажирский самолёт. Сконструирован в КБ Туполева, изготовлен на Харьковском авиазаводе. ТУ-104 эксплуатировались вплоть до 1979 г. Внедрение и освоение нового самолёта потребовало перестройки всей аэродромной структуры. Именно с появлением на трассах Ту-104 стали широко внедряться спецавтомобили - мощные заправщики, тягачи, машины для заправки водой, багажные машины, наконец - самоходные трапы. В аэропортах начала работать привычная сейчас система оформления билетов, регистрации багажа, появились автобусы для пассажиров. На Ту-104 рез/aко возрос уровень комфорта/для пассажиров, по сравнению с поршневыми и турбовинтовыми машинами.

19 июня 1919 года – в разгар гражданской войны, по инициативе Академии Наук создается Государственный гидрологический институт. Учреждение создается с целью всестороннего изучения природных вод, разработки методов гидрологических исследований, расчётов и прогнозов, решения теоретических проблем гидрологии, обеспечения отраслей экономики гидрологической информацией и продукцией. ГГИ сегодня даёт оценку и прогноз состояния и рационального использования водных ресурсов.

3 июля 1835 года – заложено главное здание Пулковской обсерватории на Пулковской горе. На сегодняшний день научная деятельность обсерватории охватывает практически все приоритетные направления фундаментальных исследований современной астрономии: небесная механика и звёздная динамика, астрометрия (геометрические и кинематические параметры Вселенной), Солнце и солнечно-земные связи, физика и эволюция звезд, аппаратура и методика астрономических наблюдений. Пулковская обсерватория включена в список объектов Всемирного наследия ЮНЕСКО.

5 июля 2000 года – c космодрома Байконур стартовала усовершенствованная трехступенчатая ракета-носитель «Протон-К», которая вывела на орбиту спутник «Космос» для нужд Минобороны России. Аналогичная ракета-носитель 12 июля вывела на Международную космическую станцию российский служебный модуль «Звезда».

6 июля 1885 года – Луи Пастер успешно испытал вакцину против бешенства на мальчике, которого укусила бешеная собака. 9-летний Жозеф Мейстер стал первым человеком, выжившим после заражения бешенством, и на всю жизнь сохранил благодарность своему спасителю, до конца своих дней проработав сторожем в Институте Пастера и ухаживая за могилой ученого. После вторжения гитлеровских войск во Францию в 1940 Мейстер предпочел покончить с собой, чем позволить нацистскиммародерам надругаться над могилой Пастера.

7 июля 1932 года – Ленинградский научно-исследовательский институт молочной промышленности впервые в стране разработал способ переработки молока в порошок. Массовое производство этого продукта явилось большим вкладом в дело продовольственного обеспечения населения страны.

8 июля 2000 года – группа ученых во главе с доктором Марией Макдугал из американского научно-исследовательского центра университета в Сан-Антонио (штат Техас) объявила о том, что им с помощью генной инженерии удалось создать человеческий зуб, правда, пока лишь в лаборатории. «Мы обнаружили новые гены, которые расположены в четвертой хромосоме и отвечают за нормальное развитие зубов», - сказала Макдугал. Ученые долгое время исследовали специализированные клетки, формирующие зубы человека и животных и производящие такие ткани как дентин и эмаль, надеясь понять процесс формирования зубной ткани и те явления, которые ведут к потере зуба. Оказалось, что некоторые из хранителей наследственной информации, находящиеся в этих клетках, «работают» только в период формирования зуба, а потом «отключаются». Если гены снова «включить», на месте старого вырастет новый зуб. «Мы считаем, что наша работа положит начало новому поколению зубной хирургии: со временем лишившийся зуба сможет сам вырастить у себя во рту новый или пересадить себе донорский. Причем, это не вызовет реакцию отторжения», - утверждала доктор Макдугл.

11 июля 1874 года - Александр Николаевич Лодыгин получил привилегию № 1619 на лампу накаливания. Его изобретение было запатентовано и в нескольких европейских странах, Петербургская АН присудила ему в этом году Ломоносовскую премию, а в конце года было создано «Товарищество электрического освещения А. Н. Лодыгин и Ко».

12 июля 1937 года – cтартовал беспосадочный перелет Москва - Северный полюс - США. Экипаж самолета АНТ-25 в составе летчиков М. Громова, А. Юмашева и штурмана С. Данилина приземлился че¬рез 62 часа 17 минут в Сан-Джасинто на границе с Мексикой, установив новый мировой рекорд дальности полета по прямой линии. Экипаж мог продолжать полет и дальше, но не было соглашения на пересечение американо-мексиканской границы.

13 июля 1882 года – в Москве начал действовать телефон. В день открытия было всего 26 абонентов. Станцию построило международное общество телефонов «Белла».

15 июля 2001 года – академик Валериан Соболев объявил о фундаментальных открытиях, которые сделали российские ученые-энергетики. Экспериментально открыт особый электрохимический процесс (ученые назвали его «процесс обеднения»), в котором продуктом являются высокотемпературные материалы в новом состоянии. Благодаря открытию новых источников энергии будут разрабатываться источники тока бытового и промышленного назначения, которые смогут работать непрерывно, производя электрическую энергию без использования каких-либо видов топлива и загрязнения окружающей среды. На основе «процесса обеднения» будут разработаны новейшие технологии получения сверхпрочных новых материалов для авто-, авиа-, ракето- и машиностроения, в строительстве.

16 июля 1896 года - первый русский автомобиль был представлен публике на Всероссийской промышленно-художественной выставке в Нижнем Новгороде, за рулем которого были его создатели - отставной лейтенант русского военно-морского флота Евгений Яковлев и хозяин каретных мастерских Петр Фрезе.

7 августа 1907 года - русский физик Б. Розинг получил патент за изобретение первой системы получения телевизионного изображения. Розинг изобрёл первый механизм воспроизведения телевизионного изображения, использовав систему развёртки (построчной передачи) в передающем приборе и электронно-лучевую трубку в приёмном аппарате, то есть впервые «сформулировал» основной принцип устройства и работы современного телевидения

26 августа 1770 года – в «Трудах» Вольного экономического общества появилась первая научная статья на тему картофеля «Примечания о картофеле». Впервые название картофель ввёл в русскую речь учёный-агроном Андрей Тимофеевич Болотов, который первым в России приступил к выращиванию культуры на огороде (а не на клумбах), положив тем самым начало массовому распространению на Руси «второго хлеба».

14 сентября 1896 года - по инициативе Петра Францевича Лесгафта в Петербурге открылись Курсы воспитательниц и руководительниц физического воспитания (ныне Институт физической культуры им. П. Ф. Лесгафта) - прообраза современных высших учебных заведений физической культуры. Ныне это - Санкт-Петербургский государственный университет физической культуры имени П. Ф. Лесгафта. Именно с этого момента ведет свое начало регулярное преподавание физической культуры в учебных заведениях России. Любопытно, что в отличие от всех предыдущих инноваций в российском образовании, эта первоначально коснулась не мужских, а женских учебных заведений.

20 сентября 1878 года - в Петербурге открылись Высшие Бестужевские курсы - первый в России женский университет. До той поры русские женщины могли получать образование лишь за рубежом. Именно «необходимостью действенных мер для отвлечения русских женщин от обучения в заграничных университетах» аргументировало русское правительство открытие таких курсов. Названы они по фамилии учредителя и первого директора профессора К. Н. Бестужева-Рюмина. Всего за 32 выпуска (первый выпуск был в 1882 году, а 32-ой - в 1916) Бестужевские курсы окончило около 7000 человек, а общее число обучавшихся - включая тех, кто по разным причинам не смог закончить обучения - превысило 10 тысяч. Курсы имели три отделения: словесно-историческое, физико-математическое и специально-математическое (последние два изначально различались только со второго курса и впоследствии были объединены), а в 1906 году было открыто юридическое отделение. Среди преподавателей курсов был цвет российской науки - А. М. Бутлеров, Д. И. Менделеев, Л. А. Орбели, И. М. Сеченов. В 1918 году Бестужевские курсы были преобразованы в Третий Петроградский университет, включённый в сентябре 1919 года в состав Петроградского государственного университета.

1 октября 1984 года - в Куанде (на трассе БАМа) состоялась укладка последнего, «золотого» звена магистрали. БАМ - одна из крупнейших железнодорожных магистралей в мире. Основной путь Тайшет - Советская Гавань строился с большими перерывами с 1938 года по 1984. Жизгненную важность подобной транспортной артерии для страны осознали давно. В 1888 году в Русском техническом обществе обсуждался проект постройки тихоокеанской железной дороги через северную оконечность Байкала. Но на тот момент проект был признан технически невыполнимым. Байкало-Амурская магистраль дала толчок развитию ряда производств, а также играет значительную геополитическую роль, сшив стальными стежками наши необъятные пространства.

4 октября 1957 года - в СССР произведён запуск первого искусственного спутника Земли. Спутник-1 был запущен на орбиту в СССР 4 октября 1957 года в 19:28:34 по Гринвичу. Кодовое обозначение спутника - ПС-1 (Простейший Спутник-1). Запуск осуществлялся с 5-го научно-исследовательского полигона министерства обороны СССР «Тюра-Там» (получившего впоследствии открытое наименование космодром Байконур), на ракете-носителе «Спутник» (Р-7). Над созданием искусственного спутника Земли во главе с основоположником практической космонавтики С. П. Королёвым работали ученые М. В. Келдыш, М. К. Тихонравов, Н. С. Лидоренко, В. И. Лапко, Б. С. Чекунов, А. В. Бухтияров и многие другие. Дата запуска считается началом космической эры человечества, а в России отмечается как памятный день Космических войск.

Открытие - установление не известных ранее объективно существующих закономерностей, свойств и явлений материального мира, вносящих коренные изменения в уровень познаний.
Открытие обычно является результатом глубоких научно- исследовательских работ по решению какой-либо научной проблемы и означает нахождение чего-либо объективно существующего в природе, например, математической зависимости, физического закона, новой ядерной частицы. Открытием является только сам предмет открытия, а
способ его использования может явиться изобретением. Открытием не считается гипотеза.
Изобретение - новое и обладающее существенными отличиями \"техническое\" решение практической задачи в любой области хозяйственной, социально-культурной или оборонной сферы.
Изобретение-пионер - выдающееся изобретение, которому не предшествовали в мировой практике прототипы (аналоги), в их основе лежат открытия. Такие изобретения лежат в основе радикальных инноваций, обычно открывающих новую прикладную научно- производственную область, например, биотехнологии, судостроение на воздушной подушке, на подводных крыльях, лазерная техника.
Английский философ и педагог Дж. Локк называл изобретателей «отцами ремесел и творцами изобилия».
Не могут считаться изобретениями методы и системы организации и управления хозяйством, правила поведения, проекты сооружений, методы обучения и другие предложения нетехнического характера.
На интеллектуальный продукт распространяются авторские права, оформленные в соответствии с действующими (международными, федеральными, корпоративными) законодательными и нормативными актами. Интеллектуальный продукт является собственностью отдельных лиц и коллективов. В законодательстве стран имеется ряд законов в области охраны прав на интеллектуальную собственность (в России - закон \"Об авторском праве и смежных правах\", Патентный закон Российской Федерации).
Автором открытия считается тот, кто раньше других сформулировал в научно-исследовательской работе, в печати, на конференции или в заявке положение, заявляемое в качестве открытия. Открытие регистрируется в Госкомизобретений, а автору выдается диплом, в котором удостоверяется признание приоритета открытия.
Документами, охраняющими приоритет автора на изобретение, являются авторское свидетельство и патент. Они содержат формулу изобретения - краткое словесное изложение признаков изобретения, определяющее его сущность и объем.

Еще по теме Открытия и изобретения.:

  1. 3. Операции на открытом рынке (политика открытого рынка).
  2. 2. Оформление прав на изобретение, полезную модель и промышленный образец
  3. § 14. Особенности правовой охраны и использования секретных изобретений.