Создание классической электродинамики. Становление и развитие классической электродинамики. Становление и развитие традиционной электродинамики

Книга представляет собой курс лекций по классической электродинамике, который читался автором на протяжении многих лет в бакалавриате физического факультета Санкт-Петербургского (Ленинградского) государственного университета. Основу курса составляют фундаментальные принципы, такие как уравнения Максвелла и принцип относительности, объединенные в релятивистской ковариантной форме уравнений электродинамики. На их базе последовательно излагаются основные идеи и методы электростатики, теории излучения, электродинамики сплошных сред и теории волноводов. Материал представлен с высокой степенью математической строгости, которая органично соединяется с ясным изложением физического содержания. Книга может быть полезна всем, кто, имея элементарные знания в области электрических явлений и математического анализа, хотел бы получить ясное и математически строгое представление, как о теоретических основах, так и о методах решения самых сложных задач электродинамики.

Фрагмент из книги.
Резюме: при рассмотрении радиотехнических задач типа "как излучает данная антенна" нас интересует, разумеется, только создаваемое ей самой поле и для исключения внешних свободных полей на потенциалы естественно накладывать нужные по смыслу асимптотические условия на бесконечности. При такой постановке приведенные выше калибровочные условия фиксируют потенциалы однозначно. Но если нас интересуют сами свободные поля (что естественно при постановке задач, например, в квантовой теории поля), то нельзя накладывать условия, которые эти самые поля исключают.


Предисловие

1 Общее введение
1.1 Уравнения Максвелла.
1.2 Математическое отступление: соглашения об обозначениях, справочные формулы.
1.3 Интегральная форма уравнений Максвелла.
1.4 Соотношение между дифференциальной и интегральной формами уравнений Максвелла при наличии поверхностей разрыва. Краевые условия (условия сшивания).
1.5 Уравнение непрерывности, закон сохранения заряда.
1.6 Переход от напряженностей к потенциалам. Уравнения Максвелла для потенциалов.
1.7 Калибровочпые преобразования и калибровочные условия.
2 Релятивистски-ковариантная формулировка электродинамики
2.1 Обозначения.
2.2 Тензоры на группе вращений SO3 и на группе 0з.
2.3 Тензорные поля.
2.4 Электродинамика и принцип относительности.
2.5 Преобразования Лоренца, общие свойства.
2.6 Собственные преобразования Лоренца. Явный вид преобразований перехода к движущейся системе отсчета..
2.7 Релятивистский закон сложения скоростей. Сокращение масштабов и растяжение времени.
2.8 Тензоры и тензорные поля на группе Лоренца.
2.9 Тензорная природа потенциалов и напряженностей.
2.10 Ковариантная формулировка уравнений Максвелла для потенциалов.
2.11 Поперечность К, уравнение непрерывности, калибровочная инвариантность уравнений Максвелла, калибровочные условия.
2.12 Общие соображения о виде уравнений Максвелла для потенциалов.
2.13 Ковариантная запись уравнений Максвелла для напряженностей.
2.14 Преобразования потенциалов и напряженностей при переходе к движущейся системе отсчета.
2.15 Электродинамика с позиций теоретической механики. Функционал действия для электромагнитного поля.
2.16 Тензор энергии-импульса. Законы сохранения энергии и импульса.
2.17 Элементы релятивистской динамики точечной частицы. Сила Лоренца.
3 Статика
3.1 Основные соотношения.
3.2 Решение уравнения Пуассона.
3.3 Мультипольные разложение скалярного потенциала
в электростатике. Мультипольные моменты и их свойства.
3.4 Мультиполыюе разложение векторного потенциала Л в магнитостатике. Магнитный момент произвольной системы токов.
3.5 Силы и момепты сил. действующие па распределенные источники.
3.6 Потенциальная энергия системы зарядов или токов
в заданном внешнем поле.
3.7 Собственная потенциальная энергия системы зарядов или токов (энергия в собственном поле).
3.8 Диэлектрики и магнетики (статика).
3.9 Основы термодинамики диэлектриков и магнетиков. Объемные силы в диэлектриках и магнетиках.
3.10 Краевые задачи электростатики и методы их решения....
4 Динамика
4.1 Постановка задачи, общий вид решения.
4.2 Запаздывающая функция Грина волнового оператора....
4.3 Запаздывающие потенциалы.
4.4 Поле произвольным образом движущегося точечного заряда. Потенциалы Льенара -Вихерта. Мощность излучения и диаграмма направленности.
4.5 Излучение локализованных источников, мультипольное разложение.
4.6 Линейная антенна с центральным возбуждением.
4.7 Динамические уравнения Максвелла в среде.
4.8 Волноводы.
Литература Предметный указатель

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Классическая электродинамика, краткий курс лекций, учебное пособие, Васильев А.Н., 2010 - fileskachat.com, быстрое и бесплатное скачивание.

ОПРЕДЕЛЕНИЕ

Электродинамикой называют раздел физики, который исследует переменные электромагнитные поля, электромагнитные взаимодействия.

Так называемая классическая электродинамика описывает свойства электромагнитного поля и принципы его взаимодействия с телами, несущими электрический заряд. Это описание проводится при помощи уравнений Максвелла, выражения для силы Лоренца. При этом используются такие основные понятия электродинамики как: электромагнитное поле (электрическое и магнитное поля); электрический заряд; электромагнитный потенциал; вектор Пойнтинга.

К специальным разделам электродинамики относят:

  1. электростатику;
  2. магнитостатику;
  3. электродинамику сплошной среды;
  4. релятивистскую электродинамику.

Электродинамика составляет основу для оптики (как раздела науки), физики радиоволн. Этот раздел науки является фундаментом для радиотехники и электротехники.

Основные понятия электродинамики

Электромагнитное поле - это вид материи, который проявляется во взаимодействии заряженных тел. Часто электромагнитное поле делят на электрическое и магнитное поле. Электрическое поле - это особый вид материи, которая создается телом, обладающим электрическим зарядом или изменяющимся магнитным полем. Электрическое поле оказывает воздействие на любое, размещенное в нем, заряженное тело.

Магнитное поле - это особый вид материи, который создается перемещающимися телами, имеющими электрические заряды, переменными электрическими полями. Магнитное поле воздействует на заряды (заряженные тела), находящиеся в движении.

Электрический заряд - источник электрического поля, проявляется через взаимодействие тела, несущего заряд и поля.

Электромагнитным потенциалом называют физическую величину, которая полностью определяет распределение электромагнитного поля в пространстве.

Основные уравнения электродинамики

Уравнения Максвелла — это основные законы классической макроскопической электродинамики. Они получены в результате обобщения эмпирических данных. В краткой форме эти уравнения отображают все содержание электродинамики для неподвижной среды. Выделяют структурные и материальные уравнения Максвелла. Эти уравнения можно представлять в дифференциальной и интегральной формах. Запишем структурные уравнения Максвелла в интегральной форме (система СИ):

где - вектор напряженности магнитного поля; — вектор плотности электрического тока; - вектор электрического смещения. Уравнение (1) отображает закон создания магнитных полей. Магнитное поле возникает при движении заряда (электрический ток) или при изменении электрического поля. Это уравнение - обобщение закона Био-Савара-Лапласа. Уравнение (1) называют теоремой о циркуляции магнитного поля.

где - вектор индукции магнитного поля; - вектор напряжённости электрического поля; L - замкнутый контур по которому происходит циркуляция вектора напряженности электрического поля. Иначе, уравнение (2) можно назвать законом электромагнитной индукции. Данное уравнение показывает, что вихревое электрическое поле возникает благодаря переменному магнитному полю.

где - электрический заряд; - плотность заряда. Это уравнение еще называют теоремой Остроградского — Гаусса. Электрические заряды являются источниками электрического поля, существуют свободные электрические заряды.

Уравнение (4) говорит о том, что магнитное поле носит вихревой характер и магнитных зарядов не существует.

Систему структурных уравнений Максвелла дополняют материальными уравнениями, которые отражают связь векторов c параметрами, характеризующими электрические и магнитные свойства вещества.

где - относительная диэлектрическая проницаемость, - относительная магнитная проницаемость, — удельная электропроводность, - электрическая постоянная, - магнитная постоянная. Среда в таком случае считается изотропной, неферромагнитной, несегнетоэлектрической.

При решении прикладных задач в электродинамике уравнения Максвелла дополняют начальными и граничными условиями.

Примеры решения задач

ПРИМЕР 1

Задание Определите, каким будет поток вектора напряженности электрического поля () через поверхность гипотетической сферы радиуса R, если электрическое поле создает бесконечная однородно заряженная нить, плотность распределения заряда на нити равна ? Центр сферы расположен на нити.

Решение В соответствии с одним из уравнений Максвелла (теоремой Гаусса), имеем:

где для изотропной среды:

следовательно:

Учитывая, что заряд на нити распределен равномерно с плотностью , а сфера отсекает кусок нити длиной 2R, получим, что заряд внутри выделенной поверхности равен:

Принимая во внимание (1.3) и (1.4) окончательно получаем (считаем, что поле существует в вакууме):

Ответ

ПРИМЕР 2

Задание Запишите функцию плотности тока смещения в зависимости от расстояния от оси соленоида (), если магнитное поле соленоида изменяется по закону: . R - радиус соленоида. Соленоид является прямым. Рассмотрите случай, когда
Решение В качестве основ для решения задачи используем уравнение из системы уравнений Максвелла:

Предмет классической электродинамики

Классическая электродинамика – это теория, объясняющая поведение электромагнитного поля, осуществляющего электромагнитное взаимодействие между электрическими зарядами.

Законы классической макроскопической электродинамики сформулированы в уравнениях Максвелла, которые позволяют определять значения характеристик электромагнитного поля: напряженности электрического поля Е и магнитной индукции В в вакууме и в макроскопических телах в зависимости от распределения в пространстве электрических зарядов и токов.

Взаимодействие неподвижных электрических зарядов описывается уравнениями электростатики, которые можно получить как следствие уравнений Максвелла.

Микроскопическое электромагнитное поле, создаваемое отдельными заряженными частицами, в классической электродинамике определяется уравнениями Лоренца-Максвелла, которые лежат в основе классической статистической теории электромагнитных процессов в макроскопических телах. Усреднение этих уравнений приводит к уравнениям Максвелла.

Среди всех известных видов взаимодействия электромагнитное взаимодействие занимает первое место по широте и разнообразию проявлений. Это связано с тем, что все тела построены из электрически заряженных (положительных и отрицательных) частиц, электромагнитное взаимодействие между которыми, с одной стороны, на много порядков интенсивнее гравитационного и слабого, а с другой – является дальнодействующим в отличие от сильного взаимодействия.

Электромагнитным взаимодействием определяется строение атомных оболочек, сцепление атомов в молекулы (силы химической связи) и образование конденсированного вещества (межатомное взаимодействие, межмолекулярное взаимодействие).

Законы классической электродинамики неприменимы при больших частотах и, соответственно, малых длинах электромагнитных волн, т.е. для процессов, протекающих на малых пространственно-временных интервалах. В этом случае справедливы законы квантовой электродинамики.


1.2. Электрический заряд и его дискретность.
Теория близкодействия

Развитие физики показало, что физические и химические свойства вещества во многом определяются силами взаимодействия, обусловленными наличием и взаимодействием электрических зарядов молекул и атомов различных веществ.

Известно, что в природе существуют два вида электрических зарядов: положительные и отрицательные. Они могут существовать в виде элементарных частиц: электронов, протонов, позитронов, положительных и отрицательных ионов и др., а также "свободного электричества", но только в виде электронов. Поэтому положительно заряженное тело представляет собой совокупность электрических зарядов с недостатком электронов, а отрицательно заряженное тело – с их избытком. Заряды различных знаков компенсируют друг друга, следовательно, в незаряженных телах всегда имеются заряды обеих знаков в таких количествах, что их суммарное действие скомпенсировано.

Процесс перераспределения положительных и отрицательных зарядов незаряженных тел, или среди отдельных частей одного и того же тела, под влиянием различных факторов называется электризацией .

Так как при электризации происходит перераспределение свободных электронов, то электризуются, например, оба взаимодействующих тела, причем одно из них положительно, а другое – отрицательно. Количество же зарядов (положительных и отрицательных) при этом остается неизменным.

Отсюда следует вывод, что заряды не создаются и не исчезают, а лишь перераспределяются между взаимодействующими телами и частями одного и того же тела, в количественном отношении оставаясь неизменными.

В этом заключается смысл закона сохранения электрических зарядов, который математически можно записать так:

т.е. в изолированной системе алгебраическая сумма электрических зарядов остается величиной постоянной.

Под изолированной системой понимают такую систему, через границы которой не проникает никакое другое вещество, за исключением фотонов света, нейтронов, так как они не несут заряда.

Надо иметь в виду, что полный электрический заряд изолированной системы является релятивистки инвариантным, т.к. наблюдатели, находящиеся в любой заданной инерциальной системе координат, измеряя заряд, получают одно и то же значение.

Ряд экспериментов, в частности законы электролиза, опыт Милликена с каплей масла, показали, что в природе электрические заряды дискретны заряду электрона. Любой заряд кратен целому числу заряда электрона.

В процессе электризации заряд изменяется дискретно (квантуется) на величину заряда электрона. Квантование заряда является универсальным законом природы.

В электростатике изучаются свойства и взаимодействия зарядов, неподвижных в той системе отсчета, в которой они находятся.

Наличие у тел электрического заряда вызывает взаимодействие их с другими заряженными телами. При этом тела, заряженные одноименно, отталкиваются, а заряженные разноименно – притягиваются.

Теория близкодействия – одна из теорий взаимодействия в физике. Под взаимодействием в физике понимают всякое воздействие тел или частиц друг на друга, приводящее к изменению состояния их движения.

В механике Ньютона взаимное действие тел друг на друга количественно характеризуется силой. Более общей характеристикой взаимодействия является потенциальная энергия.

Первоначально в физике утвердилось представление о том, что взаимодействие между телами может осуществляться непосредственно через пустое пространство, которое не принимает участия в передаче взаимодействия. Передача взаимодействия происходит мгновенно. Так, считалось, что перемещение Земли должно сразу же приводить к изменению силы тяготения, действующей на Луну. В этом состоял смысл так называемой теории взаимодействия, получившей название теория дальнодействия. Однако эти представления были оставлены как не соответствующие действительности после открытия и исследования электромагнитного поля.

Было доказано, что взаимодействие электрически заряженных тел осуществляется не мгновенно и перемещение одной заряженной частицы приводит к изменению сил, действующих на другие частицы, не в тот же момент, а лишь спустя конечное время.

Каждая электрически заряженная частица создает электромагнитное поле, действующее на другие частицы, т.е. взаимодействие передается через "посредника" – электромагнитное поле. Скорость распространения электромагнитного поля равна скорости распространения света в вакууме. Возникла новая теория взаимодействия теория близкодействия.

Согласно данной теории, взаимодействие между телами осуществляется посредством тех или иных полей (например, тяготение посредством гравитационного поля), непрерывно распределенных в пространстве.

После появления квантовой теории поля представление о взаимодействиях существенно изменилось.

Согласно квантовой теории, любое поле является не непрерывным, а имеет дискретную структуру.

Вследствие корпускулярно-волнового дуализма, каждому полю соответствуют определенные частицы. Заряженные частицы непрерывно испускают и поглощают фотоны, которые и образуют окружающее их электромагнитное поле. Электромагнитное взаимодействие в квантовой теории поля является результатом обмена частиц фотонами (квантами) электромагнитного поля, т.е. фотоны являются переносчиками такого взаимодействия. Аналогично другие виды взаимодействий возникают в результате обмена частиц квантами соответствующих полей.

Несмотря на многообразие воздействий тел друг на друга (зависящих от взаимодействия слагающих их элементарных частиц), в природе, по современным данным, имеется лишь четыре типа фундаментальных взаимодействий: гравитационное, слабое, электромагнитное и сильное (в порядке возрастания интенсивности взаимодействия). Интенсивности взаимодействий определяются константами связи (в частности, электрический заряд для электромагнитного взаимодействия является константой связи).

Современная квантовая теория электромагнитного взаимодействия превосходно описывает все известные электромагнитные явления.

В 60 – 70-х годах века в основном построена единая теория слабого и электромагнитного взаимодействий (так называемое электрослабое взаимодействие) лептонов и кварков.

Современной теорией сильного взаимодействия является квантовая хромодинамика.

Делаются попытки объединения электрослабого и сильного взаимодействий в так называемое "Великое объединение", а также включения их в единую схему гравитационного взаимодействия.


ВВЕДЕНИЕ Теория электромагнитного поля как раздел курса «Физические основы квантовой электроники» . Основное внимание - электромагнитным волнам и их оптическому диапазону. Связь теории электромагнитного поля с другими разделами физики. Оптические среды. Роль электромагнитных волн. Сравнение с акустическими и другими волнами (теория волн). Фотоны – элементарные частицы (а не квазичастицы, как фононы). Эфир и вакуум. Линейные и нелинейные волны.

Уравнения Максвелла в сплошной среде СГС СИ Закон Гаусса Электрический заряд является источником электрической индукции Закон Гаусса для магнитного поля Не существует магнитных зарядов Закон индукции Фарадея Изменение магнитной индукции порождает вихревое электрическое поле Теорема о циркуляции магн. поля Электрический ток и изменение электрической индукции порождают вихревое магнитное поле -------- _________

Уравнения Максвелла, интегральная форма СГС СИ Закон Гаусса Поток электрической индукции через замкнутую поверхность S пропорционален величине свободного заряда, находящегося внутри поверхности S Закон Гаусса для магн. поля Поток магнитной индукции через замкнутую поверхность S равен нулю Закон индукции Фарадея Изменение потока магнитной индукции, проходящего через незамкнутую поверхность S, взятое с обратным знаком, пропорционально циркуляции электрического поля на замкнутом контуре l, который является границей поверхности S Теорема о циркуляции магнитного поля Полный электрический ток свободных электронов и изменение потока электрической индукции через незамкнутую поверхность S пропорциональны циркуляции магнитного поля на замкнутом контуре l, который является границей поверхности S S – двумерная поверхность, замкнутая для теоремы Гаусса и открытая для законов Фарадея и Ампера (ее границей является замкнутый контур). – электрический заряд внутри объема V, ограниченного поверхностью S. – электрический ток, протекающий через поверхность S.

Материальные уравнения Соотношения между D, B, E и H В вакууме D = E, B = H В среде материальные уравнения могут иметь вид нелокальных по времени и пространству и нелинейных соотношений (будут приведены позже).

Упражнения Вывести из уравнений Максвелла закон Кулона для точечного заряда в вакууме. Проверить выполнение всех уравнений Максвелла. Найти напряженность эл. поля шара с равномерной плотностью заряда. Найти напряженность эл. поля кольцевого слоя с равномерной плотностью заряда. - дом. задание Найти распределение плотности заряда, если известно распределение напряженности эл. поля где А и n – постоянные, Пояснить физический смысл результата при n = -3.

«Площади» э. -м. поля Рассматриваем ограниченные в пространстве и времени пакеты поля (с конечной энергией) Интегрируем по времени в бесконечных пределах – «площадь» электрич. поля – безвихревой вектор Интегрируем по пространству (объему) в бесконечных пределах – «площадь» магнитного поля – сохраняется Эти общие (для любого вида материальных уравнений) соотношения полезны для контроля точности моделирования динамики поля.

Уравнения Максвелла в вакууме (СГС) Учебное пособие: Н. Н. Розанов. Специальные разделы мат. физики. Ч. I. Электромагнитные волны в вакууме. 2005. D = E, B = H, ρ = 0, j = 0 Условия применимости: 1. Инерциальная система отсчета 2. Гравитационные эффекты 3. Квантовые ограничения для слабых и сильных полей

Квантовые ограничения в слабых полях Уравнения Максвелла отвечают континуальному (а не дискретному) описанию. Поэтому для их справедливости число фотонов в основных модах N должно быть велико: N >> 1. Этот фактор важен при анализе шумов излучения и сжатых состояний электромагнитного поля (квантовая оптика).

Квантовые ограничения в сильных полях В уравнениях Максвелла не учитываются вероятность рождения электрон-позитронных пар и эффекты поляризации вакуума. Необходимое условие пренебрежения этими эффектами: (изменение энергии заряда |e| в поле напряженности E на расстоянии равном комптоновской длине волны электрона RC = h /(mc) = 2. 4 10^(-10) см должно быть много меньше mc^2 , m – масса электрона, h – постоянная Планка, ħ = h / 2π). В мощных лазерных установках достигаются напряженности полей, близкие к критическим. Последовательная теория дается квантовой электродинамикой. Приближенно электромагнитное поле в электронпозитронном вакууме описывается уравнениями электродинамики сплошных сред. Комптоновская длина волны электрона описывает его «размазанность» , при меньших расстояниях классическая теория неприменима.

Симметрия уравнений Максвелла в вакууме Равноправность Е и Н в вакууме без зарядов. Равноправность направлений течения времени (в классическом вакууме нет диссипации энергии)

Векторная структура уравнений Максвелла ρ – скаляр (плотность эл. заряда) E, D, j – полярные трехмерные векторы H, B – аксиальные трехмерные векторы При зеркальном отражении направление полярных векторов не меняется, а для аксиальных сменяется противоположным. Ср. с силой Лоренца Различие полярных и аксиальных векторов существенно для записи нелинейных восприимчивостей.

Волновое уравнение Немагнитные среды Не все решения волнового уравнения служат решениями уравнений Максвелла, поскольку эти решения могут не удовлетворять уравнению. Фактически это соотношение накладывает ограничения на поляризационную структуру излучения. Таким образом, при исключении из уравнений Максвелла магнитных величин к волновому уравнению следует добавить уравнение

Динамика э. -м. поля При заданных материальных соотношениях возможна постановка задачи Коши – по начальным данным определяется последующие значения полей. Динамических уравнений два (содержащих временную производную 1 -го порядка; частотной дисперсией здесь пренебрегаем). Два «статических» уравнения ограничивают вид начальных условий. Пример – вакуум без зарядов ()

Динамика э. -м. поля в вакууме Уравнения Максвелла содержат производные по времени первого порядка. Поэтому задания напряженностей Е и Н в начальный момент времени достаточно для определения дальнейшей динамики поля (+ граничные условия). Метод численного расчета: FDTD – finite-difference time-domain. – тема для итоговой презентации

Начальные условия (вакуум) не произвольны. Они должны подчиняться условиям Если это так, то и в последующие моменты времени значения останутся нулевыми, так как {div rot V = 0} Из-за уравнений Максвелла с div произвольно можно задавать только по две компоненты векторов Е 0 и Н 0, эти уравнения определяют вид третьих компонент. Например, пусть заданы Тогда (f – произвольная функция своих аргументов)

Динамика поля (задача Коши)* Поскольку уравнения Максвелла – первого порядка по времени, то начальные условия позволяют определить значения напряженностей электрического и магнитного полей в последующие моменты времени. Разложения Тейлора для малых интервалов времени:

Задания В начальный момент t = 0 заданы Найти последующие значения напряженностей. – дом. задание В некоторый момент времени заданы компоненты Найти вид третьей компоненты E в тот же момент времени.

Эволюционная переменная, пример уравнения Гельмгольца Однородная среда (вакуум), монохроматическое излучение с частотой ω Фиксированная (линейная) поляризация. Одна из компонент поля f (пример Адамара)

Задача Коши для уравнения Гельмгольца Рассмотрим пучок монохроматического излучения с преимущественным направлением вдоль оси z Зададим при z = 0 значения f и Решение уравнения Гельмгольца (разделение переменных)

Задача Коши для уравнения Гельмгольца Предел При конечных z При нулевых (в пределе) начальных данных есть решение, стремящееся при конечных z к бесконечности. Но при таких начальных данных есть и нулевое решение. Нет непрерывной зависимости решения от начальных данных. Постановка задачи некорректна. Физ. смысл – встречные волны.

Ковариантная формулировка уравнений Максвелла в вакууме. Тензоры электромагнитного поля Напряженности электрического и магнитного полей не абсолютны и имеют разную величину в различных инерциальных системах отсчета, движущихся относительно друга со скоростью V. Задача – показать релятивистскую инвариантность уравнений Максвелла и найти преобразования Лоренца для электромагнитного поля. Форма записи уравнения будет релятивистски инвариантной, если оно записано в терминах скаляров, 4 -векторов и тензоров, для которых известны преобразования Лоренца.

Ковариантная формулировка …* Вводим 4 -мерное пространство-время с координатами xk, k = 0, 1, 2, 3 Другая инерционная система координат Преобразование Лоренца в частном случае, когда скорость V имеет только x-компоненту

Тензор энергии-импульса э. -м. поля Симметрия по индексам? Символ Кронекера при i = k и 0 в противном случае. - плотность э. -м. энергии, - плотность потока энергии. Тензор энергии-импульса (поля и среды) служит источником искривления пространства-времени в уравнениях тяготения Эйнштейна.

Задания 1. Найти напряженности электрического и магнитного полей точечного заряда, движущегося с постоянной скоростью. 2. Проверить инвариантность величин и (E, H). 3. Проверить, что ковариантная запись уравнений Максвелла приводит к стандартной записи при различном выборе индексов. - это все дом. задания

Уравнение распространения фронта электромагнитной волны Ранее мы решали задачу Коши, то есть по начальным данным (при t = 0) о напряженностях поля определяли последующую динамику поля. Это возможно, так как уравнения Максвелла в вакууме содержат только первые временные производные напряженностей. Более общая постановка задачи динамики: Уч. пособие, стр. 13 -17

Классическая электродинамика (рус. электродинамики, англ. Electrodynamics, нем. Elektrodynamik f) – раздел физики, который занимается изучением взаимодействия наэлектризованных, намагниченных тел и проводников с токами. Базовыми понятиями классической электродинамики является представление о электрическое и магнитное поле вокруг заряженных тел и проводников с током.
Состоит из двух частей: макроскопической Е., базирующаяся на уравнениях Максвелла, и классической электронной теории.
Основные уравнениями классической электродинамики является уравнения Максвелла, устанавливающих связь величин, характеризующих электрические и магнитные поля, с распределением в пространстве зарядов и токов. Суть четырех уравнений Максвелла для электромагнитного поля качественно сводится к следующему:
1. Магнитное поле порождается движущимися зарядами и переменным электрическим полем;
2. Электрическое поле с замкнутыми силовыми линиями (вихревое поле) порождается переменным магнитным полем;
3. Силовые линии магнитного поля всегда замкнуты (это означает, что оно не имеет источников – магнитных зарядов, подобных электрическим);
4. Электрическое поле с незапертой силовыми линиями (потенциальное поле) порождается электрическими зарядами – источниками этого поля. Из теории Максвелла вытекает конечность скорости распространения электромагнитных взаимодействий и существовании электромагнитных волн.
В классической электродинамике рассматриваются также электромагнитные волны, их излучение и распространение в пространстве.
Отдельным разделом классической электродинамики является электродинамика сплошных сред, в которой рассматривается отзыв физических сред на возмущения внешним электрическим и магнитным полем.