Теория чисел лекции. Теория чисел

Существует несколько определений понятия «теория чисел». Одно из них гласит, что это специальный раздел математики (или высшей арифметики), которая подробно изучает целые числа и объекты, сходные с ними.

Другое определение уточняет, что этот раздел математики изучает свойства чисел и их поведение в различных ситуациях.

Некоторые ученые считают, что теория настолько обширна, что дать ее точное определение невозможно, а достаточно лишь разделить на несколько менее объемных теорий.

Установить достоверно, когда зародилась теория чисел, не представляется возможным. Однако точно установлено: на сегодня древнейшим, но не единственным документом, свидетельствующим об интересе древних к теории чисел, является небольшой обломок глиняной таблички 1800 годов до нашей эры. В нем - целый ряд так называемых Пифагоровых троек (натуральных чисел), многие из которых состоят из пяти знаков. Огромное количество таких троек исключает их механический подбор. Это свидетельствует о том, что интерес к теории чисел возник, видимо, намного раньше, чем изначально предполагали ученые.

Самыми заметными лицами в разработке теории считаются пифагорейцы Евклид и Диофант, жившие в Средние века индийцы Ариабхата, Брахмагупта и Бхаскары, а еще позже - Ферма, Эйлер, Лагранж.

В начале ХХ века теория чисел привлекла внимание таких математических гениев, как А. Н. Коркин, Е. И. Золотарёв, Б. Н. Делоне, Д. К. Фаддеев, И. М. Виноградов, Г.Вейль, А. Сельберг.

Разрабатывая и углубляя выкладки и исследования древних математиков, они вывели теорию на новый, значительно более высокий уровень, охватывающий множество областей. Глубокие исследования и поиски новых доказательств привели и к открытию новых проблем, некоторые из которых не изучены до сих пор. Открытыми остаются: гипотеза Артина о бесконечности множества простых чисел, вопрос о бесконечности количества простых чисел, множество других теорий.

На сегодня основными составляющими, на которые делится теория чисел, являются теории: элементарная, больших чисел, случайных чисел, аналитическая, алгебраическая.

Элементарная теория чисел занимается изучением целых чисел, не привлекая методы и понятия из других разделов математики. малая - вот самые распространенные, известные даже школьникам понятия из этой теории.

Теория больших чисел (или Закон больших чисел) - подраздел теории вероятностей, стремящийся доказать, что среднее арифметическое (по другому - среднее эмпирическое) большой выборки приближается к математическому ожиданию (которое еще называют теоретическим средним) этой выборки при условии фиксированного распределения.

Теория случайных чисел, разделяя все события на неопределенные, детерминированные и случайные, пытается определить по вероятности простых событий вероятность сложных. В этот раздел входят свойства и теорема их умножения, Теорема гипотез (которую часто называют формулой Байеса) и пр.

Аналитическая теория чисел, как это понятно из ее названия, для изучения математических величин и числовых свойств применяет методы и приемы Одно из главных направлений этой теории - доказательство теоремы (при помощи комплексного анализа) о распределении простых чисел.

Алгебраическая теория чисел работает непосредственно с числами, их аналогами (например, алгебраическими числами), изучает теорию дивизоров, когомологии групп, функции Дирихле и т.п.

К появлению и развитию этой теории привели многовековые попытки доказать теорему Ферма.

До ХХ века теория чисел считалась отвлеченной наукой, "чистым искусством от математики", не имеющим абсолютно никакого практического или утилитарного применения. Сегодня ее выкладки используют в криптографических протоколах, при расчете траекторий спутников и космических зондов, в программировании. Экономика, финансы, информатика, геология - все эти науки сегодня невозможны без теории чисел.

Теория чисел имеет своим предметом числа и их свойства, т.е. числа выступают здесь не как средство или инструмент, а как объект исследования. Натуральный ряд 1, 2, 3, 4, …, 9, 10, 11, …, 99, 100, 101, … - множество натуральных чисел, является важнейшей областью исследований, необычайно содержательной, важной и интересной.

Исследований натуральных чисел

Начала исследований натуральных чисел были заложены в Древней Греции. Здесь были изучены свойства делимости чисел, доказана бесконечность множества простых чисел и открыты способы их построения (Евклид , Эратосфен). Задачи, связанные с решением неопределенных уравнений в целых числах, были предметом исследований Диофанта, их изучением занимались ученые Древней Индии и Древнего Китая, стран Средней Азии.

Теория чисел, безусловно, относится к фундаментальным разделам математики. Вместе с тем ряд ее задач имеет самое непосредственное отношение к практической деятельности. Так, например, благодаря в первую очередь запросам криптографии и широкому распространению ЭВМ, исследования алгоритмических вопросов теории чисел переживают в настоящее время период бурного и весьма плодотворного развития. Криптографические потребности стимулировали исследования классических задач теории чисел, в ряде случаев привели к их решению, а также стали источником постановки новых фундаментальных проблем.

Традиции исследования проблем теории чисел в России идут, вероятно, от Эйлера (1707-1783), который прожил здесь в общей сложности 30 лет и многое сделал для развития науки. Под влиянием его трудов сложилось творчество П.Л.~Чебышева (1821-1894), выдающегося ученого и талантливого педагога, издавшего вместе с В.Я.~Буняковским (1804-1889) арифметические сочинения Эйлера. П.Л.~Чебышев создал Петербургскую школу теории чисел, представителями которой являлись А.Н. Коркин (1837-1908), Е.И.~Золотарев (1847-1878) и А.А.~ Марков (1856-1922). Г.Ф.~Вороной (1868-1908), учившийся в Петербурге у А.А.Маркова и Ю.В.Сохоцкого (1842-1927), основал школу теории чисел в Варшаве. Из нее вышел ряд замечательных специалистов по теории чисел и, в частности, В.Серпинский (1842-1927). Другой воспитанник Петербургского Университета Д.А.Граве (1863-1939) многое сделал для преподавания теории чисел и алгебры в Киевском Университете. Его учениками были О.Ю. Шмидт (1891-1956), Н.Г. Чеботарев (1894-1947), Б.Н.Делоне (1890-1980). Теоретико-числовые исследования проводились также в Университетах Москвы, Казани, Одессы.

Рекомендуемая литература

Боревич З.И., Шафаревич И.Р. Теория чисел.

Бухштаб А.А., Теория чисел.

Венков Б.А., Элементарная теория чисел.

Виноградов И.М., Основы теории чисел.

Гаусс К.Ф., Труды по теории чисел.

Дирихле П.Г.Л., Лекции по теории чисел.

Карацуба А.А., Основы аналитической теории чисел.

Нестеренко Ю.В., Теория чисел.

Шидловский А.Б., Диофантовы приближения и трансцендентные числа.

Теория чисел или высшая арифметика - раздел математики, изучающий целые числа и сходные объекты.

Теория чисел занимается изучением свойств целых чисел. В настоящее время в теорию чисел включают значительно более широкий круг вопросов, выходящих за рамки изучения натурах чисел.

В теории чисел рассматриваются не только натуральные числа, но и множество всех целых чисел, множество рациональных чисел, множество алгебраических чисел. Для современной теории чисел характерно применение весьма разнообразных методов исследований. В современной теории чисел широко пользуются методами математического анализа.

Современную теорию чисел можно разбить на следующие разделы:

1) Элементарная теория чисел. К этому разделу относят вопросы теории чисел, являющиеся непосредственным развитием теории делимости и вопросы о представимости чисел в определенной форме. Более общей является задача решения систем диофантовых уравнений, то есть уравнений, в которых значения неизвестных должны быть обязательно целыми числами.

2) Алгебраическая теория чисел. К этому разделу относят вопросы, связанные с изучением различных классов алгебраических чисел.

3) Диофантовы приближения. К этому разделу относят вопросы, связанные с изучением приближения действительных чисел рациональными дробями. К диофантовым приближениям примыкают тесно связанные с этим же кругом идей вопросы изучения арифметической природы различных классов чисел.

4) Аналитическая теория чисел. К этому разделу относят вопросы теории чисел, для изучения которых приходится применять методы математического анализа.

Основные понятия:

1) Дели?мость - одно из основных понятий арифметики и теории чисел, связанное с операцией деления. С точки зрения теории множеств, делимость целых чисел является отношением, определённым на множестве целых чисел.

Если для некоторого целого числа a и целого числа b существует такое целое число q, что bq = a, то говорят, что число a делится нацело на b или, что b делит a. При этом число b называется делителем числа a, делимое a будет кратным числа b, а число q называется частным от деления a на b.

2) Просто?е число? - это натуральное число, которое имеет ровно два различных натуральных делителя: единицу и самого себя. Все остальные числа, кроме единицы, называются составными.

3) Совершенное число? (др.-греч. ἀριθμὸς τέλειος) - натуральное число, равное сумме всех своих собственных делителей (т. е. всех положительных делителей, отличных от самого? числа).

Первое совершенное число - 6 (1 + 2 + 3 = 6), следующее - 28 (1 + 2 + 4 + 7 + 14 = 28). По мере того как натуральные числа возрастают, совершенные числа встречаются всё реже.

4) Наибольшим общим делителем (НОД) для двух целых чисел m и n называется наибольший из их общих делителей. Пример: для чисел 70 и 105 наибольший общий делитель равен 35.

Наибольший общий делитель существует и однозначно определён, если хотя бы одно из чисел m или n не ноль.

5) Наименьшее общее кратное (НОК) двух целых чисел m и n - это наименьшее натуральное число, которое делится на m и n.

6) Числа m и n называются взаимно-простыми, если у них нет общих делителей, кроме единицы. Для таких чисел НОД(m,n) = 1. Обратно, если НОД(m,n) = 1, то числа взаимно просты.

7) Алгори?тм Евкли?да - алгоритм для нахождения наибольшего общего делителя двух целых чисел или наибольшей общей меры двух однородных величин.

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме №17. Основные понятия теории чисел.:

  1. 2.Сущность и условия применимости теории вероятностей. Основные понятия и теоремы теории вероятностей.
  2. 6. Различные подходы к формированию понятия натурального числа и нуля. Методика изучения нумерации чисел в пределах 10. Виды, процессы, формы мышления младших школьников. Педагогический смысл понятия «подход»; основные компоненты подхода.
  3. Рассмотрим известные из школьного курса математики понятия наименьшего общего кратного и наибольшего обще­го делителя натуральных чисел, сформулируем их основные свойства, опустив все доказательства.
  4. При аксиоматическом построении теории натуральных чисел вычитание обычно определяется как операция обратная сложению.

Название: Теория чисел. 2008.

Основу учебника составляют результаты элементарной теории чисел, сформировавшейся в трудах классиков - Ферма, Эйлера, Гаусса и др. Рассматриваются такие вопросы как простые и составные числа, арифметические функции, теория сравнений, первообразные корни и индексы, цепные дроби, алгебраические и трансцендентные числа. Обзорно освещены свойства простых чисел, теория диофантовых уравнений, алгоритмические аспекты теории чисел с применениями в криптографии (проверка больших простых чисел на простоту, разложение больших чисел на множители, дискретное логарифмирование) и с использованием ЭВМ.
Для студентов высших учебных заведений.

Предмет изучения теории чисел - числа и их свойства, т. е. числа выступают здесь не как средство или инструмент, а как объект исследования. Натуральный ряд
1,2,3,4, ...,9,10,11, ...,99,100,101, ...
- множество натуральных чисел - является важнейшей областью исследований, необычайно содержательной, важной и интересной.
Изучение натуральных чисел было начато в Древней Греции. Евклид и Эратосфен открыли свойства делимости чисел, доказали бесконечность множества простых чисел и нашли способы их построения. Задачи, связанные с решением неопределенных уравнений в целых числах, были предметом исследований Диофанта, а также ученых Древней Индии и Древнего Китая, стран Средней Азии.

Оглавление
Введение
Глава 1. О делимости чисел
1.1. Свойства делимости целых чисел
1.2. Наименьшее общее кратное и наибольший общий делитель
1.3. Алгоритм Евклида
1.4. Решение в целых числах линейных уравнений

Глава 2. Простые и составные числа
2.1. Простые числа. Решето Эратосфена. Бесконечность множества простых чисел
2.2. Основная теорема арифметики
2.3. Теоремы Чебышева
2.4. Дзета-функция Римана и свойства простых чисел
Задачи для самостоятельного решения
Глава 3. Арифметические функции
3.1. Мультипликативные функции и их свойства
3.2. Функция Мёбиуса и формулы обращения
3.3. Функция Эйлера
3.4. Сумма делителей и число делителей натурального числа
3.5. Оценки среднего значения арифметических функций
Задачи для самостоятельного решения
Глава 4. Числовые сравнения
4.1. Сравнения и их основные свойства
4.2. Классы вычетов. Кольцо классов вычетов по данному модулю
4.3. Полная и приведенная системы вычетов
4.4. Теорема Вильсона
4.5. Теоремы Эйлера и Ферма
4.6. Представление рациональных чисел бесконечными десятичными дробями
4.7. Проверка на простоту и построение больших простых чисел
4.8. Разложение целых чисел на множители и криптографические применения
Задачи для самостоятельного решения
Глава 5. Сравнения с одним неизвестным
5.1.Основные определения
5.2.Сравнения первой степени
5.3.Китайская теорема об остатках
5.4. Полиномиальные сравнения по простому модулю
5.5. Полиномиальные сравнения по составному модулюЗадачи для самостоятельного решения
Глава 6. Сравнения второй степени
6.1. Сравнения второй степени по простому модулю
6.2. Символ Лежандра и его свойства
6.3. Квадратичный закон взаимности
6.4.Символ Якоби и его свойства
6.5.Суммы двух и четырех квадратов
6.6. Представление нуля квадратичными формами от трех переменных
Задачи для самостоятельного решения
Глава 7. Первообразные корни и индексы
7.1. Показатель числа по заданному модулю
7.2. Существование первообразных корней по простому модулю
7.3. Построение первообразных корней по модулям рк и 2рк
7.4. Теорема об отсутствии первообразных корней по модулям, отличным от 2, 4, рк и 2рк
7.5. Индексы и их свойства
7.6. Дискретное логарифмирование
7.7. Двучленные сравнения
Задачи для самостоятельного решения
Глава 8. Цепные дроби
8.1. Теорема Дирихле о приближении действительных чисел рациональными
8.2. Конечные цепные дроби
8.3. Цепная дробь действительного числа
8.4. Наилучшие приближения
8.5. Эквивалентные числа
8.6. Квадратичные иррациональности и цепные дроби
8.7. Использование цепных дробей для решения некоторых диофантовых уравнений
8.8.Разложение числа е в цепную дробь
Задачи для самостоятельного решения
Глава 9. Алгебраические и трансцендентные числа
9.1.Поле алгебраических чисел
9.2. Приближения алгебраических чисел рациональными. Существование трансцендентных чисел
9.3. Иррациональность чисел ег и п
9.4. Трансцендентность числа е
9.5. Трансцендентность числа п
9.6.Невозможность квадратуры круга
Задачи для самостоятельного решения
Ответы и указания
Список литературы

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Теория чисел - Нестеренко Ю.В. - fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.

Теория чисел - раздел математики, в котором изучаются свойства чисел.

Основной объект теории чисел - натуральные числа (см. Число). Главное их свойство, которое рассматривает теория чисел, это делимость. Первый круг задач теории чисел - разложение чисел на множители. Основными «кирпичиками» в таком разложении являются простые числа, т.е. числа, делящиеся только на 1 и на себя; 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 - вот первые десять простых чисел (число 1 не относят к простым). Замечательная теорема, называемая основной теоремой арифметики, гласит: всякое натуральное число раскладывается на простые множители, причем единственным способом (с точностью до порядка их расположения). Разложив два числа на простые множители, несложно определить, делится одно из них на другое или нет. Но до сих пор бывает трудно выяснить, является ли данное большое число простым, т.е. делится ли оно на какое-либо другое число, кроме себя и единицы.

С разложением чисел на простые множители связан ряд арифметических функций. Укажем некоторые из них. φ(n) - функция Эйлера - количество чисел от 1 до n, взаимно простых с числом n (т.е. не имеющих с n общих множителей, кроме единицы); α(n) количество делителей числа n, т(п)-сумма всех делителей числа n, π(n) - функция Чебышева - количество простых чисел, не превосходящих n. С помощью этих функций выражаются многие свойства натуральных чисел. Теорема Евклида утверждает, что простых чисел бесконечно много. Это означает, что π(n)→∞ при возрастании числа n. Удалось выяснить, как быстро функция π(n) стремится к бесконечности. Оказалось, что примерно так же, как функция

Эта теорема носит название асимптотического закона распределения простых чисел. Она была сформулирована и в существенной части доказана П. Л. Чебышевым (1849), а полностью доказана лишь 50 лет спустя.

Асимптотический закон распределения простых чисел - это результат так называемой аналитической теории чисел, которая широко использует методы математического анализа для исследования теоретико-числовых функций. Обнаруженный во второй половине XIX в. факт связи такого дискретного объекта, как целые числа, с глубокими свойствами функций оказал большое влияние на развитие теории чисел.

Разложение чисел на множители учитывает только структуру множества натуральных чисел, связанную с умножением, наиболее глубокие и трудные задачи теории чисел возникают при сравнении сложения и умножения. К числу таких задач можно отнести, например, проблему Гольдбаха - можно ли всякое четное число представить как сумму двух простых; великую теорему Ферма (см. Ферма великая теорема) - можно ли n-ю степень числа представить как сумму n-х степеней двух каких-либо чисел и т.п.

Теория чисел привлекательна тем, что в ней много простых по формулировкам, но трудных и интересных задач. Этих задач-решенных и нерешенных - накопилось очень много, и часто теория чисел представляется собранием разрозненных изящных головоломок. Однако это не так. Теория чисел создала свои замечательные методы, причем многие из них активно развиваются в последние десятилетия, что влило новую живую струю в эту самую древнюю часть математики.

Классическим методом теории чисел является метод сравнений. Отождествляя между собой числа, дающие одинаковые остатки при делении на выбранное число, часто удается установить невозможность какого-либо соотношения. Например, рассматривая остатки от деления на 3 (или, как говорят, по модулю 3), легко доказать неразрешимость в натуральных числах уравнения Зх 2 + 4у 2 = 5z 2 .

Аналитический метод состоит, как мы уже говорили, в том, что, отправляясь от чисел, строят функции, которые исследуют методами математического анализа. Так, советский ученый академик И. М. Виноградов доказал вариант проблемы Гольдбаха - представимость достаточно большого нечетного числа в виде суммы трех простых.

Геометрический метод теории чисел мы проиллюстрируем на примере великой теоремы Ферма. В этой теореме идет речь о разрешимости в целых числах уравнения х n + у n = z n . Поделив обе части уравнения на z n и заменив x/z на м, a y/z на v, получим уравнение u n + v n = 1. Это уравнение задает на плоскости с координатами (u, v) некоторую кривую. Решения исходного уравнения в целых числах соответствуют решениям нового уравнения в рациональных числах. О каждом таком решении (u, v) можно говорить как о точке с рациональными координатами на этой плоскости. Теперь можем попытаться применить геометрические методы к кривой u n + v n = 1 для исследования на ней множества точек с рациональными координатами.

Большой раздел теории чисел, занимающийся нахождением решений уравнений в целых и рациональных числах, носит название теории диофантовых уравнений, по имени древнегреческого ученого Диофанта (III в.).

К числу очень старых и известных задач теории чисел относится задача представления чисел суммами квадратов. Перечислим некоторые из полученных результатов:

каждое целое число можно представить как сумму четырех квадратов целых чисел (например: 7 = 2 2 + 1 2 + 1 2 + 1 2);

каждое простое число вида 4n + 1 можно представить в виде суммы двух квадратов целых чисел (например: 5 = 2 2 + 1 2 , 41 = 4 2 + 5 2 и т. п.), а ни одно целое (не только простое) число вида 4n + 3 нельзя представить в таком виде;

каждое простое число, кроме чисел вида 8n - 1, можно представить в виде суммы трех квадратов целых чисел.

Простое алгебраическое тождество

(а 2 + b 2) (х 2 + у 2) = (ах + by) 2 + (ay - bx) 2

позволяет сделать вывод: если два числа представимы суммами двух квадратов, то и их произведение представимо суммой двух квадратов. Алгебраические методы в последнее время широко применяются в теории чисел. Этому способствовало развитие такого общего алгебраического понятия, как поле, само появление которого во многом стимулировалось задачами теории чисел.

Чем особенно ценна теория чисел? Ведь найти непосредственное применение ее результатам трудно. Тем не менее задачи теории чисел привлекают как пытливых молодых людей, так и ученых в течение многих столетий. В чем же здесь дело? Прежде всего эти задачи, как уже говорилось, очень интересны и красивы. Во все времена человека поражало, что на простые вопросы о числах так трудно найти ответ. Поиски этих ответов часто приводили к открытиям, значение которых далеко превосходит рамки теории чисел. Достаточно упомянуть о так называемой теории идеалов немецкого математика XIX в. Э. Куммера, которая родилась в связи с попытками доказать великую теорему Ферма.