За что отвечает гиппокамп у человека. Эмоциональная и декларативная память. Транзиторная эпилептическая амнезия

Склероз гиппокампа [СГ] и мезиальный темпоральный склероз (МТС) - являются наиболее распространенными гистопатологическими аномалиями, обнаруженными у взрослых больных с фармакорезистентной формой височной эпилепсии (мезиальная височная эпилепсия является самой трудно поддающейся лечению формой эпилепсии у взрослых и у детей старше 12 лет).

СГ - потеря более 30% клеток в CA1 и CA3 областях гиппокампа с относительным утолщением CA2 области. Термин «МТС» отражает то обстоятельство, что наряду с гиппокампом атрофические и глиотические изменения наблюдаются в амигдале и крючке (см. рисунок).

СГ имеет две принципиальные патологические характеристики: [1 ] резкое снижение числа нейронов, [2 ] гипервозбудимость оставшейся нервной ткани. Одну из ключевых ролей в эпилептогенезе при СГ играет спрутинг мшистых волокон: аномальные аксоны гранулярных клеток вместо иннервации гиппокампа (аммонова рога - cornu Ammonis) реиннервируют молекулярные нейроны зубчатой извилины через возбуждающие синапсы, создавая таким образом локальные электрические цепи, способные к синхронизации и генерации эпиприступа. Увеличение количества астроцитов, глиоз также могут играть роль в эпилептогенезе, так как измененные астроциты не могут в достаточной мере осуществлять обратный захват глутамата и калия.

У пациентов с височной эпилепсией (вследствие СГ/МТС) часто в анамнезе присутствует указание на перенесенную в детстве (как правило, до 5 лет) острую патологию ЦНС (преципитирующие повреждения): статус фебрильных судорог, нейроинфекцию, черепно- мозговую травму. Стереотипные приступы начинаются в период от 6 до 16 лет, при этом может иметь место так называемый латентный период, который приходится на время между начальным преципитирующим повреждением и развитием первого эпилептического приступа. Также нередки ситуации, когда между первым приступом и развитием фармако-резистентности длится так называемый «молчащий» период. Такая особенность течения заболевания указывает на его прогрессирующий характер. Также к СГ могут приводить: острые нарушения кровообращения в бассейне конечных и боковых ветвей задней мозговой артерии (которые вызывают базальную ишемию височной доли, гибель нейронов, глиоз и атрофия) и нарушение развития височной доли во время эмбриогенеза. Не менее актуальных проблема, получившая название двойной патологии, которая впервые описана M.L. Levesque и соавт. (1991) - сочетание экстра-гиппокампальных поражений (как височных, так и экстратемпоральных) со СГ. Частота встречаемости данной патологии высока: от 8% при опухолях до 70% при кортикальных дисплазиях.

СГ часто определяется у пациентов со сложными парциальными приступами (другими вариантами являются вторично генерализованные приступы). Говоря о клинической картине приступа при височной эпилепсии, связанной с СГ, необходимо помнить, что [1 ] каждый из симптомов в отдельности не является специфичным, хотя и существует типичная закономерность протекания приступа; [2 ] симптомы во время приступа появляются при распространении эпилептической активности в отделы мозга, связанные с гиппокампом, который сам по себе не дает клинических проявлений (сама по себе скальповая ЭЭГ не выявляет эпиактивность в гиппокампе, что было продемонстрировано в многочисленных исследованиях с применением внутримозговых электродов; для появления эпиактивности в височном регионе на скальповой ЭЭГ требуется ее распространение из гиппокампа на прилежащую кору височной доли).

Мезиальная височная эпилепсия имеет 3 пика возрастного дебюта - в 6, 15 и, реже, в 27 лет. Характерным началом височного приступа является аура в виде восходящего ощущения в животе (связано с возбуждением островка). Также возможен страх или тревога при вовлечении в начале приступа амигдалы. В начале приступа может отмечаться ощущение «уже виденного» (déjà vu, связано с возбуждением энторинальной коры). Настораживающей в плане диагностики является аура в виде головокружения или шума, что может говорить об экстрагиппокампальном начале приступа. Сохранная способность называть предметы и говорить во время приступа является важным латерализующим признаком поражения недоминантного полушария. Изменение сознания сопровождается остановкой действий, при этом пациент имеет застывший взгляд с широко открытыми глазами (таращение - starring). За аурой и остановкой действий следуют ороалиментарные автоматизмы с жеванием, чмоканьем губами (связаны с возбуждением островка и лобного оперкулума). Также нередко возникает дистония контра-латеральной стороны склерозированного гиппокампа руки (что связано с распространением эпиактивности в базальные ганглии) и появляющиеся при этом мануальные автоматизмы в виде перебирания предметов пальцами ипсилатеральной руки. Среди латерализующих симптомов важное значение имеют постиктальный парез, который указывает на вовлечение контралатерального полушария, и постиктальная афазия при поражении доминантного полушария. Указанные симптомы должны рассматриваться в контексте данных ЭЭГ. Характерным когнитивным дефицитом при СГ может быть снижение памяти, особенно при неконтролируемых приступах.

Диагностика эпилепсии, обусловленной СГ, базируется на трех основных принципах:

[1 ] детальный анализ последовательности симптомов в эпилептическом приступе, или семиологии, которая зависит от того, в какие участки мозга распространяется эпилептическая активность (см. выше);

[2 ] анализ данных ЭЭГ и сопоставление их с семиологией приступа; эпилептическая активность на ЭЭГ при мезиальной височной эпилепсии (МВЭ) может отсутствовать или могут регистрироваться только косвенные условно-эпилептиформные элементы (ритмическая медленноволновая [дельта-тета] активность); исследование биоэлектрической активности головного мозга при ЭЭГ-мониторинге сна значительно увеличивает вероятность диагностики патологической эпилептиформной активности (регионарная спайк-волновая активность); однако, для правильной интерпретации ЭЭГ сна при МВЭ необходим высококвалифицированный невролог-эпилептолог, который сможет оценить комплекс клинических и ЭЭГ симптомов и установить правильный диагноз; точная диагностика МВЭ возможна при применении интрацеребральных, субдуральных и интрацистернальных (имплантируемых через овальное отверстие) электродов.

[3 ] выявление эпилептогенного поражения при МРТ (должна выполняться по эпилептологическому протоколу, среди основных характеристик которого можно выделить небольшую толщину срезов и высокую силу магнитного поля): уменьшение объема гиппокампа и нарушение структуры его слоев, гиперинтенсивный сигнал в режиме Т2 и FLAIR; нередко выявляются атрофические изменения в ипсилатеральных амигдале, полюсе височной доли, форниксе, мамиллярном теле.

Стандартом оказания медицинской помощи больным с фармакорезистентной МВЭ является направление пациента в специализированный центр для предхирургического обследования и оперативного лечения. Хирургия при височной эпилепсии преследует две очевидные цели: [1 ] избавление пациента от приступов; [2 ] отмена лекарственной терапии или уменьшение дозы препарата. В задачу хирургического лечения височной эпилепсии входит полное удаление эпилептогенной коры головного мозга с максимальным сохранением функциональных участков мозга и минимизацией нейропсихологического дефицита. В этом отношении существует два хирургических подхода: височная лобэктомия и селективная амигдалогиппокампэктомия. удаление крючка, амигдалы и гиппокампа. Хирургия височной эпилепсии при СГ при достаточном опыте хирурга имеет минимальные риски неврологического дефицита (стойкий гемипарез, полная гемианопсия).

Литература :

статья «Склероз гиппокампа: патогенез, клиника, диагностика, лечение» Д.Н. Копачев, Л.В. Шишкина, В.Г. Быченко, А.М. Шкатова, А.Л. Головтеев, А.А. Троицкий, О.А. Гриненко; ФГАУ «НИИ нейрохирургии им. акад. Н.Н. Бурденко» Минздрава России, Москва, Россия; ФГБУ «Научный центр акушерства, гинекологии и перинатологии им. акад. В.И. Кулакова» Минздрава России, Москва, Россия (журнал «Вопросы нейро-хирургии» №4, 2016) [читать ];

статья «Мезиальный височный склероз. Современное состояние проблемы» Федин А.И., Алиханов А.А., Генералов В.О.; Российский государственный медицинский университет, Москва (журнал «Альманах клинической медицины» №13, 2006) [читать ];

статья «Гистологическая классификация мезиального темпорального склероза» Дмитренко Д.В., Строганова М.А., Шнайдер Н.А., Мартынова Г.П., Газенкампф К.А., Дюжакова А.В., Панина Ю.С.; ГБОУ ВПО «Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого» Минздрава России, Красноярск (журнал «Неврология, нейропсихиатрия, психосоматика» №8(2), 2016) [читать ];

статья «Фебрильные приступы как триггер мезиального височного склероза: клинический случай» Н.А. Шнайдер, Г.П. Мартынова, М.А. Строганова, А.В. Дюжакова, Д.В. Дмитренко, Е.А.Шаповалова, Ю.С. Панина; ГБОУ ВПО Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого МЗ РФ, Университетская клиника (журнал «Проблемы женского здоровья» № 1, 2015 [читать ];

статья «Возможности магнитно-резонансной томографии в оценке структурных изменений головного мозга у пациентов с височной эпилепсией» Анна А. Тотолян, Т.Н. Трофимова; ООО «НМЦ-Томография» Российско-финская клиника «Скандинавия», г. Санкт-Петербург (журнал «Российский электронный журнал лучевой диагностики» №1, 2011) [читать ];

статья «Хирургическое лечение симптоматической височной эпилепсии» А.Ю. Степаненко, Кафедра неврологии и нейро-хирургии РГМУ, городская клиническая больница № 12 Департамента здравоохранения г. Москвы (журнал «Нейрохирургия» №2, 2012) [читать ]


© Laesus De Liro


Уважаемые авторы научных материалов, которые я использую в своих сообщениях! Если Вы усматривайте в этом нарушение «Закона РФ об авторском праве» или желаете видеть изложение Вашего материала в ином виде (или в ином контексте), то в этом случае напишите мне (на почтовый адрес: [email protected] ) и я немедленно устраню все нарушения и неточности. Но поскольку мой блог не имеет никакой коммерческой цели (и основы) [лично для меня], а несет сугубо образовательную цель (и, как правило, всегда имеет активную ссылку на автора и его научный труд), поэтому я был бы благодарен Вам за шанс сделать некоторые исключения для моих сообщений (вопреки имеющимся правовым нормам). С уважением, Laesus De Liro.

Posts from This Journal by “эпилепсия” Tag


  • Транзиторная эпилептическая амнезия

    Актуальность. Транзиторная эпилептическая амнезия - редкое, но излечимое нарушение памяти, которое обычно развивается у пожилых людей и может…


  • Эпилептические приступы после нейрохирургических операций

    Симптоматическая (в новой классификации эпилепсий 2017 - структурная) эпилепсия (повторные непровоцируемые приступы, связанные с эпилептогенным…

  • Кавернозная мальформация головного мозга

Является областью в головном мозге человека , которая отвечает прежде всего за память, является частью лимбической системы, связан также с регуляцией эмоциональных ответов. Гиппокамп по форме напоминает морского конька, располагается во внутренней части височной области мозга. Гиппокамп является главным из отделов мозга по хранению долгосрочной информации. Считается также, что гиппокамп отвечает за пространственную ориентацию.

В гиппокампе присутствует два основных вида активности: тета-режим и большая нерегулярная активность (БНА). Тета-режимы проявляются в основном в состоянии активности, а также в период быстрого сна. При тета-режимах электроэнцефалограмма показывает наличие больших волн с диапазоном частот от 6 до 9 Герц . При этом основная группа нейронов показывает разреженную активность, т.е. в короткие промежутки времени большинство клеток неактивны, в то время, как небольшая часть нейронов проявляет повышенную активность. В данном режиме активная клетка обладает такой активностью от полу секунды до нескольких секунд.

БНА-режимы имеют место быть в период длинного сна, а также в период спокойного бодрствования (отдых, прием пищи).

Строение гиппокампа

У человека два гиппокампа — по одному на каждой стороне мозга. Оба гиппокампа связаны между собой комиссуральными нервными волокнами. Гиппокамп состоит из плотно уложенных клеток в ленточную структуру, которая тянется вдоль медиальной стенки нижнего рога бокового желудочка мозга в переднезаднем направлении. Основная масса нервных клеток гиппокампа это пирамидные нейроны и полиморфные клетки. В зубчатой извилине основной тип клеток это зернистые клетки. Кроме клеток указанных типов в гиппокампе присутствуют ГАМКергические вставочные нейроны, которые неимение отношение к какому-либо клеточному слою. Эти клетки содержат различные нейропептиды, кальций связывающий белок и конечно же нейромедиатор ГАМК.

Строение гиппокампа

Гиппокамп располагается под корой головного мозга и состоит из двух частей: зубчатая извилина и Аммонов рог . С анатомической стороны, гиппокамп является развитием коры головного мозга. Структуры, выстилающие границу коры мозга входят в лимбической систему. Гиппокамп анатомически связан с отделами головного мозга, отвечающими за эмоциональное поведение. Гиппокамп содержит четыре основные зоны: CA1, CA2, CA3, CA4.

Энторинальная кора, расположенная в парагиппокампальной извилине считается частью гиппокампа, благодаря своим анатомическим соединениям. Энторинальная кора тщательно взаимно связана с другими отделами головного мозга. Также известно, что медиальное септальное ядро, передний ядерный комплекс, объединяющее ядро таламуса, супрамаммилярное ядро гипоталамуса, ядра шва и голубое пятно в стволе головного мозга направляют аксоны в энторинальную кору. Основной выходящий путь аксонов энторинальной коры исходит из больших пирамидальных клеток слоя II, который как бы перфорирует субикулум и плотно выдаётся в зернистые клетки в зубчатой извилине, верхние дендриты CA3 получают менее плотные проекции, а апикальные дендриты CA1 получают еще более редкую проекцию. Таким образом, проводящий путь использует энторинальную кору в качестве основного связующего элемента между гиппокампом и другими частями коры головного мозга.

Зубчатых зернистых клеток передают информацию из энторинальной коры на иглистых волосках, выходящих из проксимального апикального дендрита CA3 пирамидальных клеток. После чего аксоны CA3 выходят из глубокой части клеточного тела и образуют петли вверх — туда, где находятся апикальные дендриты, затем весь путь тянется назад в глубокие слои энторинальной коры в коллатерали Шаффера, завершая взаимное замыкание. Зона CA1 также посылает аксоны обратно в энторинальную кору, но в данном случае они более редкие, чем выходы CA3.

Следует отметить, что поток информации в гиппокампе из энторинальной коры значительно однонаправленный с сигналами которые распространяются через несколько плотной уложенных слой клеток, сначала к зубчатой извилине, после чего к слою CA3, затем к слою CA1, далее к субикулуму и после этого из гиппокампа к энторинальной коре, в основном обеспечивая пролегание CA3 аксонов. Каждый этот слой имеет сложную внутреннюю схему и обширные продольные соединения. Очень важный большой выходящий путь идёт в латеральную септальную зону и в маммилярное тело гипоталамуса.

Гиппокамп получает модулирующие входящие пути серотонина, дофамина и норадреналина, а также от ядер таламуса в слое CA1. Очень важная проекция идёт от медиальной септальной зоны, посылающая холинергические и габаергические волокна всем частям гиппокампа. Входы от септальной зоны имеют важнейшее значение в контроле физиологического состояния гиппокампа. Травмы и нарушения в этой зоне могут полностью прекратить тета-ритмы гиппокампа и создать серьёзные проблемы с памятью.

Также в гиппокампе существуют другие соединения, которые играют очень важную роль в его функциях . На некотором расстоянии от выхода в энторинальную кору располагаются другие выходы, идущие в другие корковые области, в том числе и в префронтальную кору. Кортикальная область, прилегающая к гиппокампу носит название парагиппокампальной извилины или парагиппокамп. Парагиппокамп включает в себя энторинальную кору, перирхинальную кору, получившую своё название благодаря близкому расположению с обонятельной извилиной. Перирхинальная кора отвечает за визуальное распознавание сложных объектов. Существуют доказательства того, что парагиппокамп выполняет отдельную от самого гиппокампа функцию по запоминанию, так как только повреждение обоих гиппокампов и парагиппокампа приводит к полной потери памяти.

Функции гиппокампа

Самые первые теории о роли гиппокампа в жизни человека заключались в том, что он отвечает за обоняние. Но проведенные анатомические исследования поставили эту теорию под сомнение. Дело в том, что исследования не нашли прямой связи гиппокампа с обонятельной луковицей. Но все же дальнейшие исследования показали, что обонятельная луковица имеет некоторые проекции в вентральную часть энторинальной коры, а слой CA1 в вентральной части гиппокампа посылает аксоны в основную обонятельную луковицу, переднее обонятельное ядро и в первичную обонятельную кору мозга. По прежнему не исключается определенная роль гиппокампа в обонятельных реакциях , а именно в запоминании запахов, но многие специалисты продолжают считать, что основная роль гиппокампа это обонятельная функция.

Следующая теория, которая на данный момент является основной говорит о том, что основная функция гиппокампа это формирование памяти . Эта теория многократно была доказана в ходе различных наблюдений за людьми, которые были подвержены хирургическому вмешательству в гиппокамп, либо стали жертвами несчастных случаев или болезней, так или иначе затронувших гиппокамп. Во всех случаях наблюдалась стойкая потеря памяти. Известный пример этому — пациент Генри Молисон, которому была проведена операция по удалению части гиппокампа с целью избавления от эпилептических припадков. После этой операции Генри стал страдать ретроградной амнезией. Он просто перестал запоминать события, происходящие после операции, но отлично помнил свое детство и все, что происходило до операции.

Нейробиологи и психологи единогласно соглашаются с тем, что гиппокамп играет важную роль в формировании новых воспоминаний (эпизодическая или автобиографическая память). Некоторые исследователи расценивают гиппокамп как часть системы памяти височной доли, ответственной за общую декларативную память (воспоминания, которые могут быть явно выражены словами - включающие например, память для фактов в дополнении к эпизодической памяти). У каждого человека гиппокамп имеет двойную структуру — он расположен в обоих полушариях мозга . При повреждении например, гиппокампа в одном полушарии, мозг может сохранять почти нормальную функцию памяти.

Но при повреждении обоих частей гиппокампа возникают серьезные проблемы с новыми запоминаниями. При это более старые события человек прекрасно помнит, что говорит о том, что со временем часть памяти переходит из гиппокампа в другие отделы мозга. Следует при этом отметить, что повреждение гиппокампа не приводит к утрачиванию возможностей к осваиванию некоторых навыков, например игра на музыкальном инструменте. Это говорит о том, что такая память зависит от других отделов мозга, а не только от гиппокампа.

Проведенные многолетние исследования кроме того показали, что гиппокамп играет важную роль в пространственной ориентации . Так известно, что в гиппокампе есть области нейронов, под названием пространственные нейроны, которые чувствительны к определенным пространственным местам. Гиппокамп обеспечивает пространственную ориентацию и запоминание определенных мест в пространстве.

Патологии гиппокампа

Не только такие возрастные патологии, как (для которых разрушение гиппокампа является одним из ранних признаков заболевания) оказывают серьезное воздействие на многие виды восприятия, но даже обычное старение связано с постепенным снижением некоторых видов памяти, в том числе эпизодической и краткосрочной памяти. Так как гиппокамп играет важную роль в формировании памяти, ученые связывают возрастные расстройства памяти с физическим ухудшением состояния гиппокампа . Первоначальные исследования обнаруживали значительную потерю нейронов в гиппокампе у пожилых людей, но новые исследования показали, что такие потери минимальны. Другие исследования показывали, что у пожилых людей происходит значительное уменьшение гиппокампа, но вновь проведенные аналогичные исследования такой тенденции не нашли.

Особенно хронический, может приводить к атрофии некоторых дендритов в гиппокампе. Это связано с тем, что в гиппокампе содержится большое количество глюкокортикоидных рецепторов . Из-за постоянного стресса стероиды, обусловленные им влияют на гиппокамп несколькими способами: снижают возбудимость отдельных нейронов гиппокампа, ингибируют процесс нейрогенеза в зубчатой извилине и вызывают атрофию дендритов в пирамидальных клетках зоны CA3. Проведенные исследования показали, что у людей, которые переживали длительный стресс атрофия гиппокампа была значительно выше других областей мозга . Такие негативные процессы могут приводить к депрессии и даже к шизофрении . Атрофия гиппокампа наблюдалась у пациентов с синдромом Кушинга (высокий уровень кортизола в крови).

Эпилепсия часто связывается с гиппокампом. При эпилептических припадках часто наблюдается склероз отдельных областей гиппокампа.

Шизофрения наблюдается у людей с аномально маленьким гиппокампом . Но до настоящего времени точная связь шизофрении с гиппокампом не установлена. В результате внезапного застоя крови в областях мозга может возникать острая амнезия, вызванная ишемией в структурах гиппокампа .

Материалы по теме:

Влияние чувств на физиологию здоровья человека

Влияние чувств на физиологию здоровья человека Каждый человек имеет совершенство сопереживаний, которыми определяется чистота отношений с формой жизни планеты, иначе говоря, происходит проявление чувствами сопереживаний...

Что такое солнечная вспышка и ее влияние на человека?

Что такое солнечная вспышка и ее влияние на человека? Солнечная вспышка - это магнитная буря на Солнце, которая выглядит как очень яркое пятно и...

Раскройте свою истинную сущность и полностью доверяйте своей интуиции!

Раскройте свою истинную сущность и полностью доверяйте своей интуиции! Все Работники Света и те, кто стремится достичь Вознесения, должны следовать голосу своей интуиции. Следует знать, ...

20 жизненных точных законов о работе мозга от Натальи Грэйс

20 жизненных точных законов о работе мозга от Натальи Грэйс Наталья Грэйс – талантливый психолог и бизнес-тренер из Санкт-Петербурга, в своей книге «Законы Грэйс» сформулировала...

Перестаньте искать себя и начните притворяться. Китайские философы научат вас хорошей жизни!

Наиболее полифункциональными образованиями лимбической системы являются гиппокамп и миндалевидные тела. Физиология этих структур наиболее изучена.

Гиппокамп

Гиппокамп (hippocampus) расположен в глубине височных долей мозга и является основной структурой лимбической системы. Мор­фологически гиппокамп представлен стереотипно повторяющимися модулями, связанными между собой и с другими структурами.

Модульное строение обусловливает способность гиппокампа ге­нерировать высокоамплитудную ритмическую активность. Связь мо­дулей создает условие циркулирования активности в гиппокампе при обучении. При этом возрастает амплитуда синаптических по­тенциалов, увеличиваются нейросекреция клеток гиппокампа, число шипиков на дендритах его нейронов, что свидетельствует о переходе потенциальных синапсов в активные. Многочисленные связи гип­покампа со структурами как лимбической системы, так и других отделов мозга определяют его многофункциональность.

Выраженными и специфическими являются электрические про­цессы в гиппокампе. Активность здесь чаще всего характеризуется быстрыми бета-ритмами (14-30 в секунду) и медленными тета-ритмами (4-7 в секунду).

Если с помощью фармакологических методов в новой коре ос­лабить десинхронизацию на новое раздражение, то в гиппокампе затрудняется возникновение тета-ритма. Раздражение ретикулярной формации ствола мозга усиливает выраженность тета-ритма в гип­покампе и высокочастотных ритмов в новой коре.

Значение тета-ритма заключается в том, что он отражает реак­цию гиппокампа, а тем самым - его участие в ориентировочном рефлексе, реакциях настороженности, повышения внимания, в ди­намике обучения. Тета-ритм в гиппокампе наблюдается при высоком уровне эмоционального напряжения - страхе, агрессии, голоде, жажде. Вызванная активность в гиппокампе возникает на раздра­жение различных рецепторов и любой из структур лимбической системы. Разносенсорные проекционные зоны в гиппокампе пере­крываются. Это обусловлено тем, что большинство нейронов гиппокампа характеризуется полисенсорностью, т. е. способностью ре­агировать на световые, звуковые и другие виды раздражений.

Нейроны гиппокампа отличаются выраженной фоновой актив­ностью. В ответ на сенсорное раздражение реагирует до 60% ней­ронов гиппокампа. Особенность строения гиппокампа, взаимосвя­занные модули обусловливают цикл генерирования возбуждения в нем, что выражается в длительной реакции (до 12 с) нейронов на однократный короткий стимул.

Повреждение гиппокампа у человека нарушает память на собы­тия, близкие к моменту повреждения (ретроантероградная амнезия). Нарушаются запоминание, обработка новой информации, различие пространственных сигналов. Повреждение гиппокампа ведет к сни­жению эмоциональности, инициативности, замедлению скорости ос­новных нервных процессов, повышаются пороги вызова эмоциональ­ных реакций.


Миндалевидное тело

Миндалевидное тело (corpus amygdoloideum), миндалина - подкорковая структура лимбической системы, расположенная в глубине височной доли мозга. Нейроны миндалины разнообразны по форме, функциям и нейрохимическим процессам в них. Функции минда­лины связаны с обеспечением оборонительного поведения, вегета­тивными, двигательными, эмоциональными реакциями, мотивацией условнорефлекторного поведения.

Электрическая активность миндалин характеризуется разноамплитудными и разночастотными колебаниями. Фоновые ритмы могут коррелировать с ритмом дыхания, сердечных сокращений.

Миндалины реагируют многими своими ядрами на зрительные, слуховые, интероцептивные, обонятельные, кожные раздражения, причем все эти раздражения вызывают изменение активности любого из ядер миндалины, т. е. ядра миндалины полисенсорны. Реакция ядра на внешние раздражения длится, как правило, до 85 мс, т. е. значительно меньше, чем реакция на подобные же раздражения новой коры.

Нейроны имеют хорошо выраженную спонтанную активность, которая может быть усилена или заторможена сенсорными раздра­жениями. Многие нейроны полимодальны и полисенсорны и акти­вируются синхронно с тета-ритмом.

Раздражение ядер миндалевидного тела создает выраженный парасимпатический эффект на деятельность сердечно-сосудистой, дыхательной систем, приводит к понижению (редко к повышению) кровяного давления, урежению сердечного ритма, нарушению про­ведения возбуждения по проводящей системе сердца, возникновению аритмий и экстрасистолий. При этом сосудистый тонус может не изменяться.

Урежение ритма сокращений сердца при воздействии на минда­лины отличается длительным скрытым периодом и имеет длительное последействие.

Раздражение ядер миндалины вызывает угнетение дыхания, иног­да кашлевую реакцию.

При искусственной активации миндалины появляются реакции принюхивания, облизывания, жевания, глотания, саливации, изме­нения перистальтики тонкой кишки, причем эффекты наступают с большим латентным периодом (до 30-45 с после раздражения). Стимуляция миндалин на фоне активных сокращений желудка или кишечника тормозит эти сокращения.

Разнообразные эффекты раздражения миндалин обусловлены их связью с гипоталамусом, который регулирует работу внутренних органов.

Повреждение миндалины у животных снижает адекватную под­готовку автономной нервной системы к организации и реализации поведенческих реакций, приводит к гиперсексуальности, исчезно­вению страха, успокоению, неспособности к ярости и агрессии. Животные становятся доверчивыми. Например, обезьяны с повреж­денной миндалиной спокойно подходят к гадюке, вызывавшей ранее у них ужас, бегство. Видимо, в случае повреждения миндалины исчезают некоторые врожденные безусловные рефлексы, реализую­щие память об опасности.

Гипоталамус

Гипоталамус (hypothalamus, подбугорье) - структура промежуточного мозга, входящая в лимбическую систему, организующая эмоциональные, поведенческие, гомеостатические реакции организ­ма.

Морфофункциональная организация. Гипоталамус имеет боль­шое число нервных связей с корой большого мозга, подкорковыми узлами, зрительным бугром, средним мозгом, мостом, продолговатым и спинным мозгом.

В состав гипоталамуса входят серый бугор, воронка с нейрогипофизом и сосцевидные тела. Морфологически в нейронных структурах гипоталамуса можно выделить около 50 пар ядер, имеющих свою спе­цифическую функцию. Топографически эти ядра можно объединить в 5 групп: 1) преоптическая группа имеет выраженные связи с конеч­ным мозгом и делится на медиальное и латеральное предоптические ядра; 2) передняя группа, в состав которой входят супраоптическое, паравентрикулярные ядра; 3) средняя группа состоит из нижнемедиального и верхнемедиального ядер; 4) наружная группа включает в себя латеральное гипоталамическое поле и серобугорные ядра; 5) за­дняя группа сформирована из медиальных и латеральных ядер сосце­видных тел и заднего гипоталамического ядра.

Ядра гипоталамуса имеют мощное кровоснабжение, подтвержде­нием чему служит тот факт, что ряд ядер гипоталамуса обладает изолированным дублирующим кровоснабжением из сосудов артери­ального круга большого мозга (виллизиев круг). На 1 мм2 площади гипоталамуса приходится до 2600 капилляров, в то время как на той же площади V слоя предцентральной извилины (моторной коры) их 440, в гиппокампе - 350, в бледном шаре - 550, в затылочной доле коры большого мозга (зрительной коре) - 900. Капилляры гипоталамуса высокопроницаемы для крупномолекулярных белко­вых соединений, к которым относятся нуклеопротеиды, что объясняет высокую чувствительность гипоталамуса к нейровирусным инфек­циям, интоксикациям, гуморальным сдвигам.

У человека гипоталамус окончательно созревает к возрасту 13- 14 лет, когда заканчивается формирование гипоталамо-гипофизарных нейросекреторных связей. За счет мощных афферентных связей с обонятельным мозгом, базальными ганглиями, таламусом, гиппокампом, корой большого мозга гипоталамус получает информацию о состоянии практически всех структур мозга. В то же время ги­поталамус посылает информацию к таламусу, ретикулярной фор­мации, вегетативным центрам ствола мозга и спинного мозга.

Нейроны гипоталамуса имеют особенности, которые и определяют специфику функций самого гипоталамуса. К этим особенностям относятся чувствительность нейронов к составу омывающей их кро­ви, отсутствие гематоэнцефалического барьера между нейронами и кровью, способность нейронов к нейросекреции пептидов, нейромедиаторов и др.

Роль гипоталамуса в регуляции вегетативных функций. Влияние на симпатическую и парасимпатическую регуляцию позволяет ги­поталамусу воздействовать на вегетативные функции организма гу­моральным и нервным путями.

Раздражение ядер передней группы сопровождается парасимпа­тическими эффектами. Раздражение ядер задней группы вызывает симпатические эффекты в работе органов. Стимуляция ядер средней группы приводит к снижению влияний симпатического отдела ав­тономной нервной системы. Указанное распределение функций ги­поталамуса не абсолютно. Все структуры гипоталамуса способны в разной степени вызывать симпатические и парасимпатические эф­фекты. Следовательно, между структурами гипоталамуса существу­ют функциональные взаимодополняющие, взаимокомпенсирующие отношения.

В целом за счет большого количества связей, полифункционально­сти структур гипоталамус выполняет интегрирующую функцию веге­тативной, соматической и эндокринной регуляции, что проявляется и в организации его ядрами ряда конкретных функций. Так, в гипота­ламусе располагаются центры гомеостаза, теплорегуляции, голода и насыщения, жажды и ее удовлетворения, полового поведения, страха, ярости, регуляции цикла бодрствование-сон. Все эти центры реали­зуют свои функции путем активации или торможеиия автономного (вегетативного) отдела нервной системы, эндокринной системы, структур ствола и переднего мозга. Нейроны ядер передней группы гипоталамуса продуцируют вазопрессин, или антидиуретический гор­мон (АДГ), окситоцин и другие пептиды, которые по аксонам попада­ют в заднюю долю гипофиза - нейрогипофиз.

Нейроны ядер срединной группы гипоталамуса продуцируют так называемые рилизинг-факторы (либерины) и ингибирующие факторы (статины), которые регулируют активность передней доли гипофиза - аденогипофиз. В нем образуются такие вещества, как соматотропный, тиреотропный и другие гормоны (см. раздел 5.2.2). Наличие такого набора пептидов в структурах гипоталамуса свиде­тельствует о присущей им нейросекреторной функции.

Они также обладают детектирующей функцией: реагируют на изменения температуры крови, электролитного состава и осмотиче­ского давления плазмы, количества и состав гормонов крови.

Олдс (Olds) описал поведение крыс, которым вживляли электроды в ядра гипоталамуса и давали возможность самостоятельно стимули­ровать эти ядра. Оказалось, что стимуляция некоторых ядер приводи­ла к негативной реакции. Животные после однократной самостимуля­ции больше не подходили к педали, замыкающей стимулирующий ток. При самостимуляции других ядер животные нажимали на педаль часами, не обращая внимания на пищу, воду и др.

Исследования Дельгадо (Delgado) во время хирургических опе­раций показали, что у человека раздражение аналогичных участков вызывало эйфорию, эротические переживания. В клинике показано также, что патологические процессы в гипоталамусе могут сопро­вождаться ускорением полового созревания, нарушением менстру­ального цикла, половой функции.

Раздражение передних отделов гипоталамуса может вызывать у животных пассивно-оборонительную реакцию, ярость страх, а раздражение заднего гипоталамуса вызывает активную агрессию.

Раздражение заднего гипоталамуса приводит к экзофтальму, расширению зрачков, повышению кровяного давления, сужению про­света артериальных сосудов, сокращениям желчного, мочевого пу­зырей. Могут возникать взрывы ярости с описанными симпатиче­скими проявлениями. Уколы в области гипоталамуса вызывают глюкозурию, полиурию. В ряде случаев раздражение вызывало на­рушение теплорегуляции: животные становились пойкилотермными, у них не возникало лихорадочное состояние.

Гипоталамус является также центром регуляции цикла бодрство­вание - сон. При этом задний гипоталамус активизирует бодрствова­ние, стимуляция переднего вызывает сон. Повреждение заднего гипо­таламуса может вызвать так называемый летаргический сон.

Особое место в функциях гипоталамуса занимает регуляция деятельности гипофиза.

В гипоталамусе и гипофизе образуются также нейрорегуляторные пептиды - энкефалины, эндорфины, обладающие морфиноподобным действием и способствующие снижению стресса и т. д.


Гиппокамп располагается в медиальной части височной доли. Особое место в системе связей гиппокампа занимает участок новой коры в районе гиппокампа (так называемая энторинальная кора). Этот участок коры получает многочисленные афференты практически от всех областей неокортекса и других отделов головного мозга (миндалины, передних ядер таламуса и др.) и является основным источником афферентов к гиппокампу. Гиппокамп получает также входы от зрительной, обонятельной и слуховой систем. Самой крупной проводящей системой гиппокампа является свод, который связывает гиппокамп с гипоталамусом. Кроме этого, гиппокампы обоих полушарий связаны между собой комиссурой (plasterium).

Модульное строение обусловливает способность гиппокампа генерировать высокоамплитудную ритмическую активность. Связь модулей создает условие циркулирования активности в гиппокампе при обучении. При этом возрастает амплитуда синаптических потенциалов, увеличиваются нейросекреция клеток гиппокампа, число шипиков на дендритах его нейронов, что свидетельствует о переходе потенциальных синапсов в активные. Многочисленные связи гиппокампа со структурами как лимбической системы, так и других отделов мозга определяют его многофункциональность.

Выраженными и специфическими являются электрические процессы в гиппокампе. Активность здесь чаще всего характеризуется быстрыми бета-ритмами (14-30 в секунду) и медленными тета-ритмами (4-7 в секунду).

Если с помощью фармакологических методов в новой коре ослабить десинхронизацию на новое раздражение, то в гиппокампе затрудняется возникновение тета-ритма. Раздражение ретикулярной формации ствола мозга усиливает выраженность тета-ритма в гиппокампе и высокочастотных ритмов в новой коре.

Значение тета-ритма заключается в том, что он отражает реакцию гиппокампа, а тем самым - его участие в ориентировочном рефлексе, реакциях настороженности, повышения внимания, в динамике обучения. Тета-ритм в гиппокампе наблюдается при высоком уровне эмоционального напряжения - страхе, агрессии, голоде, жажде. Вызванная активность в гиппокампе возникает на раздражение различных рецепторов и любой из структур лимбической системы. Разносенсорные проекционные зоны в гиппокампе перекрываются. Это обусловлено тем, что большинство нейронов гиппокампа характеризуется полисенсорностью, т. е. способностью реагировать на световые, звуковые и другие виды раздражений.

Нейроны гиппокампа отличаются выраженной фоновой активностью. В ответ на сенсорное раздражение реагирует до 60% нейронов гиппокампа. Особенность строения гиппокампа, взаимосвязанные модули обусловливают цикл генерирования возбуждения в нем, что выражается в длительной реакции (до 12 с) нейронов на однократный короткий стимул.

Повреждение гиппокампа приводит к характерным нарушениям памяти и способности к обучению. В 1887 г. русский психиатр С. С. Корсаков описал грубые расстройства памяти у больных алкоголизмом (синдром Корсакова). Посмертно у них были обнаружены дегенеративные повреждения гиппокампа. Нарушение памяти проявлялось в том, что больной помнил события отдаленного прошлого, в том числе детства, но не помнил о том, что произошло с ним несколько дней или даже минут тому назад. Например, он не мог запомнить своего лечащего врача: если врач выходил из палаты на 5 мин, больной его не узнавал при повторном посещении.

Обширные повреждения гиппокампа у животных характерным образом нарушают протекание условнорефлекторной деятельности. Например, крысу довольно легко научить находить приманку в 8-лучевом лабиринте (лабиринт представляет собой центральную камеру, от которой радиально отходят 8 коридоров) только в каждом втором или четвертом рукаве. Крыса с поврежденным гиппокампом не обучается этому навыку и продолжает обследовать каждый рукав.

Очередное доказательство тесной связи между сном и работой гиппокампа получил Мэтью Уокер из Гарварда. Он и его коллеги установили, что всего одна ночь без сна может заметно повлиять на работу органа, играющего ключевую роль в процессе закрепления новых знаний в памяти.

10 студентов-добровольцев провели одну ночь без сна, после чего им показали 30 слов, которые испытуемые должны были запомнить. Через два дня экспериментаторы проверили надёжность запоминания. Оказалось, что эти 10 человек запомнили слов в среднем на 40 % меньше, чем контрольная группа из 10 студентов, которые спали как обычно.



Гиппокамп (hippocampus), или аммонов рог,

Гиппокамп (hippocampus ), или аммонов рог , расположен медиобазально в глубине височных долей (см. рис. 44, 12 , 46, 14 ; 48, 3 , 8 ). Он имеет своеобразную изогнутую форму (гиппокамп в переводе – морской конек) и почти на всем своем протяжении образует впячивание в полость нижнего рога бокового желудочка. Гиппокамп является собственно складкой (извилиной) старой коры. С ней сращена и заворачивается над ней зубчатая извилина (рис. 47, 8 ).

Являясь частью старой коры, гиппокамп имеет слоистую структуру. К зубчатой извилине примыкает слой конечных ветвлений апикальных дендритов пирамидных клеток гиппокампа. Здесь они образуют молекулярный слой. На конечных разветвлениях апикальных дендритов и их основаниях оканчиваются различные афферентные волокна. Сами апикальные дендриты образуют следующий – радиальный слой. Далее, в сторону нижнего рога бокового желудочка расположен слой тел пирамидных клеток и их базальных дендритов, затем идет слой полиморфных клеток. Со стенкой бокового желудочка граничит слой белого вещества гиппокампа (alveus ) (см. рис. 46, 19 , 47, 3 ). Он состоит как из аксонов пирамидных нейронов гиппокампа (эфферентные волокна гиппокампа, уходящие в составе бахромки в свод), так и из афферентных волокон, приходящих по своду из перегородки.

Гиппокамп имеет обширные связи со многими другими структурами мозга. Он является центральной структурой лимбической системы мозга.

Лимбической системы мозга (Латинское слово limbus означает кайма, край.)

Латинское слово limbus означает кайма, край. Лимбическая система названа так потому, что корковые структуры, входящие в нее, находятся на краю неокортекса и как бы окаймляют ствол мозга. Лимбическая система включает в себя как определенные зоны коры (архипалеокортикальные и межуточные области), так и подкорковые образования (рис. 48). Из корковых структур это: гиппокамп с зубчатой извилиной (старая кора) (рис. 48, 3 ), поясная извилина (лимбическая кора, являющаяся межуточной) (рис. 48, 7), обонятельная кора, перегородка (древняя кора) (рис. 48, 70; из подкорковых структур: мамиллярное тело гипоталамуса (рис. 48, 7 ), переднее ядро таламуса, миндалевидный комплекс (рис. 48, 6 ).

Кроме многочисленных двусторонних связей между структурами лимбический системы существуют длинные пути в виде замкнутых кругов, по которым осуществляется циркуляция возбуждения. Большой лимбический круг (круг Пейпца) включает в себя: гиппокамп – свод – мамиллярное тело – пучок Вик д"Азира (сосцевидно-таламический пучок) – переднее ядро таламуса – кору поясной извилины – гиппокамп.

Из вышележащих структур наиболее тесные связи лимбическая система имеет с лобной корой. Свои нисходящие пути лимбическая система направляет к ретикулярной формации ствола мозга и к гипоталамусу. Через гипоталамо-гипофизарную систему лимбическая система осуществляет контроль над гуморальной системой.

Для лимбической системы характерна особая чувствительность и особая роль в ее функционировании гормонов, синтезируемых в гипоталамусе и секретируемых гипофизом, – окситоцина и вазопрессина.

Основной, целостной функцией лимбической системы является осуществление эмоционально-мотивационного поведения. Она организует и обеспечивает протекание вегетативных, соматических и психических процессов при эмоционально-мотивационной деятельности. А также осуществляет восприятие и хранение эмоционально значимой информации, выбор и реализацию адаптивных форм эмоционального поведения.

Вместе с тем каждая структура, входящая в лимбическую систему, вносит свой вклад в единый механизм, имея свои функциональные особенности. Так, функции гиппокампа связаны с памятью, обучением, формированием новых программ поведения при изменении условий. Передняя лимбическая кора обеспечивает эмоциональную выразительность речи, перегородка принимает участие в переобучении, снижает агрессивность и страх. Мамиллярные тела играют большую роль в выработке пространственных навыков, миндалевидный комплекс отвечает за пищевое и оборонительное поведение.


Новая кора.

Новая кора. Все области новой коры построены по единому принципу. Исходным типом является шестислойная кора (рис. 49). Слои представлены следующим образом:

♦ I слой – самый поверхностный , толщиной около 0,2 мм, называется молекулярным

I слой – самый поверхностный , толщиной около 0,2 мм, называется молекулярным (lamina molecula ris ). Он состоит из волокон апикальных дендритов и аксонов, поднимающихся от клеток нижних слоев, которые контактируют друг с другом. Нейронов в молекулярном слое незначительное количество. Это мелкие горизонтальные клетки и клетки-зерна. Все отростки клеток молекулярного слоя располагаются в пределах этого же слоя.

♦ II слой – наружный зернистый (lamina granula ns exte rna).

II слой наружный зернистый (lamina granula ns exte rna ). Толщина наружного зернистого слоя – 0,10 мм. Он состоит из мелких пирамидных и звездчатых нейронов. Аксоны этих нейронов оканчиваются на нейронах III, V и VI слоев.

♦ III слой – пирамидный (lamina pyramidalis),

III слой – пирамидный (lamina pyramidalis ), толщиной около 1 мм, состоит из мелких и средних пирамидных клеток. Типичный пирамидный нейрон имеет форму треугольника, вершина которого направлена вверх (рис. 50). От вершины отходит апикальный дендрит, ветвящийся в вышележащих слоях. Аксон пирамидной клетки отходит от основания клетки и направляется вниз. Дендриты клеток III слоя направляются во второй слой. Аксоны клеток III слоя оканчиваются на клетках нижележащих слоев или образуют ассоциативные волокна.

♦ IV слой – внутренний зернистый (lamina granula ns inte rnus).

IV слой внутренний зернистый (lamina granula ns inte rnus ). Он состоит из звездчатых клеток, имеющих короткие отростки, и малых пирамид. Дендриты клеток IV слоя уходят в молекулярный слой коры, а их коллатерали ветвятся в своем слое. Аксоны клеток IV слоя могут подниматься в вышележащие слои или уходить в белое вещество как ассоциативные волокна. Толщина IV слоя от 0,12 до 0,3 мм.

♦ V слой – ганглионарный (lamina gangliona ris)

V слой – ганглионарный (lamina gangliona ris ) – слой больших пирамид. Самые крупные клетки коры расположены именно в этом слое (гигантские пирамиды Беца передней центральной извилины) (см. рис. 49Б). Их апикальные дендриты достигают молекулярного слоя, а базальные дендриты распределяются в своем слое. Аксоны клеток V слоя покидают кору и являются ассоциативными, комиссуральными или проекционными волокнами. Толщина V слоя достигает 0,5 мм.

♦ VI слой коры – полиморфный (lamina multifo rmis).

VI слой коры полиморфный (lamina multifo rmis ). Содержит клетки разнообразной формы и размера, имеет толщину от 0,1 до 0,9 мм. Часть дендритов клеток этого слоя достигает молекулярного слоя, другие же остаются в пределах IV и V слоев. Аксоны клеток VI слоя могут подниматься к верхним слоям или уходить из коры в качестве коротких или длинных ассоциативных волокон (см. рис. 49).

Клетки одного слоя коры выполняют сходную функцию в обработке информации. I и IV слои являются местом ветвления ассоциативных и комиссуральных волокон, т.е. получают информацию от других корковых структур. III и IV слои являются входными, афферентными для проекционных полей, так как именно в этих слоях заканчиваются таламические волокна. V слой клеток выполняет эфферентную функцию, его аксоны несут информацию к нижележащим структурам мозга. VI слой также является выходным, но его аксоны кору не покидают, а являются ассоциативными.

Основным принципом функциональной организации коры является объединение нейронов в колонки. Колонка расположена перпендикулярно поверхности коры и охватывает все ее слои от поверхности к белому веществу. Связи между клетками одной колонки осуществляются по вертикали вдоль оси колонки. Боковые отростки клеток имеют небольшую длину. Связь между колонками соседних зон осуществляется через волокна, уходящие вглубь, а затем входящие в другую зону, т.е. короткие ассоциативные волокна. Функциональная организация коры в виде колонок обнаружена в соматосенсорной, зрительной, моторной и ассоциативной коре.

Отдельные зоны коры имеют принципиально одинаковое клеточное строение, однако есть и отличия, особенно в структуре III, IV и V слоев, которые могут распадаться на несколько подслоев. Кроме этого, существенными цитоархитектоническими признаками являются плотность расположения и размеры клеток, наличие специфических типов нейронов, расположение и направление хода миелиновых волокон (см. рис. 49В).

Цитоархитектонические особенности позволили разделить всю поверхность коры на 11 цитоархитектонических областей , включающих в себя 52 поля (по Бродману). Каждое цитоархитектоническое поле обозначено на картах мозга номером, который присваивался ему в порядке описания. Следует отметить, что между цитоархитектоническими полями не существует резких границ, клеточные слои плавно меняют свою структуру при переходе от одного поля к другому (рис. 51).

Рис. 51. Латеральная поверхность левого полушария (Сильвиева борозда раздвинута): 1 – центральная борозда; 2 – теменная доля; 3 – задняя центральная извилина (соматосенсорная кора); 4 – ассоциативные зрительные зоны; 5 – латеральная (Сильвиева) борозда; 6 – первичное зрительное поле (участок зрительного восприятия); 7 – вторичное зрительное поле; 8 – первичный слуховой центр; 9 – вторичный слуховой центр с речевым центром Вернике; 10 – ассоциативные слуховые зоны; 11 – височная доля; 12 – островок (находится в глубине Сильвиевой борозды); 13 – двигательный речевой центр (центр Брока) – при праворукости находится только в левом полушарии; 14 – лобная доля мозга; 15 – прецентральная извилина (двигательные зоны)

Каждое поле коры выполняет определенную функцию. Часть полей коры являются сенсорными. В первичных сенсорных полях заканчиваются проекционные афферентные волокна. Из первичных сенсорных полей информация по коротким ассоциативным волокнам передается во вторичные проекционные поля, расположенные рядом с ними. Так, поля 1 и 3, занимающие медиальную и латеральную поверхность задней центральной извилины, являются первичными проекционными полями кожной чувствительности противоположной половины поверхности тела. Расположенные рядом друг с другом участки кожи также рядом друг с другом проецируются на корковой поверхности. Такая организация проекций называется топической. В медиальной части представлены нижние конечности, а наиболее низко на латеральной части извилины расположены проекции рецепторных полей кожной поверхности головы. При этом участки поверхности тела, богато снабженные рецепторами (пальцы, губы, язык), проецируются на большую площадь коры, чем участки, имеющие меньшее количество рецепторов (бедро, спина, плечо). Поле 2, расположенное в нижнелатеральной части той же извилины, является вторичным проекционным полем кожной чувствительности.

Поля 17–19, расположенные в затылочной доле, являются зрительным центром коры, 17-е поле, занимающее сам затылочный полюс, является первичным. Прилежащие к нему 18-е и 19-е поля выполняют функцию вторичных ассоциативных полей и получают входы от 17-го поля.

В височных долях расположены слуховые проекционные поля (41, 42). Рядом с ними на границе височной, затылочной и теменной долей расположены 37-е, 39-е и 40-е, характерные только для коры головного мозга человека. У большей части людей в этих полях левого полушария расположен центр речи, отвечающий за восприятие устной и письменной речи. Поле 43, занимающее нижнюю часть задней центральной извилины, получает вкусовые афференты.

Структуры обонятельной чувствительности посылают свои сигналы в кору больших полушарий без переключений в других отделах ЦНС. Обонятельные луковицы расположены под нижней поверхностью лобных долей (см. рис. 55, 7). От них начинается обонятельный тракт, который является первой парой черепно-мозговых нервов (п. olfacto rius ). Корковыми проекциями обонятельной чувствительности являются структуры древней коры (рис. 52).

Двигательные области коры расположены в прецентральной извилине лобной доли (впереди от проекционных зон кожной чувствительности) (рис. 52, 1 ). Эту часть коры занимают поля 4 и 5. Из V слоя этих полей берет начало пирамидный путь, заканчивающийся на мотонейронах спинного мозга. Расположение и соотношение зон иннервации сходно с проекционным представительством кожного анализатора, т.е. имеет соматотопическую организацию. В медиальных частях извилины расположены колонки, регулирующие деятельность мышц ног, в нижней части, у латеральной борозды – мышц лица и головы противоположной стороны тела.

Афферентные и эфферентные проекционные зоны коры занимают относительно небольшую ее площадь. Большая часть поверхности коры занята третичными или межанализаторными зонами, называемыми ассоциативными.

Ассоциативные зоны коры занимают значительное пространство между лобной, затылочной и височной корой (60-70% новой коры). Они получают полимодальные входы от сенсорных областей коры и таламических ассоциативных ядер и имеют выходы на двигательные зоны коры. Ассоциативные зоны обеспечивают интеграцию сенсорных входов и играют существенную роль в процессах высшей нервной и психической деятельности.

Филогенез.

Филогенез. У низших позвоночных (круглоротые и рыбы) развитие конечного мозга идет по пути утолщения основания, в котором формируются базальные ганглии в виде больших парных выпуклых масс. Боковые стенки и крыша конечного мозга, образующие плащ (мантию), остаются тонкими и повторяют форму полосатых тел в виде двух полушарий, хотя на два полушария конечный мозг еще не разделен, не разделена еще и полость его желудочка. В передней стенке конечного мозга развивается парное выпячивание – обонятельные доли. Они продолжаются в более или менее длинный стебелек, заканчивающийся обонятельной луковицей. Серое вещество мантии выстилает полость желудочка, а ее поверхность содержит белое вещество. В концевой пластинке располагается передняя комиссура, связывающая между собой полосатые тела.

У двоякодышащих рыб и первых наземных позвоночных (амфибии) передняя стенка мозгового пузыря вдвигается посередине между полосатыми телами в виде продольной складки, разделяющей конечный мозг на два полушария. Полость мозгового пузыря разделяется на два боковых желудочка, которые соединяются сзади Монроевыми отверстиями с III желудочком.

Мантия еще тонкая, но нервные клетки перемещаются к поверхности, однако остаются под слоем белого вещества. Над передней комиссурой появляется еще одна комиссура, соединяющая между собой мантийные структуры полушарий (аналог комиссуры гиппокампа).

У рептилий конечный мозг разрастается еще больше, но это разрастание идет в основном за счет развития базальных ганглиев. Мантия остается тонкой, но на ее поверхности впервые появляется серое вещество, которое представляет собой кору. Эта кора является высшей обонятельной структурой и сравнима с гиппокампом млекопитающих.

Усложнение организации конечного мозга млекопитающих происходит за счет развития мантии. Мантия покрыта корой. Кроме древней и старой коры в филогенетическом ряду млекопитающих появляется новая кора. Чем более высокоразвит вид млекопитающих, тем большую поверхность занимают структуры новой коры. Вместе с развитием мантии преобразуются и полости желудочков.

В добавление к имеющимся комиссурам появляется мозолистое тело, связывающее структуры новой коры обоих полушарий. С увеличением поверхности новой коры нарастает количество волокон мозолистого тела и его мощность. Мозолистое тело значительно разрастается и сдвигает назад комиссуру гиппокампа.

Кора у низших млекопитающих развивается в связи с обонятельной сенсорной системой. У высших млекопитающих (обезьяны, человека) с обонянием связаны только структуры древней и старой коры.

Кроме того, уже на ранних этапах развития позвоночных (амфибии и рептилии) кора получает афферентацию от сенсорных систем других модальностей через ядра таламуса. У млекопитающих кроме специфических ядер таламуса возникают и развиваются ассоциативные ядра, имеющие связи с неокортексом и определяющие развитие конечного мозга.

Третьим источником афферентных воздействий на кору больших полушарий является гипоталамус, который играет роль высшего регуляторного центра вегетативных функций. У млекопитающих филогенетически более древние отделы переднего гипоталамуса связаны с древней формацией коры и с древними ядрами амигдалы. Молодые отделы заднего гипоталамуса проецируются в старую кору.

Онтогенез.

Онтогенез. Вначальной стадии формирования мозга человека передний мозг является закругленным концом нервной трубки. На этом этапе конечный мозг представлен тонкой ростральной стенкой переднего мозга. Затем эта стенка выпячивается в дорсолатеральном направлении и образует два мозговых пузыря. Полости этих пузырей образуют боковые желудочки. На ростральном конце мозговой трубки и III желудочка находится участок ткани, соединяющий оба пузыря конечного мозга. В дальнейшем он станет конечной пластинкой.

Дно мешка конечного мозга утолщается очень быстро, это утолщение образует полосатое тело (стадия 10-20 мм). В дальнейшем оно делится на хвостатое ядро, скорлупу, бледный шар и миндалину. По мере роста полушарий базальные ядра смещаются медиально и примерно на 10-й неделе развития (40 мм) сливаются с промежуточным мозгом.

Растущие аксоны покидают кору примерно на 8-й неделе развития (стадия зародыша – 23 мм). Волокна, которые не заканчиваются в полосатом теле, идут вдоль плоскости слияния основания конечного мозга с промежуточным, образуя внутреннюю капсулу. Волокна, идущие каудально и огибающие снизу средний мозг, образуют ножки мозга. Затем на вентральной поверхности продолговатого мозга они образуют пирамиды. Уходя в спинной мозг, пирамидные пути перекрещиваются и оканчиваются на мотонейронах спинного мозга. Ассоциативные проводящие пути начинают выявляться в конце второго месяца развития. Свод появляется из гиппокампа в конце третьего месяца развития.

Мозолистое тело появляется в начале четвертого месяца развития. Оно начинает формироваться в концевой пластинке в виде пучка поперечных волокон, лежащих над комиссурой гиппокампа. Мозолистое тело растет очень быстро в каудальном направлении и смещает туда же комиссуру гиппокампа и свод. Гиппокамп также смещается назад.

Пузыри конечного мозга разрастаются в ростральном, дорсальном и каудальном направлениях. На ранних стадиях развития (до 3–4-го месяца) пузыри имеют очень тонкую стенку и утолщаются медленно.

Борозды и извилины начинают формироваться только с 11 – 12-й недели. Первыми появляются латеральная и гиппокампова извилины. Затем формирование борозд протекает очень быстро. К моменту рождения существуют все основные извилины.


ОРГАНЫ ЧУВСТВ

В процессе эволюции у животных сформировались системы восприятия окружающего мира – экстерорецепторы – и системы оценки состояния собственных систем организма – интерорецепторы.

Анатомически органы чувств состоят из воспринимающей части – совокупности рецепторов, проводящих нервных путей, промежуточных центров обработки информации и коркового отдела, в котором происходит распознавание стимулов.

Разные по своему строению и внутренней организации рецепторы позволяют организму воспринимать различные по своим свойствам внешние и внутренние сигналы. К ним относятся: световые, звуковые, обонятельные, тактильные, вкусовые, температурные, механические, болевые и другие сигналы или раздражители.

Рецепторный компонент органов чувств состоит из специальных клеток, имеющих специфическое строение и способных воспринимать определенный тип сигнала. Проводниковый компонент представлен нервными волокнами, идущими к соответствующим структурам центральной нервной системы – спинному и головному мозгу, где и происходит обработка непрерывно поступающей информации.

Зрительная система

Орган зрения состоит из глазного яблока, расположенного в глазнице, и зрительного нерва, идущего к соответствующим участкам коры головного мозга

Ранее уже упоминалось, что в процессе эмбриогенеза архэнцефалона происходит превращение его в передний мозговой пузырь, из дорсолатеральных стенок которого выступают два глазных пузыря. В дальнейшем из них развиваются некоторые компоненты зрительной системы, в том числе проводящие пути промежуточного мозга.

Глазное яблоко

Глазное яблоко имеет шаровидную форму, которая изменяется в процессе постнатального развития новорожденного. Оно состоит из ядра, покрытого тремя оболочками – фиброзной, сосудистой и сетчатой (внутренней) (рис. 53).

Фиброзная оболочка подразделяется на прозрачную переднюю часть – роговицу (рис. 53, 15 ) и заднюю – склеру (рис. 53, 9 ). Склера (sclera ) представляет собой плотную соединительную ткань, образованную пучками коллагеновых волокон. Сзади на склере находится решетчатая пластинка, через которую проходят волокна зрительного нерва. В толще склеры, на границе соединения ее с роговицей, имеется сеть мелких полостей, образующих венозный синус склеры, через который происходит отток жидкости из передней камеры глаза.

Роговица (cornea ) – это выпуклая пластинка блюдцеобразной формы

Роговица (cornea ) – это выпуклая пластинка блюдцеобразной формы, круглый край (лимб) которой переходит в склеру. Толщина роговицы от 0,8 до 1, 1 мм. Роговица лишена кровеносных сосудов, и ее питание происходит за счет лимфы.

Сосудистая оболочка глазного яблока находится под склерой и состоит из собственно сосудистой оболочки, ресничного тела и радужки. Ресничное тело участвует в аккомодации глаза, поддерживая, фиксируя и растягивая хрусталик. Большая часть ресничного тела – это ресничная мышца (рис. 53, 11 ), образованная пучками миоцитов, среди которых различают продольные, циркулярные и радиальные волокна.

Ресничное тело спереди продолжается в радужку (рис. 53, 16 ), которая представляет собой круглый диск с отверстием в центре (зрачок). Радужка, в свою очередь, состоит из пяти слоев. В толще одного из них (сосудистого) проходят две мышцы, пучки миоцитов которых образуют сфинктер (сжиматель) зрачка и радиально расположенные пучки, расширяющие зрачок (дилататор зрачка). Расширительные пучки иннервируются постганглионарными симпатическими волокнами клеток, лежащих в верхнем шейном узле; сжиматель – постганглионарными парасимпатическими волокнами ресничного узла. Пигментный слой радужки двухслойный, а цвет зависит от количества меланина.

Хрусталик

Хрусталик (рис. 53, 1 ), представляет собой прозрачную двояковыпуклую линзу, диаметром около 9 мм, имеющую переднюю и заднюю поверхности, переходящие одна в другую в районе экватора. Ось хрусталика – линия, соединяющая наиболее выпуклые точки обеих поверхностей, имеет размеры от 3, 7 до 4, 4 мм. Хрусталик покрыт прозрачной капсулой. Ядро хрусталика образовано прозрачными волокнами призматической формы, состоящими из белка кристаллина. Эти волокна формируются в эмбриональном периоде и сохраняются в течение всей жизни.

Хрусталик подвешен на ресничном пояске (цинновой связке) (рис. 53, 72), между волокнами которого расположены петитов канал, сообщающийся камерами глаза. Волокна пояска в сочетании с мышцами обеспечивают аккомодацию глаза.

Стекловидное тело (рис. 53 , 10 ) представляет собой аморфное межклеточное вещество, на передней поверхности которого в ямке расположен хрусталик.

Две камеры глаза, в которых циркулирует влага, содержащая около 0,02% белка, создают внутреннюю среду глазного яблока.

Внутренняя оболочка глазного яблока – сетчатка (retina ) прилежит изнутри к сосудистой оболочке. Она состоит из двух листков – внутреннего светочувствительного (нервная часть) и наружного пигментного. Различают заднюю зрительную (фоторецепторную) и переднюю, не содержащую фоторецепторов, части.

Сетчатка имеет слоистое строение (рис. 54). Наружный – пигментный слой (рис. 54, 7), состоит из пигментных эпителиоцитов, от внутренней поверхности которых отходят отростки, отделяющие друг от друга палочки и колбочки (фоторецепторы). Пигментный слой поглощает световые лучи, предотвращая их отражение. К пигментному эпителию прилежит слой палочек и колбочек, которые представляют собой периферические отростки фоторецепторов. Каждый фоторецептор состоит из наружного и внутреннего сегментов. Наружный – светочувствительный сегмент имеет впячивания плазматических мембран. У палочек эти мембраны образуют диски, у колбочек – мембранные складки. В мембране наружных сегментов содержатся зрительные пигменты. Внутренний сегмент фоторецепторов содержит митохондрии, рибосомы и другие элементы клетки.

Основой фоторецепции является реакция распада пигментов под действием света. Палочки содержат пигмент родопсин и отвечают за сумеречное (черно-белое) зрение. Колбочки различаются по содержащимся в них пигментам на три типа. Один из них содержит пигмент, реагирующий на воздействие красного диапазона световых лучей, другой имеет пигмент, разлагающийся под действием зеленого цвета, а третий реагирует на синий диапазон спектpa. Таким образом, полный набор всех трех типов колбочек обеспечивает цветное зрение.

В сетчатке глаза человека насчитывается около 6–7 млн колбочек и от 70 до 120 млн палочек. В центре сетчатки находится углубление – центральная ямка (см. рис. 53, 3 ), в которой очень плотно расположены колбочки. По наличию окраски это место называется еще желтым пятном. При помощи глазных мышц изображение рассматриваемого объекта проецируется в область центральной ямки, что позволяет лучше различить детали. Изображение, проецируемое за пределы центральной ямки, попадает в поле периферического зрения.

Ребенок рождается с развитым черно-белым восприятием окружающего мира, цветное зрение развивается уже в постнатальный период.

От каждой фоторецепторной клетки отходит отросток, который образует синапс с отростками биполярных клеток II слоя (рис. 54, 4 ). Биполярные клетки выполняют функцию усилителя сигнала и передают информацию ганглиозным клеткам сетчатки (рис. 54, 6 ), которые являются выходными элементами сетчатки, так как их аксоны (500 тыс. – 1 млн) образуют зрительный нерв.

Кроме перечисленных клеток в сетчатке имеются клетки, участвующие в регуляции функционирования других клеток. Это горизонтальные и амакриновые клетки.

Сетчатка является не только местом восприятия, но и первичным нервным центром обработки зрительной информации.

Место выхода из сетчатки зрительного нерва называется диском зрительного нерва (слепое пятно ) (рис. 53, 5). В центре диска в сетчатку входит центральная артерия сетчатки.

Зрительные нервы проникают в полость черепа через каналы зрительных нервов (рис. 55, 56). На нижней поверхности мозга образуется перекрест зрительных нервов – хиазма (рис. 56, 6 ), причем перекрещиваются только волокна, идущие от медиальных частей сетчаток. После перекреста зрительные пути называются трактами. Большинство волокон зрительного тракта направляются в латеральное коленчатое тело промежуточного мозга (рис. 56, 5 ). Латеральное коленчатое тело имеет слоистое строение и названо так потому, что его слои изгибаются наподобие колена. Нейроны данной структуры направляют свои аксоны через внутреннюю капсулу, затем в составе зрительной радиации к клеткам затылочной доли коры больших полушарий возле шпорной борозды. Этот путь является специфическим зрительным, по нему идет информация только о зрительных стимулах.

Другая часть волокон, направляясь к верхним буграм четверохолмия (рис. 56, 9), составляет неспецифический зрительный путь. От клеток верхнего холмика аксоны идут к ядру глазодвигательного нерва (рис. 55, 76), который иннервирует мышцы глаза и зрачка, замыкая, таким образом, рефлекторные дуги быстрых реакций на зрительные стимулы.

Через ручки верхних холмиков четверохолмия волокна неспецифического зрительного пути направляются к ядрам подушки таламуса, затем в зрительную кору (рис. 56 , 14 ).

Зрительная кора располагается в затылочных долях больших полушарий и занимает 17–19-е поля, по Бродману.

Теперь рассмотрим вспомогательные структуры глаза: мышцы век и слезный аппарат.

Различают шесть глазодвигательных мышц – четыре прямые, две косые. Пять из шести мышц начинаются в глубине глазницы в окружности зрительного канала от общего сухожильного кольца, окружающего зрительный нерв и глазную артерию. Мышцы сокращаются и расслабляются согласованно, благодаря чему оба глазных яблока двигаются синхронно.

К комплексу анатомических структур, составляющих орган зрения, относятся также веки и слезный аппарат. Веки защищают глазное яблоко спереди. Они образуют своими кожными складками структуру, ограничивающую глазную щель, а в медиальном углу образуют «слезное озеро», на дне которого виден рудимент третьего века. Веки снабжены соответствующим мышечным аппаратом и сальными железами. По краям век расположены ресницы, выполняющие определенную защитную функцию. Защитную роль в структуре глаза играет и конъюнктива , служащая переходом от век к глазному яблоку.

Слезные железы , имеющие слезные протоки, которые открываются в верхний свод конъюнктивы, выполняют смачивающую и защитную функции. Последняя обеспечивается за счет наличия в составе слезы лизоцима, обладающего выраженным антибактерицидным действием.

Развитие органа зрения в филогенезе претерпело ряд сложных эволюционных этапов – от одиночных светочувствительных клеток до глаза млекопитающих, обладающих цветным бинокулярным зрением.

Органы слуха

Слуховой аппарат включает в себя три отдела: наружное ухо, среднее и внутреннее.

Наружное ухо

Наружное ухо состоит из хрящевой ушной раковины и наружного слухового прохода , расположенного в височной кости и выстланного серными железами. Отделяется наружное ухо от среднего барабанной перепонкой (рис. 57, 12 ).

Среднее ухо

Среднее ухо представляет собой полость, ограниченную с одной стороны барабанной перепонкой, а с другой – структурами внутреннего уха (рис. 57Б). Полость среднего уха называется барабанной и выстлана слизистой оболочкой. При помощи Евстахиевой трубы (рис. 57, 77) полость сообщается с носоглоткой. В среднем ухе находится система косточек: молоточек, наковальня и стремечко (рис. 57М, Н, С), которые являются усилителями звуковой волны. Они передают волновые колебания от мембраны барабанной перепонки к мембране овального окошка внутреннего уха. На внутренней стенке среднего уха имеется два отверстия (окна )овальное (рис. 57, 3 ) и круглое (рис. 57, 5 ). И круглое, и овальное окна закрыты мембраной, причем к мембране овального окошка прикреплено стремечко среднего уха.

Внутреннее ухо

Внутреннее ухо – полое костное образование в височной кости, разделенное на костные и перепончатые каналы и полости, содержащие рецепторный аппарат слухового и статокинетического (вестибулярного) анализаторов (рис. 57В). Внутреннее ухо находится в толще височной кости и состоит из системы сообщающихся друг с другом костных каналов – костного лабиринта, в котором расположен перепончатый лабиринт. Очертания перепончатого лабиринта почти полностью повторяют очертания костного. Пространство между костным и перепончатым лабиринтом, называемое перилимфатическим, заполнено жидкостью – перилимфой, которая по составу сходна с цереброспинальной жидкостью. Перепончатый лабиринт погружен в перилимфу, он прикреплен к стенкам костного футляра соединительнотканными тяжами и заполнен жидкостью – эндолимфой, по составу неско