Основные процессы, происходящие в клетке. Обеспечение клеток энергией. Источники энергии Клетки обеспечиваются энергией за счет синтеза жиров

Стр. 58. Вопросы и задания после §

1. Какие вещества являются основными источниками энергии в клетки?

В качестве основного энергетического материала используются углеводы и жиры. Например, сложный углевод гликоген и жиры – это резервы «топлива» в клетке. Они расходуются клетками после некоторого периоды голодания организма. Например, утром после сна идет активное использование жиров, которые вначале распадаются на глицерин и жирные кислоты. После еды главным источником энергии в клетках служит глюкоза, полученная с пищей.

2. Охарактеризуйте каждый из этапов энергетического обмена.

Энергетический обмен проходит в три этапа: подготовительный бескилородный, кислородный. Подготовительный этап характеризуется тем, что сложные органические вещества в организме расщепляются на мономеры. Все эти процесс протекают под действием ферментов. Так, полученные с пищей белки расщепляются до аминокислот, углеводы – до глюкозы, жиры – до глицерина и жирных кислот. Выделяющаяся при этом энергия рассеивается в виде тепла в организме, так ее образующееся при этом количество не велико. На примере глюкозы можно рассмотреть второй этап – бескилородный – называется он гликолиз (от греч. «гликис» - сладкий, «лизис» - расщепление). Это сложный ферментативный процесс расщепления глюкозы. Данный процесс протекает в цитоплазме клеток. Из одной молекулы глюкозы (1 моль C6H12O6) образуется две молекулы пировиноградной кислоты ПВК (2C3H4O3) и две молекулы АТФ (2АТФ). Далее если в клетке недостаточно кислорода пировиноградная кислота C3H4O3 превращается в другую органическую кислоты – молочную C3H4O3 (так как они являются изомерами). Следующий этап – кислородный – называется клеточным дыханием и протекает в митохондриях клеток (на кристах, где расположены дыхательные ферменты). По его названию видно, что идет он только при участии кислорода. На этом этапе пировиноградная кислота окисляется молекулярным кислородом О2 до углекислого газа и воды. Энергия, освобождаемая при этом окислении, используется очень эффективно. На каждую молекулу глюкозы образуется 36 молекул АТФ. Таким образом, при расщеплении 1 молекулы (1 моль) глюкозы выделяется 38 АТФ (во втором этапе 2 молекулы и с третьем – 36 молекулы). Эта энергия расходуется на синтез нужных организму веществ, а энергия АТФ преобразуется в различные виды энергии – механическую (движение жгутиков), электрическую (проведение нервного импульса).

3. Почему при интенсивных тренировках у спортсменов учащается дыхание, и появляются боли в мышцах?

При интенсивной физической работе человека в клетки мышечной ткани испытывают кислородное голодание, в этом случае при неполном расщеплении глюкозы ПВК превращается в молочную кислоту. В мышцах накапливается ее избыток, это приводит к болям в мышцах, утомляемости, усталости, отдышке – это признак кислородной недостаточности.

4. Урожай томатов, выращенных в плохо проветриваемых теплицах, оказался не высоким. Объясните, в чем причина.

При выращивании культурных растений в теплицах и парниках нужно помнить, что процесс окисления глюкозы идет до углекислого газа и воды., и при высокой температуре протекает более интенсивно. Кроме того, фотосинтез осуществляют только зеленые клетки растений, а дыхание растений осуществляется во всех клетках. В теплицах температура может достигать до 400С, при этом интенсивность дыхания увеличивается до 100 раз, а интенсивность фотосинтеза нет. Поэтому увеличение органической массы дует незначительным и урожай у таких растений будет невысоким.

5. Объясните значение термином «гликолиз», «клеточное дыхание».

Гликолиз (от греч. «гликис» - сладкий, «лизис» - расщепление) – это сложный ферментативный процесс расщепления глюкозы, протекающий в две стадии – бескислородная и кислородная. Клеточное дыхание – это конечный кислородный этап расщепления глюкозы, протекающий в митохондриях клеток (на кристах, где расположены дыхательные ферменты), идущий в присутствии кислорода.

Подробное решение параграф Подведите итог 2 главы по биологии для учащихся 11 класса, авторов И.Н. Пономарева, О.К. Корнилова, Т.Е. Лощилина, П.В. Ижевский Базовый уровень 2012

  • Гдз по Биологии за 11 класс можно найти
  • Гдз рабочая тетрадь по Биологии за 11 класс можно найти

1. Сформулируйте определение биосистемы «клетка». .

Клетка – элементарная живая система, основная структурная единица живых организмов, способная к самовозобновлению, саморегуляции и самовоспроизведению.

2. Почему клетку называют основной формой жизни и элементарной единицей жизни?

Клетка – основная форма жизни и элементарной единицей жизни, потому что любой организм состоит из клеток, а самый маленький организм является клеткой (простейшие). Отдельные органеллы за пределами клетки жить не могут.

На клеточном уровне происходят следующие процессы: обмен веществ (метаболизм); поглощение и, следовательно, включение различных химических элементов Земли в содержимое живого; передача наследств венной информации от клетки к клетке; накопление изменений в генетическом аппарате в результате взаимодействия со средой; реагирование на раздражения при взаимодействии с внешней средой. Структурными элементами системы клеточного уровня являются разнообразные комплексы молекул химических соединений и все структурные части клетки - поверхностный аппарат, ядро и цитоплазма с их органоидами. Взаимодействие между ними обеспечивает единство, целостность клетки в проявлении её свойств как живой системы в отношениях с внешней средой.

3.Поясните механизмы устойчивости клетки как биосистемы.

Клетка – элементарная биологическая система, а любая система-это комплекс взаимосвязанных и взаимодействующих компонентов, составляющих единое целое. В клетке этими компонентами являются органоиды. Клетка способна к обмену веществ, саморегуляции и самообновлению, благодаря чему и поддерживается ее устойчивость. Вся генетическая программа клетки находится в ядре, а различные отклонения от нее воспринимаются ферментативной системой клетки.

4. Сравните клетки эукариот и прокариот.

Все живые организмы на Земле делятся на две группы: прокариоты и эукариоты.

Эукариоты – это растения, животные и грибы.

Прокариоты – это бактерии (в том числе цианобактерии (сине-зеленые водоросли).

Главное отличие. У прокариот нет ядра, кольцевая ДНК (кольцевая хромосома) расположена прямо в цитоплазме (этот участок цитоплазмы называется нуклеоид). У эукариот есть оформленное ядро (наследственная информация [ДНК] отделена от цитоплазмы ядерной оболочкой).

Другие отличия.

Раз у прокариот нет ядра, то нет и митоза/мейоза. Бактерии размножаются делением надвое, почкованием

У эукариот различное кол-во хромосом, в зависимости от вида. У прокариот единственная хромосома (кольцевидной формы).

У эукариот присутствуют органоиды, окруженные мембранами. У прокариот отсутствуют органоиды, окруженные мембранами, т.е. нет эндоплазматической сети (ее роль выполняют многочисленные выступы клеточной мембраны), нет митохондрий, нет пластид, нет клеточного центра.

Клетка прокариот гораздо меньше клетки эукариот: по диаметру в 10 раз, по объему – в 1000 раз.

Сходство. Клетки всех живых организмов (всех царств живой природы) содержат плазматическую мембрану, цитоплазму и рибосомы.

5. Охарактеризуйте внутриклеточную структуру эукариот.

Клетки, образующие ткани животных и растений, значительно различаются по форме, размерам и внутреннему строению. Однако все они обнаруживают сходство в главных чертах процессов жизнедеятельности, обмена веществ, в раздражимости, росте, развитии, способности к изменчивости.

Клетки всех типов содержат два основных компонента, тесно связанных между собой, - цитоплазму и ядро. Ядро отделено от цитоплазмы пористой мембраной и содержит ядерный сок, хроматин и ядрышко. Полужидкая цитоплазма заполняет всю клетку и пронизана многочисленными канальцами. Снаружи она покрыта цитоплазматической мембраной. В ней имеются специализированные структуры-органоиды, присутствующие в клетке постоянно, и временные образования - включения. Мембранные органоиды: цитоплазматическая мембрана (ЦM), эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы, митохондрии и пластиды. В основе строения всех мембранных органоидов лежит биологическая мембрана. Все мембраны имеют принципиально единый план строения и состоят из двойного слоя фосфолипидов, в который с различных сторон на разную глубину погружены белковые молекулы. Мембраны органоидов отличаются друг от друга лишь наборами входящих в них белков.

6. Каким образом реализуется принцип «клетка - от клетки»?

Размножение прокариотических и эукариотических клеток происходит только путем деления исходной клетки, которому предшествует воспроизведение ее генетического материала (редупликация ДНК).

У эукариотических клеток единственно полноценным способом деления является митоз (или мейоз при образовании половых клеток). При этом образуется специальный аппарат клеточного деления - клеточное веретено, с помощью которого равномерно и точно по двум дочерним клеткам распределяются хромосомы, до этого удвоившиеся в числе. Этот тип деления наблюдается у всех эукариотических, как растительных, так и животных клеток.

Прокариотические клетки, делящиеся так называемым бинарным образом, также используют специальный аппарат разделения клеток, значительно напоминающий митотический способ деления эукариот. Также деля материнскую клетку надвое.

7. Охарактеризуйте фазы и значение митоза.

Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу. Так как он непрерывен, смена фаз осуществляется плавно - одна незаметно переходит в другую.

В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть - прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n4c).

В метафазе хромосомы достигают максимальной спирализации и располагаются упорядоченно на экваторе клетки, поэтому их подсчет и изучение проводят в этот период. Содержание генетического материала не изменяется (2n4c).

В анафазе каждая хромосома «расщепляется» на две хроматиды, которые с этого момента называются дочерними хромосомами. Нити веретена, прикрепленные к центромерам, сокращаются и тянут хроматиды (дочерние хромосомы) к противоположным полюсам клетки. Содержание генетического материала в клетке у каждого полюса представлено диплоидным набором хромосом, но каждая хромосома содержит одну хроматиду (4n4c).

В телофазе расположившиеся у полюсов хромосомы деспирализуются и становятся плохо видимыми. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах образуются ядрышки. Разрушается веретено деления. Одновременно идет деление цитоплазмы. Дочерние клетки имеют диплоидный набор хромосом, каждая из которых состоит из одной хроматиды (2n2c).

Биологическое значение митоза состоит в том, что он обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы.

Митотическое деление клеток лежит в основе всех форм бесполого размножения как у одноклеточных, так и у многоклеточных организмов. Митоз обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.

8. Что представляет собой клеточный цикл?

Клеточный цикл (митотический цикл) - это весь период существования клетки с момента появления в процессе деления материнской клетки до ее собственного деления (включая и само деление) или гибели. Он состоит из интерфазы и деления клетки.

9. Какую роль в эволюции организмов выполнила клетка?

Клетка дала начало дальнейшего развития органического мира. В ходе этой эволюции было достигнуто поразительное разнообразие клеточных форм, зародилась многоклеточность, возникла специализация клеток, появились клеточные ткани.

10. Назовите основные процессы жизнедеятельности клетки.

Обмен веществ – в клетку поступают питательные вещества, а удаляются ненужные. Движение цитоплазмы – транспортирует вещества в клетке. Дыхание – в клетку поступает кислород, удаляется углекислый газ. Питание - в клетку поступают питательные вещества. Рост - клетка увеличивается в размерах. Развитие – строение клетки усложняется.

11. Укажите значение митоза и мейоза в эволюции клетки.

Благодаря митотическому делению клеток идет индивидуальное развитие организма - увеличивается его рост, обновляются ткани, заменяются постаревшие и отмершие клетки, осуществляется бесполое размножение организмов. Также обеспечивается постоянство кариотипов особей вида.

Благодаря мейозу происходит кроссинговер (обмен участками гомологичных хромосом). Это способствует перекомбинации генетической информации, и образуются клетки с совершенно новым набором генов (разнообразие организмов).

12. Какие важнейшие события в развитии живой материи совершились на клеточном уровне в процессе эволюции?

Крупнейшие ароморфозы (митоз, мейоз, гаметы, половой процесс, зигота, вегетативное и половое размножение).

Возникновение ядер в клетках (эукариоты).

Симбиотические процессы у одноклеточных - возникновение органелл.

Автотрофность и гетеротрофность.

Подвижность и неподвижность.

Возникновение многоклеточных организмов.

Дифференциация функций клеток у многоклеточных.

13. Охарактеризуйте общее значение клеточного уровня живой материи в природе и для человека.

Клетка, возникнув однажды в виде элементарной биосистемы, стала основой всего дальнейшего развития органического мира. Эволюция бактерий, цианобактерий, различных водорослей и простейших целиком происходила за счёт структурных, функциональных и биохимических преобразований первичной живой клетки. В ходе этой эволюции было достигнуто поразительное разнообразие клеточных форм, однако общий план строения клетки не претерпел принципиальных изменений. В процессе эволюции на основе одноклеточных форм жизни зародилась многоклеточность, возникла специализация клеток и появились клеточные ткани.

Выскажите свою точку зрения

1. Почему именно на клеточном уровне организации жизни возникли такие свойства живых существ, как автотрофность и гетеротрофность, подвижность и неподвижность, многоклеточность и специализация в строении и функциях? Что способствовало таким событиям в жизни клетки?

Клетка - это основная структурно-функциональная единица живого. Это некая живая система, для которой свойственны дыхание, питание, обмен веществ, раздражимость, дискретность, открытость, наследственность. Именно на клеточном уровне возникли первые живые организмы. В клетке каждый органоид выполняет определенную функцию и имеет определенное строение, объединившись и функционируя вместе, они представляют собой единую биосистему, для которой присущи все признаки живого.

Клетка, как многоклеточный организм, также эволюционировала на протяжении многих веков. Различные условия среды, природные катаклизмы, биотические факторы привели к усложнению организации клеток.

Именно поэтому автотрофность и гетеротрофность, подвижность и неподвижность, многоклеточность и специализация в строении и функциях возникли именно на уровне клетки, где все органеллы и клетка в целом существуют гармонично и целесообразно.

2. На каком основании цианобактерии все ученые очень долго относили к растениям, в частности к водорослям, и лишь в конце XX в. их поместили в царство бактерий?

Сравнительно крупные размеры клеток (носток, например, образует довольно крупные колонии, которые можно даже взять в руки), осуществляют фотосинтез с выделением кислорода сходным с высшими растениями образом, также внешнее сходство с водорослями было причиной их рассмотрения ранее в составе растений («синезелёные водоросли»).

А в конце ХХ века было доказано, что клетки синезеленых ядер не имеют, да и хлорофилл в их клетках не такой, как у растений, а характерный для бактерий. Сейчас цианобактерии относятся к числу наиболее сложно организованных и морфологически дифференцированных прокариотных микроорганизмов.

3. Из каких растительных и животных клеточных тканей сделана одежда и обувь, в которых вы пришли сегодня в школу?

Выберите подходящие. Можно привести массу примеров. К примеру, из льна (лубяные волокна - проводящая ткань) делают ткань прочной структуры (рубашка муж., женские костюмы, белье, носки, брюки, сарафаны). Из хлопка делают нижнее белье, футболки, рубашки, брюки, сарафаны). Из кожи животных (эпителиальная ткань) делают обувь (туфли, босоножки, сапоги), ремни. Из шерсти пушных зверей изготавливают теплую одежду. Из шерсти делают свитера, носки, шапки, варежки. Из шелка (секрет желез тутового шелкопряда - соединительная ткань) - рубашки, шарфы, белье.

Проблема для обсуждения

Дед Чарлза Дарвина Эразм Дарвин - врач, учёный-натуралист и поэт - написал в конце XVIII в. поэму «Храм природы», опубликованную в 1803 г., уже после его смерти. Прочитайте небольшой отрывок из этой поэмы и подумайте, какие идеи о роли клеточного уровня жизни можно обнаружить в данном произведении (отрывок приведен в книге).

Возникновение земной жизни происходило с самых меньших клеточных форм. Именно на клеточном уровне возникли первые живые организмы. Клетка, как организм, также росла, эволюционировала, тем самым дала толчок к образованию множества клеточных форм. Они смогли заселить и «ил» и «водяную массу». Скорее всего, различные условия среды, природные катаклизмы, биотические факторы привели к усложнению организации клеток, что повлекло за собой «обретение членов» (что подразумевает многоклеточность).

Основные понятия

Прокариоты, или Доядерные, - организмы, клетки которых не имеют оформленного ядра, ограниченного мембраной.

Эукариоты, или ядерные, - организмы, клетки которых имеют хорошо оформленное ядро, отделённое ядерной оболочкой от цитоплазмы.

Органоид - клеточная структура, обеспечивающая выполнение специфических функций.

Ядро - важнейшая часть эукариотической клетки, регулирующая всю её активность; несёт в себе наследственную информацию в макромолекулах ДНК.

Хромосома – это содержащая ДНК нитевидная структура в клеточном ядре, которая несет в себе гены, единицы наследственности, расположенные в линейном порядке.

Биологическая мембрана - эластическая молекулярная структура, состоящая из белков и липидов. Отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность.

Митоз (непрямое деление клетки) - универсальный способ деления эукариотических клеток, при котором дочерние клетки получают генетический материал, идентичный исходной клетке.

Мейоз - способ деления эукариотных клеток, сопровождающийся уменьшением вдвое (редукцией) числа хромосом; одна диплоидная клетка даёт начало четырём гаплоидным.

Клеточный цикл - репродуктивный цикл клетки, состоящий из нескольких последовательных событий (например, интерфаза и митоз у эукариот), во время которых содержимое клетки удваивается и она делится на две дочерних.

Клеточный структурный уровень организации живой материи – один из структурных уровней жизни, структурно-функциональной единицей которого является организм, а единицей - клетка. На организменном уровне происходят следующие явления: размножение, функционирование организма как единого целого, онтогенез и др.

Энергия необходима всем живым клеткам - она используется для различных биологических и химических реакций, протекающих в клетке. Одни организмы используют энергию солнечного света для биохимических процессов, - это растения (Рис. 1), а другие используют энергию химических связей в веществах, получаемых в процессе питания, - это животные организмы. Извлечение энергии осуществляется путем расщепления и окисления этих веществ, в процессе дыхания, это дыхание называется биологическим окислением, или клеточным дыханием .

Рис. 1. Энергия солнечного света

Клеточное дыхание - это биохимический процесс в клетке, протекающий с участием ферментов, в результате которого выделяется вода и углекислый газ, энергия запасается в виде макроэргических связей молекул АТФ. Если этот процесс протекает в присутствии кислорода, то он носит название аэробный , если же он происходит без кислорода, то он называется анаэробным .

Биологическое окисление включает три основные стадии:

1. Подготовительную.

2. Бескислородную (гликолиз).

3. Полное расщепление органических веществ (в присутствии кислорода).

Поступившие с пищей вещества расщепляются до мономеров. Этот этап начинается в желудочно-кишечном тракте или в лизосомах клетки. Полисахариды распадаются на моносахариды, белки - на аминокислоты, жиры - на глицерин и жирные кислоты. Выделяющаяся на этой стадии энергия рассеивается в виде тепла. Надо отметить, что для энергетических процессов клетки используют именно углеводы, а лучше - моносахариды, а мозг может использовать для своей работы только моносахарид - глюкозу (Рис. 2).

Рис. 2. Подготовительный этап

Глюкоза в процессе гликолиза распадается на две трехуглеродные молекулы пировиноградной кислоты. Дальнейшая судьба пировиноградной кислоты зависит от присутствия в клетке кислорода. Если в клетке присутствует кислород, то пировиноградная кислота переходит в митохондрии для полного окисления до углекислого газа и воды (аэробное дыхание). Если кислорода нет, то в животных тканях пировиноградная кислота превращается в молочную кислоту. Эта стадия проходит в цитоплазме клетки.

Гликолиз - это последовательность реакций, в результате которых одна молекула глюкозы расщепляется на две молекулы пировиноградной кислоты, при этом выделяется энергия, которой достаточно для превращения двух молекул АДФ в две молекулы АТФ (Рис. 3).

Рис. 3. Бескислородный этап

Для полного окисления глюкозы обязательно необходим кислород. На третьем этапе в митохондриях происходит полное окисление пировиноградной кислоты до углекислого газа и воды, в результате образуется еще 36 молекул АТФ, так как эта стадия происходит с участием кислорода, ее называют кислородной, или аэробной (Рис. 4).

Рис. 4. Полное расщепление органических веществ

Всего на трех этапах образуется 38 молекул АТФ из одной молекулы глюкозы, учитывая две АТФ, полученные в процессе гликолиза.

Таким образом, мы рассмотрели энергетические процессы, происходящие в клетках, охарактеризовали этапы биологического окисления.

Дыхание, происходящее в клетке с выделением энергии, нередко сравнивают с процессом горения. Оба процесса происходят в присутствии кислорода, выделения энергии и продуктов окисления - углекислого газа и воды. Но, в отличие от горения, дыхание - это упорядоченный процесс биохимических реакций, протекающий в присутствии ферментов. При дыхании углекислый газ возникает как конечный продукт биологического окисления, а в процессе горения образование углекислого газа происходит путем прямого соединения водорода с углеродом. Также во время дыхания, помимо воды и углекислого газа, образуется определенное количество молекул АТФ, то есть дыхание и горение - это принципиально разные процессы (Рис. 5).

Рис. 5. Отличия дыхания от горения

Гликолиз - это не только главный путь метаболизма глюкозы, но и главный путь метаболизма фруктозы и галактозы, поступающих с пищей. Особенно важна в медицине способность гликолиза к образованию АТФ в отсутствие кислорода. Это позволяет поддерживать интенсивную работу скелетной мышцы в условиях недостаточной эффективности аэробного окисления. Ткани с повышенной гликолитической активностью способны сохранять активность в периоды кислородного голодания. В сердечной мышце возможности осуществления гликолиза ограничены. Она тяжело переносит нарушение кровоснабжения, что может привести к ишемии. Известно несколько болезней, обусловленных недостаточной активностью ферментов гликолиза, одной из которых является гемолитическая анемия (в быстрорастущих раковых клетках гликолиз идет со скоростью, превышающей возможности цикла лимонной кислоты), что способствует повышенному синтезу молочной кислоты в органах и тканях (Рис. 6).

Рис. 6. Гемолитическая анемия

Повышенное содержание молочной кислоты в организме может быть симптомом рака. Эта особенность метаболизма иногда используется для терапии некоторых форм опухоли.

Микробы способны получать энергию в процессе брожения. Брожение известно людям с незапамятных времен, например при изготовлении вина, еще ранее было известно о молочнокислом брожении (Рис. 7).

Рис. 7. Изготовление вина и сыра

Люди потребляли молочные продукты, не подозревая, что эти процессы связаны с деятельностью микроорганизмов. Термин «брожение» был введен голландцем Ван Хельмонтом для процессов, идущих с выделением газа. Это впервые доказал Луи Пастер. Причем разные микроорганизмы выделяют разные продукты брожения. Мы поговорим о спиртовом и молочнокислом брожении. Спиртовое брожение - это процесс окисления углеводов, в результате которого образуется этиловый спирт, углекислота и выделяется энергия. Пивовары и виноделы использовали способность некоторых видов дрожжей для стимуляции брожения, в результате которого сахара превращаются в спирт. Брожение производят главным образом дрожжи, а также некоторые бактерии и грибы (Рис. 8).

Рис. 8. Дрожжи, мукоровые грибы, продукты брожения - квас и уксус

В нашей стране традиционно используются дрожжи сахаромицеты, в Америке - бактерии из рода Псевдомонас, в Мексике используются бактерии «подвижные палочки», в Азии используют мукоровые грибы. Наши дрожжи, как правило, сбраживают гексозы (шестиуглеродные моносахариды), такие как глюкоза или фруктоза. Процесс образования спирта можно представить следующим образом: из одной молекулы глюкозы образуется две молекулы спирта, две молекулы углекислого газа и выделяются две молекулы АТФ.

C 6 H 12 O 6 → 2C 2 H 5 OH +2CO 2 + 2АТФ

Если сравнивать с дыханием, такой процесс менее выгоден в энергетическом отношении, чем аэробные процессы, но позволяет поддерживать жизнь в условиях отсутствия кислорода. При молочнокислом брожении одна молекула глюкозы образует две молекулы молочной кислоты, и при этом выделяется две молекулы АТФ, это можно описать уравнением:

C 6 H 12 O 6 → 2C 3 H 6 O 3 + 2АТФ

Процесс образования молочной кислоты очень близок к процессу спиртового брожения, глюкоза так же, как и при спиртовом брожении, расщепляется до пировиноградной кислоты, затем она переходит не в спирт, а в молочную кислоту. Молочнокислое брожение широко используется для производства молочных продуктов: сыр, творог, простокваша, йогурты (Рис. 9).

Рис. 9. Молочнокислые бактерии и продукты молочнокислого брожения

В процессе образования сыров сначала участвуют молочнокислые бактерии, которые вырабатывают молочную кислоту, потом пропионовокислые бактерии переводят молочную кислоту в пропионовую, за счет этого у сыров достаточно специфический острый вкус. Молочнокислые бактерии используются при консервировании плодов и овощей, молочная кислота используется в кондитерской промышленности и изготовлении безалкогольных напитков.

Список литературы

1. Мамонтов С.Г., Захаров В.Б., Агафонова И.Б., Сонин Н.И. Биология. Общие закономерности. - Дрофа, 2009.

2. Пономарева И.Н., Корнилова О.А., Чернова Н.М. Основы общей биологии. 9 класс: Учебник для учащихся 9 класса общеобразовательных учреждений/ Под ред. проф. И.Н. Пономаревой. - 2-е изд., перераб. - М.: Вентана-Граф, 2005.

3. Пасечник В.В., Каменский А.А., Криксунов Е.А. Биология. Введение в общую биологию и экологию: Учебник для 9 класса, 3-е изд., стереотип. - М.: Дрофа, 2002.

1. Интернет-сайт «Биология и медицина» ()

3. Интернет-сайт «Медицинская энциклопедия» ()

Домашнее задание

1. Что такое биологическое окисление и его этапы?

2. Что такое гликолиз?

3. В чем сходство и различие спиртового и молочнокислого брожения?

Живой клетке внутренне присуща неустойчивая и почти неправдоподобная организация; клетка способна сохранять весьма специфичную и прекрасную в своей сложности упорядоченность своей хрупкой структуры только благодаря непрерывному потреблению энергии.

Как только поступление энергии прекращается, сложная структура клетки распадается и она переходит в неупорядоченное и лишенное организации состояние. Помимо обеспечения химических процессов, необходимых для поддержания целостности клетки, в различных типах клеток за счет превращения энергии обеспечивается осуществление разнообразных механических, электрических, химических и осмотических процессов, связанных с жизнедеятельностью организма.

Научившись в сравнительно недавнее время извлекать энергию, заключенную в различных неживых источниках, для выполнения различной работы, человек начал постигать, как мастерски и с какой высокой эффективностью производит превращение энергии клетка. Превращение энергии в живой клетке подчиняется тем же самым законам термодинамики, которые действуют в неживой природе. Согласно первому закону термодинамики, общая энергия замкнутой системы при любом физическом изменении всегда остается постоянной. Согласно второму закону, энергия может существовать в двух формах: в форме «свободной», или полезной, энергии и в форме бесполезной рассеиваемой энергии. Тот же закон утверждает, что при любом физическом изменении наблюдается тенденция к рассеянию энергии, т. е. к уменьшению количества свободной энергии и к возрастанию энтропии. Между тем живая клетка нуждается в постоянном притоке свободной энергии.

Инженер получает необходимую ему энергию главным образом за счет энергии химических связей, заключенной в горючем. Сжигая горючее, он превращает химическую энергию в тепловую; затем он может использовать тепловую энергию для вращения, например, паровой турбины и таким путем получить электрическую энергию. Клетки также получают свободную энергию за счет освобождения энергии химических связей, заключенной в «горючем». Энергия запасается в этих связях теми клетками, которые синтезируют питательные вещества, служащие таким горючим. Однако клетки используют эту энергию весьма специфическим «образом. Поскольку температура, при которой живая клетка функционирует, примерно постоянна, клетка не может использовать тепловую энергию, чтобы производить работу. Для того чтобы за счет тепловой энергии могла происходить работа, теплота должна переходить от более нагретого тела к менее нагретому. Совершенно ясно, что клетка не может сжигать свое горючее при температуре сгорания угля (900°); не может она также выдержать воздействие перегретым паром или током высокого напряжения. Клетке приходится добывать и использовать энергию в условиях довольно постоянной и притом низкой температуры, разбавленной йодной среды и весьма незначительных колебаний концентрации водородных ионов. Для того чтобы приобрести возможность получать энергию, клетка на протяжении многовековой эволюции органического мира совершенствовала свои замечательные молекулярные механизмы, которые необыкновенно эффективно действуют в этих мягких условиях.

Механизмы клетки, обеспечивающие извлечение энергии, делятся на два класса, и на основании различия в этих механизмах все клетки можно разбить на два основных типа. Клетки первого типа называют гетеротрофными; к ним относятся все клетки организма человека и клетки всех высших животных. Этим клеткам необходим постоянный приток готового горючего весьма сложного химического состава. Таким горючим служат для них углеводы, белки и жиры, т. е. отдельные составные части других клеток и тканей. Гетеротрофные клетки получают энергию, сжигая или окисляя эти сложные вещества (вырабатываемые другими клетками) в процессе, который называется дыханием и в котором участвует молекулярный кислород (О 2) атмосферы. Гетеротрофные клетки используют эту энергию для выполнения своих биологических функций, выделяя при этом в атмосферу двуокись углерода в качестве конечного продукта.

Клетки, принадлежащие ко второму типу, называют автотрофными. Наиболее типичные автотрофные клетки - это клетки зеленых растений. В процессе фотосинтеза они связывают энергию солнечного света, используя ее для своих нужд. Кроме того, они при помощи солнечной энергии добывают углерод из атмосферной двуокиси углерода и используют его для построения простейшей органической молекулы - молекулы глюкозы. Из глюкозы клетки зеленых растений и других организмов создают более сложные молекулы, входящие в их состав. Чтобы обеспечить необходимую для этого энергию, клетки в процессе дыхания сжигают часть имеющегося в их распоряжении сырья. Из этого описания циклических превращений энергии в клетке становится ясно, что все живые организмы в конечном счете получают энергию от солнечного света, причем растительные клетки получают ее непосредственно от солнца, а животные - косвенным путем.

Изучение основных поставленных в этой статье вопросов упирается в необходимость подробного описания первичного механизма извлечения энергии, используемого клеткой. Большая часть ступеней сложных циклов дыхания и фотосинтеза уже исследована. Установлено, в каком именно органе клетки происходит тот или иной процесс. Дыхание осуществляется митохондриями, имеющимися в большом числе почти во всех клетках; фотосинтез обеспечивают хлоропласты - цитоплазматические структуры, содержащиеся в клетках зеленых растений. Молекулярные механизмы, которые находятся в этих клеточных образованиях, составляя их структуру и обеспечивая выполнение их функций, представляют собой следующий важный этап в изучении клетки.

Одни и те же хорошо изученные молекулы - молекулы аденозинтрифосфата (АТФ) - переносят полученную за счет питательных веществ или солнечного света свободную энергию от центров дыхания или фотосинтеза во все участки клетки, обеспечивая осуществление всех процессов, протекающих с потреблением энергии. Впервые АТФ был выделен из мышечной ткани Ломаном около 30 лет назад. Молекула АТФ содержит три связанные между собой фосфатные группы. В пробирке концевую группу можно отделить от молекулы АТФ путем реакции гидролиза, в результате которой получается аденозиндифосфат (АДФ) и неорганический фосфат. В процессе этой реакции свободная энергия молекулы АТФ превращается в тепловую энергию, а энтропия при этом в соответствии со вторым законом термодинамики возрастает. В клетке, однако, концевая фосфатная группа в процессе гидролиза не просто отделяется, но переносится на особую молекулу, служащую акцептором. Значительная часть свободной энергии молекулы АТФ при этом сохраняется благодаря фосфорилированию молекулы-акцептора, которая теперь за счет возросшей энергии приобретает возможность участвовать в процессах, протекающих с потреблением энергии, например, в процессах биосинтеза или мышечного сокращения. После отщепления одной фосфатной группы в процессе этой сопряженной реакции АТФ превращается в АДФ. В термодинамике клетки АТФ можно рассматривать как богатую энергией, или «заряженную», форму носителя энергии (аденозинфосфата), а АДФ - как бедную энергией, или «разряженную», форму.

Вторичная «зарядка» носителя производится, конечно, тем или другим из двух механизмов, участвующих в извлечении энергии. В процессе дыхания животных клеток энергия, заключенная в питательных веществах, освобождается в результате окисления и расходуется на построение АТФ из АДФ и фосфата. При фотосинтезе в растительных клетках энергия солнечного света превращается в химическую энергию и расходуется на «зарядку» аденозинфосфата, т. е. на образование АТФ.

Эксперименты с использованием радиоактивного изотопа фосфора (Р 32) показали, что неорганический фосфат с большой скоростью включается в концевую фосфатную группу АТФ и вновь выходит из нее. В клетке почки обновление концевой фосфатной группы происходит так быстро, что ее период полупревращения занимает меньше 1 минуты; это соответствует чрезвычайно интенсивному обмену энергии в клетках этого органа. Следует добавить, что деятельность АТФ в живой клетке - отнюдь не черная магия. Химикам известны многие аналогичные реакции, при помощи которых происходит перенос химической энергии в неживых системах. Сравнительно сложная структура АТФ, по-видимому, возникла только в клетке - для обеспечения наиболее эффективной регуляции химических реакций, связанных с переносом энергии.

Роль АТФ в фотосинтезе удалось выяснить лишь недавно. Это открытие позволило в значительной мере объяснить, каким образом фотосинтезирующие клетки в процессе синтеза углеводов связывают солнечную энергию - первичный источник энергии всех живых существ.

Энергия солнечного света передается в виде фотонов, или квантов; свет различной окраски, или разной длины волны, характеризуется различной энергией. При падении света на некоторые металлические поверхности и поглощении его этими поверхностями фотоны в результате столкновения с электронами металла передают им свою энергию. Этот фотоэлектрический эффект можно измерить благодаря возникающему при этом электрическому току. В клетках зеленых растений солнечный свет с определенными длинами волн поглощается зеленым пигментом - хлорофиллом. Поглощенная энергия переводит электроны в сложной молекуле хлорофилла с основного энергетического уровня на более высокий уровень. Подобные «возбужденные» электроны стремятся вновь возвратиться на свой основной стабильный энергетический уровень, отдавая при этом поглощенную ими энергию. В чистом препарате хлорофилла, выделенного из клетки, поглощенная энергия вновь испускается в форме видимого света, аналогично тому, как это происходит в случае других фосфоресцирующих или флуоресцирующих органических и неорганических соединений.

Таким образом, хлорофилл, находясь в пробирке, сам по себе не способен запасать или использовать энергию света; энергия эта быстро рассеивается, как если бы произошло короткое замыкание. Однако в клетке хлорофилл стерически связан с другими специфическими молекулами; поэтому, когда он под влиянием поглощения света приходит в возбужденное состояние, «горячие», или богатые энергией, электроны не возвращаются в свое нормальное (невозбужденное) энергетическое состояние; вместо этого электроны отрываются от молекулы хлорофилла и переносятся молекулами - переносчиками электронов, которые передают их друг другу по замкнутой цепи реакций. Проделывая этот путь вне молекулы хлорофилла, возбужденные электроны постепенно отдают свою энергию и возвращаются на свои прежние места в молекуле хлорофилла, которая после этого оказывается готовой к поглощению второго фотона. Тем временем энергия, отданная электронами, используется на образование АТФ из АДФ и фосфата - иными словами, на «зарядку» аденозинфосфатной системы фотосинтезирующей клетки.

Переносчики электронов, служащие посредниками в этом процессе фотосинтетического фосфорилирования, еще не вполне установлены. Один из таких переносчиков, по-видимому, содержит рибофлавин (витамин В 2) и витамин К. Другие предварительно отнесены к цитохромам (белки, содержащие атомы железа, окруженные порфириновыми группами, которые по расположению и строению напоминают порфирин самого хлорофилла). По крайней мере два из этих переносчиков электронов способны обеспечить связывание части переносимой ими энергии для восстановления АТФ из АДФ.

Такова основная схема превращения энергии света в энергию фосфатных связей АТФ, разработанная Д. Арноном и другими учеными.

Однако в процессе фотосинтеза происходит, помимо связывания солнечной энергии, еще и синтез углеводов. В настоящее время полагают, что некоторые из «горячих» электронов возбужденной молекулы хлорофилла вместе с ионами водорода, происходящими из воды, вызывают восстановление (т. е. получение дополнительных электронов или атомов водорода) одного из переносчиков электронов - трифосфопиридиннуклеотида (ТПН, в восстановленной форме ТПН-Н).

В процессе ряда темновых реакций, названных так потому, что они могут происходить в отсутствие света, ТПН-Н вызывает восстановление двуокиси углерода до углевода. Большую часть необходимой для этих реакций энергии доставляет АТФ. Характер этих темновых реакций исследован главным образом М. Кальвином и его сотрудниками. Одним из побочных продуктов первоначального фотовосстановления ТПН служит ион гидроксила (ОН —). Хотя мы еще не располагаем полными данными, предполагается, что этот ион отдает свой электрон одному из цитохромов в цепи фотосинтетических реакций, конечным продуктом которых оказывается молекулярный кислород. Электроны движутся по цепи переносчиков, внося свой энергетический вклад в образование АТФ, и, в конце концов растратив всю свою избыточную энергию, попадают в молекулу хлорофилла.

Как и следовало ожидать на основании строго закономерного и последовательного Характера процесса фотосинтеза, молекулы хлорофилла расположены в хлоропластах не беспорядочно и, уж конечно, не просто суспендированы в наполняющей хлоропласты жидкости. Напротив, молекулы хлорофилла образуют в хлоропластах упорядоченные структуры - граны, между которыми располагается разделяющее их переплетение волокон или мембран. Внутри каждой граны плоские молекулы хлорофилла лежат стопками; каждую молекулу можно считать аналогичной отдельной пластинке (электроду) элемента, граны - элементам, а совокупность гран (т. е. весь хлоропласт) - электрической батарее.

Хлоропласты содержат также все те специализированные молекулы - переносчики электронов, которые вместе с хлорофиллом участвуют в извлечении энергии из «горячих» электронов и используют эту энергию для синтеза углеводов. Извлеченные из клетки хлоропласты могут осуществлять весь сложнейший процесс фотосинтеза.

Эффективность этих миниатюрных фабрик, работающих на солнечной энергии, поразительна. В лаборатории при соблюдении некоторых специальных условий можно показать, что в процессе фотосинтеза до 75% света, падающего на молекулу хлорофилла, превращается в химическую энергию; правда, цифру эту нельзя считать вполне точной, и по этому поводу еще происходят дебаты. В поле вследствие неодинаковой освещенности листьев солнцем, а также по ряду других причин эффективность использования солнечной энергии гораздо ниже - порядка нескольких процентов.

Таким образом, молекула глюкозы, представляющая собой конечный продукт фотосинтеза, должна содержать довольно значительное количество солнечной энергии, заключенной в ее молекулярной конфигурации. В процессе дыхания гетеротрофные клетки извлекают эту энергию, постепенно расщепляя молекулу глюкозы, с тем чтобы «законсервировать» содержавшуюся в ней энергию во вновь образующихся фосфатных связях АТФ.

Существуют разные типы гетеротрофных клеток. Одни клетки (например, некоторые морские микроорганизмы) могут жить без кислорода; другим (например, клеткам мозга) кислород абсолютно необходим; третьи (например, мышечные клетки) более разносторонни и способны функционировать как при наличии кислорода в среде, так и при его отсутствии. Кроме того, хотя большинство клеток предпочитает использовать в качестве основного горючего глюкозу, некоторые из них могут существовать исключительно за счет аминокислот или жирных кислот (главным сырьем для синтеза которых служит все та же глюкоза). Тем не менее расщепление молекулы глюкозы в клетках печени можно считать примером процесса получения энергии, типичным для большинства известных нам гетеротрофов.

Общее количество энергии, содержащейся в молекуле глюкозы, определить весьма просто. Сжигая определенное количество (пробу) глюкозы в лаборатории, можно показать, что при окислении молекулы глюкозы образуется 6 молекул воды и 6 молекул двуокиси углерода, причем реакция сопровождается выделением энергии в виде тепла (примерно 690 000 калорий на 1 грамм-молекулу, т. е. на 180 граммов глюкозы). Энергия в форме тепла, конечно, бесполезна для клетки, которая функционирует при практически постоянной температуре. Постепенное окисление глюкозы в процессе дыхания происходит, однако, таким образом, что большая часть свободной энергии молекулы глюкозы сохраняется в удобной для клетки форме.

В итоге клетка получает более 50% всей освободившейся при окислении энергии в форме энергии фосфатных связей. Такой высокий к. п. д. выгодно отличается от того, который обычно достигается в технике, где редко удается превратить в механическую или электрическую энергию более одной трети тепловой энергии, получаемой при сгорании топлива.

Процесс окисления глюкозы в клетке делится на две основные фазы. Во время первой, или подготовительной, фазы, называемой гликолизом, происходит расщепление шестиуглеродной молекулы глюкозы на две трехуглеродные молекулы молочной кислоты. Этот, казалось бы, простой процесс состоит не из одной, а по меньшей мере из 11 ступеней, причем каждая ступень катализируется своим особым ферментом. Может показаться, что сложность этой операции противоречит афоризму Ньютона «Natura entm simplex esi» («природа проста»); однако следует помнить, что назначение этой реакции заключается не в том, чтобы просто расщепить молекулу глюкозы пополам, а в том, чтобы выделить из этой молекулы заключенную в ней энергию. Каждый из промежуточных продуктов содержит фосфатные группы, и в итоге в процессе реакции используются две молекулы АДФ и две фосфатные группы. В конечном счете в результате расщепления глюкозы образуется не только две молекулы молочной кислоты, но, кроме того, еще и две новые молекулы АТФ.

К чему это приводит в энергетическом выражении? Термодинамические уравнения показывают, что при расщеплении одной грамм-молекулы глюкозы с образованием молочной кислоты выделяется 56 000 калорий. Поскольку при образовании каждой грамм-молекулы АТФ связывается 10000 калорий, эффективность процесса улавливания энергии составляет на этой ступени около 36 % - весьма внушительная цифра, если исходить из того, с чем обычно приходится иметь дело в технике. Однако эти 20 000 калорий, превращенные в энергию фосфатных связей, представляют собой лишь ничтожную часть (около 3%) всей энергии, заключенной в грамм-молекуле глюкозы (690 000 калорий). Между тем многие клетки, например, анаэробные клетки или мышечные клетки, находящиеся в состоянии активности (и в это время неспособные к дыханию), существуют за счет этого ничтожного по своей эффективности использования энергии.

После расщепления глюкозы до молочной кислоты аэробные клетки продолжают извлекать большую часть оставшейся энергии в процессе дыхания, во время которого трехуглеродные молекулы молочной кислоты расщепляются на одноуглеродные молекулы двуокиси углерода. Молочная кислота, или, вернее, ее окисленная форма - пировиноградная кислота, претерпевает еще более сложный ряд реакций, причем каждая из этих реакций опять-таки катализируется особой ферментной системой. Сначала трехуглеродное соединение распадается с образованием активированной формы уксусной кислоты (ацетилкофермента А) и двуокиси углерода. Затем «двухуглеродный фрагмент» (ацетилкофермент А) соединяется с четырехуглеродным соединением, щавелевоуксусной кислотой, в результате чего получается лимонная кислота, содержащая шесть атомов углерода. Лимонная кислота в процессе ряда реакций вновь превращается в щавелевоуксусную кислоту, и три углеродных атома пировиноградной кислоты, «поданные» в этот цикл реакций, в конечном счете дают молекулы двуокиси углерода. Эта «мельница», которая «перемалывает» (окисляет) не только глюкозу, но также молекулы жиров и аминокислот, предварительно расщепленные до уксусной кислоты, известна под названием цикла Кребса или цикла лимонной кислоты.

Впервые цикл был описан Г. Кребсом в 1937 г. Открытие это представляет собой один из краеугольных камней современной биохимии, и его автор был удостоен в 1953 г. Нобелевской премии.

Цикл Кребса позволяет проследить окисление молочной кислоты до двуокиси углерода; однако одним этим циклом нельзя объяснить, каким образом заключенные в молекуле молочной кислоты большие количества энергии удается извлечь в форме, пригодной для использования в живой клетке. Этот процесс извлечения энергии, сопровождающий цикл Кребса, в последние годы интенсивно изучается. Общая картина более или менее выяснилась, однако многие детали еще предстоит исследовать. По-видимому, в течение цикла Кребса электроны при участии ферментов отрываются от промежуточных продуктов и передаются по ряду молекул-переносчиков, объединяемых под общим названием дыхательной цепи. Эта цепь ферментных молекул представляет собой конечный общий путь всех электронов, отторгнутых от молекул питательных веществ в процессе биологического окисления. В последнем звене этой цепи электроны в конце концов соединяются с кислородом и образуется вода. Таким образом, распад питательных веществ при дыхании представляет собой процесс, обратный процессу фотосинтеза, при котором удаление электронов из воды приводит к образованию кислорода. Более того, переносчики электронов в дыхательной цепи химически весьма сходны с соответствующими переносчиками, участвующими в процессе фотосинтеза. Среди них имеются, например, рибофлавиновые и цитохромные структуры, сходные с аналогичными структурами хлоропласта. Тем самым подтверждается афоризм Ньютона о простоте природы.

Как и при фотосинтезе, энергия электронов, переходящих по этой цепи к кислороду, улавливается и используется для синтеза АТФ из АДФ и фосфата. Собственно говоря, это происходящее в дыхательной цепи фосфорилирование (окислительное фосфорилирование) изучено лучше, чем фосфорилирование, происходящее при фотосинтезе, которое открыто сравнительно недавно. Твердо установлено, например, существование в дыхательной цепи трех центров, в которых происходит «зарядка» аденозинфосфата, т. е. образование АТФ. Таким образом, на каждую пару электронов, отщепленных от молочной кислоты в течение цикла Кребса, образуется в среднем по три молекулы АТФ.

На основании общего выхода АТФ в настоящее время можно рассчитать термодинамическую эффективность, с которой клетка извлекает энергию, ставшую ей доступной благодаря окислению глюкозы. Предварительное расщепление глюкозы на две молекулы молочной кислоты дает две молекулы АТФ. Каждая молекула молочной кислоты в конечном счете передает в дыхательную цепь шесть пар электронов. Поскольку каждая пара электронов, проходящая по цепи, вызывает превращение трех молекул АДФ в АТФ, в процессе собственно дыхания образуется 36 молекул АТФ. При образовании каждой грамм-молекулы АТФ связывается, как мы уже указывали, около 10 000 калорий и, следовательно, 38 грамм-молекул АТФ связывают примерно 380000 из 690000 калорий, содержавшихся в исходной грамм-молекуле глюкозы. Эффективность сопряженных процессов гликолиза и дыхания можно, таким образом, считать равной по крайней мере 55%.

Чрезвычайная сложность процесса дыхания служит еще одним указанием на то, что участвующие в нем ферментные механизмы не могли бы функционировать, если бы составные части были просто перемешаны в растворе. Подобно тому, как молекулярные механизмы, связанные с фотосинтезом, имеют определенную структурную организацию и заключены в хлоропласте, так и органы дыхания клетки - митохондрии - представляют собой такую же структурно упорядоченную систему.

В клетке в зависимости от ее типа и характера ее функции может находиться от 50 до 5000 митохондрий (клетка печени содержит, например, около 1000 митохондрий). Они достаточно велики (3-4 микрона в длину), чтобы их можно было видеть в обычный микроскоп. Однако ультраструктура митохондрий различима лишь в электронный микроскоп.

На электронных микрофотографиях можно видеть, что митохондрия имеет две мембраны, причем внутренняя мембрана образует складки, заходящие в тело митохондрии. Проведенное недавно исследование митохондрий, выделенных из клеток печени, показало, что молекулы ферментов, участвующих в цикле Кребса, расположены в матриксе, или растворимой части внутреннего содержимого митохондрий, тогда как ферменты дыхательной цепи в форме молекулярных «ансамблей» расположены в мембранах. Мембраны состоят из чередующихся слоев молекул белка и липидов (жиров); такое же строение имеют мембраны в гранах хлоропластов.

Таким образом, существует явное сходство в строении этих двух главных «силовых станций», от которых зависит вся жизнедеятельность клетки, ибо одна из них «запасает» солнечную энергию в фосфатных связях АТФ, а другая превращает энергию, заключенную в питательных веществах, в энергию АТФ.

Успехи современной химии и физики позволили недавно уточнить пространственное строение некоторых больших молекул, например, молекул ряда белков и ДНК, т. е. молекул, содержащих генетическую информацию.

Следующий важный этап изучения клетки состоит в том, чтобы выяснить расположение больших ферментных молекул (которые сами представляют собой белки) в мембранах митохондрий, где они находятся вместе с липидами - расположение, обеспечивающее надлежащую ориентацию каждой молекулы катализатора и возможность ее взаимодействия с последующим звеном всего рабочего механизма. «Монтажная схема» митохондрии уже ясна!

Современные сведения относительно силовых установок клетки показывают, что она оставляет далеко позади не только классическую энергетику, но и новейшие, гораздо более блистательные достижения техники.

Электроника достигла поразительных успехов в компоновке и уменьшении размеров составных элементов счетно-решающих устройств. Однако все эти успехи не идут ни в какое сравнение с совершенно невероятной миниатюрностью сложнейших механизмов превращения энергии, выработанных в процессе органической эволюции и имеющихся в каждой живой клетке.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Способность к фотосинтезу - основной признак зеленых растений.Растения как все живые организмы должны питаться, дышать, удалять ненужные вещества, расти, размножаться, реагировать на изменения окружающей среды . Все это обеспечивается работой соответствующих органов организма. Обычно органы формируют системы органов, которые совместной работой обеспечивают выполнение той или иной функции живого организма. Таким образом, живой организм можно представить как биосистему. Каждый орган в живом растении выполняет определенную работа.Корень поглощает из почвы воду с минеральными веществами и укрепляет растение в почве. Стебель выносит листья к свету. По стеблю передвигается вода, а также минеральные и органические вещества. В хлоропластах листа на свету из неорганических веществ образуются органические вещества, которыми питаются клетки всех органов растения . Листья испаряют воду.

Если нарушается работа какого-либо одного органа организма, то это может вызвать нарушение работы других органов и всего организма. Если, например, через корень перестанет поступать вода, то все растение может погибнуть. Если в растении не образуется достаточно хлорофилла в листьях, то оно не сможет синтезировать для своей жизнедеятельность достаточное количество органических веществ.

Таким образом жизнедеятельность организма обеспечивается взаимосвязанной работой всех систем органов. Жизнедеятельность - это все процессы, которые протекают в организме.

Благодаря питанию организм живет и растет. В процессе питания из окружающей среды поглощаются необходимые вещества. Далее в организме они усваиваются. Из почвы растения поглощают воду и минеральные вещества. Надземные зеленые органы растений из воздуха поглощают углекислый газ. Вода и углекислый газ используются растениями для синтеза органических веществ, которые используются растением для обновления клеток тела, роста и развития.

В процессе дыхания происходит газообмен. Из окружающей среды поглощается кислород, а из организма выделяется углекислый газ и пары воды. Кислород необходим всем живым клеткам для выработки энергии.

В процессе обмена веществ образуются ненужные организму вещества, которые выделяются в окружающую среду.

Когда растение достигает определенных размеров и необходимого для ее вида возраста, если оно находится в достаточно благоприятных условиях среды, то оно приступает к размножению. В результате размножения увеличивается количество особей.

В отличие от подавляющего большинства животных растения растут в течение всей жизни.

Приобретение организмов новых свойств называется развитием.

На питание, дыхание, обмен веществ, рост и развитие, а также размножение оказывают влияние условия среды обитания растения. Если они не достаточно благоприятны, то растение может плохо расти и развиваться, его процессы жизнедеятельности будут подавлены. Таким образом, жизнедеятельность растений зависит от окружающей среды.


Вопрос 3­_Клеточная оболочка, её функции, состав, структура. Первичная и вторичная оболочка.

Клетка любого организма, представляет собой целостную живую систему. Она состоит из трех неразрывно связанных между собой частей: оболочки, цитоплазмы и ядра. Оболочка клетка осуществляет непосредственное взаимодействие с внешней средой и взаимодействие с соседними клетками (в многоклеточных организмах).Оболочка клеток . Оболочка клеток имеет сложное строение. Она состоит из наружного слоя и расположенной под ним плазматической мембраны.У растений, а также у бактерий, сине-зеленых водорослей и грибов на поверхности клеток расположена плотная оболочка, или клеточная стенка. У большинства растений она состоит из клетчатки. Клеточная стенка играет исключительно важную роль: она представляет собой внешний каркас, защитную оболочку, обеспечивает тургор растительных клеток: через клеточную стенку проходит вода, соли, молекулы многих органических веществ.

Клеточная оболочка или стенка - жёсткая оболочка клетки, расположенная снаружи от цитоплазматической мембраны и выполняющая структурные, защитные и транспортные функции. Обнаруживается у большинства бактерий, архей, грибов и растений. Животные и многие простейшие не имеют клеточной стенки.

Функции клеточной оболочки:

1. Транспортная функция обеспечивает избирательную регуляцию обмена веществ между клеткой и внешней средой, поступления веществ в клетку (за счет полупроницаемости мембраны), а также регуляцию водного баланса клетки

1.1. Трансмембранный транспорт (т. е. через мембрану) :
- Диффузия
- Пассивный транспорт = облегченная диффузия
- Активный = избирательный транспорт (с участием АТФ и ферментов) .

1.2. Транспорт в мембранной упаковке:
- Экзоцитоз - выделение веществ из клетки
- Эндоцитоз (фаго- и пиноцитоз) - поглощение веществ клеткой

2) Рецепторная функция .
3) Опорная («скелет») - поддерживает форму клетки, придает прочность. Это, главным образом, функция клеточной стенки.
4) Изоляция клетки (ее живого содержимого) от окружающей среды.
5) Защитная функция.
6) Контакт с соседними клетками. Объединение клеток в ткани .