Для отсутствия автокорреляции остатков характерно постоянство. Обнаружение автокорреляции остатков. Причины автокорреляции остатков

Автокорреляция остатков может возникать по нескольким причинам:

Во-первых, иногда автокорреляция связана с исходными данными и наличием ошибок измерения в значениях Y.

Во-вторых, иногда причину автокорреляции остатков следует искать в формулировке модели. В модель может быть не включен фактор, оказывающий существенное воздействие на результат, но влияние у которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными. Зачастую этим фактором является фактор времени t.

Иногда, в качестве существенных факторов могут выступать лаговые значения переменных , включенных в модель. Либо в модели не учтено несколько второстепенных факторов, совместное влияние которых на результат существенно ввиду совпадения тенденций их изменения или циклических колебаний.

Автокорреляция бывает явной и неявной.

Явная наблюдается в случае, когда известна точная зависимость между уровнями шоковой переменной, полученными в различные моменты времени.

Неявная – когда такая зависимость является стохастической:

Зависимость такого вида достаточно часто встречается при анализе временных рядов и носит название модели авторегрессии первого порядка AP (1).

К последствиям наличия в модели автокорреляции относятся:

а) увеличение дисперсий оценок параметров модели;

б) смещение оценок, полученных по МНК;

в) снижение значимости оценок параметров.

Если ρ >0, то автокорреляция будет положительной, а если ρ < 0 – отрицательной.

Наиболее популярным критерием диагностики эконометрической модели на наличие автокорреляции является тест Дарбина-Уотсона.

Кроме точечной проверки наличия автокорреляции шоковой переменной на практике проверяют статистические гипотезы следующих видов:

Критерии проверки гипотез 1) и 2) основаны на специальных таблицах Дарбина-Уотсона, в которых по уровню надежности содержаться доверительные границы статистики .

Однако, существуют особые ограничения при использовании теста Дарбина-Уотсона.



1) Модель должна содержать свободный член ;

2) Модель не должна содержать лаговых переменных.

В других учебниках существует деление автокорреляции на чистую и ложную .

Чистая вызывается зависимостью случайного члена от прошлых значений. Она, в свою очередь, делится на автокорреляцию первого порядка, второго порядка и высших порядков.

Ложная автокорреляция вызывается неправильной спецификацией модели.

Причинами чистой автокорреляции могут быть:

1. Инерция. Трансформация и изменение многих экономических показателей обладает инерционностью.

2. Эффект паутины. Многие экономические показатели реагируют на изменение экономических условий с временным лагом (запаздыванием).

3. Сглаживание данных. Усреднение данных по некоторому продолжительному интервалу времени.

Последствия автокорреляции:

1. Истинная автокорреляция не приводит к смещению оценок регрессии, но оценки перестают быть эффективными.

2. Автокорреляция (особенно положительная) часто приводит к уменьшению стандартных ошибок коэффициентов, что влечет за собой увеличение t -статистик.

3. Оценка дисперсии остатков S e 2 является смещенной оценкой истинного значения σ e 2 , во многих случаях занижая его.

4. В силу вышесказанного выводы по оценке качества коэффициентов и модели в целом, возможно, будут неверными. Это приводит к ухудшению прогнозных качеств модели.


В силу неизвестности значений параметров регрессии неизвестными будут также и истинные значения отклонений , поэтому выводы об их независимости осуществляются на основе оценок , полученных из эмпирического уравнения регрессии. Рассмотрим возможные методы определения автокорреляции.

Графический метод . Существует несколько вариантов графического определения автокорреляции. Один из них состоит в анализе последовательно-временных графиков. По оси абсцисс откладывают время, либо порядковый номер наблюдения, а по оси ординат – отклонения (Рис. 1).

Естественно предположить, что на рис. 1, а - г имеются определенные связи между отклонениями, т.е. автокорреляция имеет место. Отсутствие зависимости на рис. 1, д скорее всего свидетельствует об отсутствии автокорреляции.

Например, на рис. 1, б отклонения вначале в основном отрицательные, затем положительные, потом снова отрицательные. Это свидетельствует о наличии между отклонениями определенной зависимости. Более того, можно утверждать, что в этом случае имеет место положительная автокорреляция остатков. Она становится весьма наглядной, если график 1, б дополнить графиком зависимости от (рис. 2).

Подавляющее большинство точек на этом графике расположено в I и III четвертях декартовой системы координат, подтверждая положительную зависимость между соседними отклонениями.

Современные ППП решение задач построения регрессии дополняют графическим представлением результатов: график реальных колебаний зависимой переменной накладывается на график колебаний переменной по уравнению регрессии. Сопоставление этих графиков часто дает возможность выдвинуть гипотезу о наличии автокорреляции.

Метод рядов . Последовательно определяются знаки отклонений . Например,

(-----)(+++++++)(---)(++++)(-), т.е. 5 «-», 7 «+», 3 «-», 4 «+», 1 «-» при 20 наблюдениях.

Ряд определяется как непрерывная последовательность одинаковых знаков. Количество знаков в ряду называют длиной ряда. Визуальное распределение знаков свидетельствует о неслучайном характере связей между отклонениями. Если рядов слишком мало по сравнению с количеством наблюдений n, то вполне вероятна положительная автокорреляция. Если рядов слишком много, то вероятна отрицательная автокорреляция. Пусть n – объем выборки, n1 и n2 – общее количество, соответственно, знаков «+» и «-», k – количество рядов.

При достаточно большом количестве наблюдений (n1 > 10,

n2 > 10) и отсутствии автокорреляции случайная величина k имеет асимптотически нормальное распределение с

; .

Тогда, если , то гипотеза об отсутствии автокорреляции не отклоняется.

Число определяется по таблице функции стандартного нормального распределения из равенства F() = . Например, при , =1,96 и при , =2,58.

Для небольшого числа наблюдений (n1 < 20, n2 < 20) разработаны таблицы критических значений количества рядов при n наблюдениях. Суть таблиц в следующем.

На пересечении строки n1 и столбца n2 определяются нижнее k1 и верхнее k2 значения при уровне значимости (Рис.3).

автокорреляция > 0 автокорреляция = 0 автокорреляция < 0

Kk1_________k1

Пример 1. Пусть изучается зависимость среднедушевых расходов на конечное потребление y от среднедушевого дохода х по данным некоторой страны за 16 лет.

Исходные (и расчетные для примера 3) данные (усл.ед.) представлены в следующей таблице:

Пусть исходная модель имеет вид: .

По исходным данным с использованием МНК получено следующее оцененное уравнение регрессии:


ВЫВОД ИТОГОВ

Регрессионная статистика

Множественный R

R-квадрат

Нормированный R-квадрат

Стандартная ошибка

Наблюдения

Дисперсионный анализ

Значимость F

Регрессия

3 Проверка автокорреляции остатков

При наличии автокорреляции в остатках et оценки коэффициентов регрессии модели, полученные МНК, не будут иметь оптимальные статистические свойства (стандартная ошибка уравнения регрессии и построенные на ее основе доверительные интервалы ненадежны). Автокорреляция в остатках свидетельствует о неудачном подборе модели, о ее несовершенстве. Классические методы математической статистики лишь тогда применимы, когда отдельные члены статистического ряда независимы (некоррелированы). Но и при предпосылке нормального распределения и отсутствия автокорреляции в генеральной совокупности, из которой временной ряд взят, нельзя, к сожалению, разработать точной проверки автокорреляции при малых выборках. Ниже рассмотрены три приема проверки автокорреляции.

1. Один из возможных путей приближенной оценки автокорреляции основывается на использовании первого эмпирического нециклического коэффициента автокорреляции . К сожалению, распределение этого коэффициента для выборок из нормально распределенной, не автокоррелированной генеральной совокупности неизвестно. Поэтому мы пользуемся введенным Р.Л. Андерсоном циклическим коэффициентом автокорреляции, который определяется следующим образом:


(4.14)

Циклическим коэффициентом автокорреляции для сдвига является коэффициент автокорреляции между рядами и . При этом мы предполагаем, что временной ряд повторяется, т.е. что за последним членом xn снова следуют члены x1,x2,... Для циклический коэффициент автокорреляции первого порядка будет коэффициентом корреляции между рядами и x2 ,x3 ,...,xn , x1 . Для больших выборок циклический коэффициент автокорреляции и нециклический коэффициент автокорреляции практически совпадают, для малых выборок их равенство приблизительно. Расчетное значение сравнивается при данной численности наблюдений n с граничными значениями (табл. П.5 Приложения). При положительной автокорреляции оно признается существенным для , если выполняется неравенство > , в противном случае, если , она отсутствует. При отрицательной автокорреляции оно признается существенным, если < , а несущественной - при . Изложенный выше метод может быть использован и для проверки автокорреляции остатков . В последнем случае автокорреляционная функция принимает более простой вид:

(4.15)

2. Для проверки значимости автокорреляции чаще всего используют критерий Дарбина-Уотсона (иногда его обозначают DW). Построенный на основе гипотезы о существовании автокорреляции первого порядка: (4.16)

Где n - длина временного ряда. Величина d имеет симметрическое распределение со средней, равный 2. При отсутствии автокорреляции значение , при полной положительной - d=0 , при полной отрицательной - d=4 .
Расчетное значение d сравнивают с граничными его значениями dL и dU , при этом возможны следующие случаи:

Таблица 4.3


Значение d

Суждение

0 £ d < dL

имеется положительная автокорреляция



неопределенность
автокорреляция отсутствует
неопределенность
имеется отрицательная автокорреляция

Значения dL и dU табулированы (табл. П.7 Приложения) для значений n в интервале 7-100. В этой таблице v означает число независимых переменных в уравнении регрессии. Для функции вида xt =x (t) , v=1 .

3. Иногда вместо статистики Дарбина-Уотсона используется средняя Неймана Q:
(4.17)

(4.18)

(4.19)

Если вычисленное по формуле (4.17) значение Q меньше некоторого критического для данного числа наблюдений n значения (для ), то мы говорим о положительной автокорреляции остатков, если больше значения - то об отрицательной автокорреляции. Эти значения приводятся в табл. П.8 Приложения.

Пример 20. Проверим наличие автокорреляции остатков, полученных в результате моделирования временного ряда примера 1 (см. пример 18).
Прием 1. (через циклический коэффициент автокорреляции).
Первый эмпирический нециклический коэффициент автокорреляции рассчитываем по следующим данным:

1
2
3
4
5
6
7

9
10
11
12
13
14
15

12,051
10,977
-4,097
0,829
-8,245
-6,319
-1,393

8,541
-2,615
4,311
1,237
2,163

Вернемся еще раз к предположению (3.3). Из него, в частности, следует, что ковариации случайной ошибки для разных наблюдений равны нулю. Если к тому же случайные ошибки распределены нормально, то это означает их попарную независимость.

Однако регрессионные модели в экономике часто содержат стохастические зависимости между значениями случайных ошибок – автокорреляцию ошибок . Ее причинами являются: во-первых, влияние некоторых случайных факторов или опущенных в уравнении регрессии важных объясняющих переменных, которое не является однократным, а действует в разные периоды времени; во-вторых, случайный член может содержать составляющую, учитывающую ошибку измерения объясняющей переменной.

Применение к модели с автокорреляцией остатков обыкновенного МНК приведет к следующим последствиям :

1. Выборочные дисперсии полученных оценок коэффициентов будут больше по сравнению с дисперсиями по альтернативным методам оценивания, т.е. оценки коэффициентов будут неэффективны.

2. Стандартные ошибки коэффициентов будут оценены неправильно, чаще всего занижены, иногда настолько, что нет возможности воспользоваться для проверки гипотез соответствующими точными критериями – мы будем чаще отвергать гипотезу о незначимости регрессии, чем это следовало бы делать в действительности.

3. Прогнозы по модели получаются неэффективными.

На практике исследователь в этом случае поставлен перед проблемой тестирования наличия в модели автокорреляции, а также выявления причины автокорреляции при ее обнаружении: или в модели опущена существенная переменная, или структура ошибок зависит от времени. То есть, исследование остатков позволяет судить о правильности модели и ее пригодности для прогнозирования.

Простейшим способом проверки наличия автокорреляции является графическое изображение остатков e i . Возможно построение:

· графика временной последовательности, если остатки получены в разные моменты времени;

· графика зависимости остатков от значений , полученных по регрессии;



· графиков зависимости остатков от объясняющих переменных.

Если изображение остатков представляет собой горизонтальную полосу, это указывает на отсутствие каких-либо проблем, связанных с моделью. В противном случае в зависимости от вида и типа графика можно получить информацию о: неадекватности модели, ошибочности расчетов, необходимости включения в модель линейного или квадратичного члена от времени; наконец о непостоянстве дисперсии.

Ясно, что ошибки могут коррелировать по-разному, однако без нарушения общности можно рассматривать так называемую сериальную корреляцию (автокорреляцию), когда зависимость между ошибками, отстоящими на некоторое количество шагов s , называемое порядком корреляции (в частности, на один шаг, s =1), остается одинаковой, что хорошо проявляется визуально на графике в системе координат (e i ; e i - s ). Например, для s =1 на рис. 4.2 показаны отрицательная (слева) и положительная (справа) автокорреляция остатков. В экономических исследованиях чаще всего встречается положительная автокорреляция.


Рис. 4.2. Автокорреляция остатков

Более достоверным способом проверки существования автокорреляции является применение статистических критериев. Хорошо известны два – критерий знаков (относится к непараметрическим критериям) и критерий Дарбина-Уотсона .

Для проведения проверки по критерию знаков необходимо расположить остатки e i во временной последовательности, выписать их знаки, подсчитать число образующихся при этом серий n u из одинаковых знаков, а также n 1 – число остатков со знаком плюс и n 2 – число остатков со знаком минус. Далее определяется вероятность Pr (n u ) появления n u групп при нулевой гипотезе – последовательность остатков полностью случайна (автокорреляция отсутствует). Если Pr (n u ) < 1–a , где a – уровень доверия, то нулевая гипотеза отвергается.

Для ускорения расчетов для выборок с n 1 , n 2 не больше 20 составлены таблицы с критическими значениями n u при уровне доверия a =0,05.

Для больших выборок истинное распределение ошибок достаточно точно аппроксимируется нормальным со средним m =2n 1 n 2 /(n 1 +n 2)+1 и дисперсией s 2 =2n 1 n 2 (2n 1 n 2 – n 1 – n 2)/(n 1 + n 2) 2 /(n 1 + n 2 – 1), а величина z =(u m + 0,5)/s подчиняется нормированному нормальному распределению, следовательно, критические значения n u могут быть вычислены по формулам (m + z a s ) и (m z a s ), где z a определяется из условия F 0 (z a )=(1–a )/2 (значения даны в справочниках).

Пример . Получены остатки 0,6; 1,9; –1,8; –2,7; –2,9; 1,4; 3,3; 0,3; 0,8; 2,3; –1,4; –1,1, которые обнаруживают следующую последовательность знаков + + – – – + + + + + – –. Имеем n u =4, n 1 =7, n 2 =5. По таблице находим критические значения для n u : 3 и 11. Так как 3 < n u < 11, то нулевая гипотеза принимается, то есть остатки независимы и автокорреляция отсутствует.Ñ

Критерий знаков достаточно прост и не использует информацию о величине e i , и поэтому недостаточно эффективен.

Для проверки гипотезы о существовании линейной автокорреляции первого порядка, которая чаще всего имеет место на практике, предпочтителен критерий Дарбина-Уотсона , основанный на статистике:

(4.9)

Значения первых разностей ошибки в (4.9) будут обнаруживать тенденцию к уменьшению по абсолютной величине по сравнению с абсолютными значениями e i при положительной автокорреляции и к увеличению при отрицательной автокорреляции.

Для статистики d имеются верхний d U и нижний d L пределы уровня значимости. Различные статистические решения для нулевой гипотезы H 0: автокорреляция равна нулю, даны в табл. 4.3. При этом появляются области неопределенности, так как величина e i зависит не только от значений u , но и от значений последовательных X .

Следует отметить, что критерий Дарбина-Уотсона предназначен для моделей с детерминированными (нестохастическими) регрессорами X и не применим, например, в случаях, когда среди объясняющих переменных есть лаговые значения переменной Y .

Таблица 4.3

Области статистических решений для критерия Дарбина-Уотсона

Пример . Для примера 1 из п. 3.2 n =20, k =2 имеем табл. 4.4.

Значения d L и d U при уровне значимости 5% получим из справочника при n =20 и k =2: d L =1,10, d U =1,54.

Так как d >2, то вычисляем 4–d U =2,46 и 4–d L =2,90 и 2<d <4–d U .

Согласно табл. 4.3 гипотеза о равенстве нулю автокорреляции принимается. Ñ

Какой бы тест на автокорреляцию не использовался, необходимо помнить, что рекомендуется в случаях неопределенности (см. табл. 4.3) принимать гипотезу о наличии автокорреляции, поскольку это гарантирует от отрицательных последствий автокорреляции. В случаях же некорректного принятия гипотезы о равенстве нулю автокорреляции получаем модель, которая не может иметь удовлетворительного применения, хотя формально проходит все проверки.

Таблица 4.4

Вычисление значения статистики d

Ошибка e i e i 2 e i-1 ( e i -e i-1 ) 2 Ошибка e i e i 2 e i -1 (e i -e i -1) 2
-2,49 6,20 -0,68 0,46 -8,72 64,64
-1,86 3,46 -2,49 0,40 5,27 27,72 -0,68 35,40
31,93 1019,21 -1,86 1141,76 -5,29 27,93 5,27 111,51
-3,18 10,11 31,93 1232,71 -16,74 280,23 -5,29 131,10
-2,17 4,71 -3,18 1,02 8,94 79,87 -16,74 659,46
-18,38 337,64 -2,17 262,76 -3,57 12,74 8,94 156,50
-3,45 11,90 -18,38 222,90 5,18 26,79 -3,57 76,56
5,58 31,14 -3,45 81,54 7,72 59,60 5,18 6,45
-3,11 9,67 5,58 75,52 -0,85 0,72 7,72 73,44
-8,72 76,04 -3,11 31,47 4,85 23,47 -0,85 32,49
Сумма 2050,37 4397,66

Рассмотрим методы оценивания уравнения регрессии при наличии автокорреляции остатков.

Пусть имеем обобщенную линейную модель множественной регрессии в виде (4.3)-(4.7) с гомоскедастичными остатками .

Предположим, что остатки u i удовлетворяют следующему уравнению:

u i =ru i -1 +e i , i =2,...,n , (4.10)

E (e i )=0; (4.11)

Тогда несложно показать, что будет выполняться:

. (4.12)

Условие (4.12) является аналогом (4.5) и фактически означает гомоскедастичность дисперсии случайного члена (первая строчка) и автокорреляцию первого порядка (вторая строчка). Ясно, что если бы было известно значение r в (4.10) и затем в (4.12), то можно было бы применить ОМНК (элементы матрицы W в этом случае вычисляются согласно (4.12)) и получить эффективные оценки коэффициентов регрессии. Однако на практике значение r в большинстве случаев не известно, поэтому используются следующие методы оценивания регрессионной модели.

Метод 1 . Отказавшись от определения величины r , являющейся узким местом модели, статистически, можно положить r =0,5; 1 или -1. Однако даже грубая статистическая оценка будет, видимо, более эффективной, поэтому другой способ определения r с помощью статистики Дарбина-Уотсона r»1–0,5d . Применяя затем непосредственно ОМНК, получим оценки коэффициентов.

Метод 2 . Если значение r в (4.12) задано, то альтернативная схема отыскания оценок коэффициентов модели множественной регрессии суть (в целях упрощения, не нарушая общности, иллюстрация метода дана для случая парной регрессии):

а) Запишем уравнение модели для случая i и i –1:

Вычтем из обеих частей первого уравнения умноженное на r второе уравнение:

Метод 3 . Итеративная процедура Кохрейна-Оркатта.

а) Оценивается регрессия с исходными не преобразованными данными с помощью обыкновенного МНК.

б) Вычисляются остатки e i .

в) Оценивается регрессия e i =re i -1 +e i , и коэффициент при e i -1 дает оценку r .

г) С учетом полученной оценки r уравнение преобразовывается к виду (4.13), оценивание которого позволяет получить пересмотренные оценки коэффициентов b 0 и b 1 .

д) Вычисляются остатки регрессии (4.13) и процесс выполняется снова, начиная с этапа в).

Итерации заканчиваются, когда абсолютные разности последовательных значений оценок коэффициентов b 0 , b 1 и r будут меньше заданного числа (точности).

Подобная процедура оценивания порождает проблемы, касающиеся сходимости итерационного процесса и характера найденного минимума: локальный или глобальный.

Метод 4. Метод Хилдрета-Лу основан на тех же принципах, что и рассмотренный метод 3, но использует другой алгоритм вычислений. Здесь регрессия (4.13) оценивается МНК для каждого значения r из диапазона [-1, 1] с некоторым шагом внутри него. Значение, которое дает минимальную стандартную ошибку для преобразованного уравнения (4.13), принимается в качестве оценки r , а коэффициенты регрессии определяются при оценивании уравнения (4.13) с использованием этого значения.

Метод 5. Дарбиным была предложена простая схема, дающая эффективные оценки коэффициентов:

а). Подставляя (4.10) в модель Y i =b 0 +b 1 X i +u i , получим с учетом u i - 1 = Y i -1 - b 0 - b 1 X i -1:

Y i =b 0 (1-r )+rY i -1 +b 1 (X i - rX i -1) + e i ,

где ошибка e i удовлетворяет (4.11). Применяя обыкновенный МНК к последней модели, получаем оценку r как коэффициента при Y i -1 .

б). Вычисляем значения преобразованных переменных и применяем к ним обыкновенный МНК. Получаем искомые оценки коэффициентов регрессии.

Достоинством метода является простота его распространения на случай автокорреляции более высокого порядка.

Как показывают эксперименты, проведенные для малых выборок, лучшим является двухшаговый метод 2, использующий оценку r , полученную по методу, предложенному Дарбиным (метод 5 шаг а)).

Автокорреляция остатков

Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Отсутствие зависимости гарантирует отсутствие коррелированности между любыми отклонениями, т.е. и, в частности, между соседними отклонениями .

Автокорреляция (последовательная корреляция ) остатков определяется как корреляция между соседними значениями случайных отклонений во времени (временные ряды) или в пространстве (перекрестные данные). Она обычно встречается во временных рядах и очень редко – в пространственных данных. В экономических задачах значительно чаще встречается положительная автокорреляция , чем отрицательная автокорреляция .

Чаще всего положительная автокорреляция вызывается направленным постоянным воздействием некоторых не учтенных в регрессии факторов. Например, при исследовании спроса у на прохладительные напитки в зависимости от дохода х на трендовую зависимость накладываются изменения спроса в летние и зимние периоды. Аналогичная картина может иметь место в макроэкономическом анализе с учетом циклов деловой активности.


Применение МНК к данным, имеющим автокорреляцию в остатках, приводит к таким последствиям:

1. Оценки параметров, оставаясь линейными и несмещенными, перестают быть эффективными. Они перестают быть наилучшими линейными несмещенными оценками.

2. Дисперсии оценок являются смещенными. Часто дисперсии, вычисляемые по стандартным формулам, являются заниженными, что влечет за собой увеличение t – статистик. Это может привести к признанию статистически значимыми факторов, которые в действительности таковыми не являются.

3. Оценка дисперсии регрессии является смещенной оценкой истинного значения σ 2 , во многих случаях занижая его.

4. Выводы по t – и F – статистикам, возможно, будут неверными, что ухудшает прогнозные качества модели.

Для обнаружения автокорреляции используют либо графический метод, либо статистические тесты. Рассмотрим два наиболее популярных теста.

Метод рядов . По этому методу последовательно определяются знаки отклонений от регрессионной зависимости. Например, имеем при 20 наблюдениях

(-----)(+++++++)(---)(++++)(-)

Ряд определяется как непрерывная последовательность одинаковых знаков. Количество знаков в ряду называется длиной ряда . Если рядов слишком мало по сравнению с количеством наблюдений n , то вполне вероятна положительная автокорреляция. Если же рядов слишком много, то вероятна отрицательная автокорреляция.

Пусть n – объём выборки, n 1 – общее количество положительных отклонений; n 2 – общее количество отрицательных отклонений; k – количество рядов. В приведенном примере n =20, n 1 =11, n 2 =5.

При достаточно большом количестве наблюдений (n 1 >10, n 2 >10) и отсутствии автокорреляции СВ k имеет асимптотически нормальное распределение, в котором

Тогда, если

то гипотеза об отсутствии автокорреляции не отклоняется. Если , то констатируется положительная автокорреляция; в случае признается наличие отрицательной автокорреляции.

Для небольшого числа наблюдений (n 1 <20, n 2 <20) были разработаны таблицы критических значений количества рядов при n наблюдениях. В одной таблице в зависимости от n 1 и n 2 определяется нижняя граница k 1 количества рядов, в другой – верхняя граница k 2 . Если k 1 , то говорят об отсутствии автокорреляции. Если , то говорят о положительной автокорреляции. Если ,то говорят об отрицательной автокорреляции. Например, для приведенных выше данных k 1 =6, k 2 =16 при уровне значимости 0,05. Поскольку k=5, определяем положительную автокорреляцию.

Критерий Дарбина-Уотсона . Это наиболее известный критерий обнаружения автокорреляции первого порядка. Статистика DW Дарбина-Уотсона приводится во всех специальных компьютерных программах как одна из важнейших характеристик качества регрессионной модели.

Сначала по построенному эмпирическому уравнению регрессии определяются значения отклонений . Рассчитывается статистика

- положительная автокорреляция;

- зона неопределенности;

- автокорреляция отсутствует;

Зона неопределенности;

- отрицательная автокорреляция.

Можно показать, что статистика DW тесно связана с коэффициентом автокорреляции первого порядка:

Связь выражается формулой:

Отсюда вытекает смысл статистического анализа автокорреляции. Поскольку значения r изменяются от –1 до +1, DW изменяется от 0 до 4. Когда автокорреляция отсутствует, коэффициент автокорреляции равен нулю, и статистика DW равна 2. DW =0 соответствует положительной автокорреляции, когда выражение в скобках равно нулю (r =1). При отрицательной автокорреляции (r =-1) DW =4, и выражение в скобках равна двум.

Ограничения критерия Дарбина – Уотсона:

1. Критерий DW применяется лишь для тех моделей, которые содержат свободный член.

2. Предполагается, что случайные отклонения определяются по итерационной схеме

(1)

3. Статистические данные должны иметь одинаковую периодичность (не должно быть пропусков в наблюдениях).

4. Критерий Дарбина – Уотсона не применим к авторегрессионным моделям вида:

,

где - оценка коэффициента автокорреляции первого порядка (66), D(c) – выборочная дисперсия коэффициента при лаговой переменной y t -1 , n – число наблюдений.

При большом n и справедливости нуль – гипотезы H 0: ρ=0 h~N(0,1) . Поэтому при заданном уровне значимости определяется критическая точка из условия

,

и h- статистика сравнивается с u α /2 . Если |h |>u α /2 , то нуль – гипотеза об отсутствии автокорреляции должна быть отклонена. В противном случае она не отклоняется.

Обычно значение рассчитывается по формуле , а D(c) равна квадрату стандартной ошибки m c оценки коэффициента с . Cледует отметить, что вычисление h – статистики невозможно при nD(c)> 1.

Автокорреляция чаще всего вызывается неправильной спецификацией модели. Поэтому следует попытаться скорректировать саму модель, в частности, ввести какой – нибудь неучтенный фактор или изменить форму модели (например, с линейной на полулогарифмическую или гиперболическую). Если все эти способы не помогают и автокорреляция вызвана какими – то внутренними свойствами ряда {e t }, можно воспользоваться преобразованием, которое называется авторегрессионной схемой первого порядка AR(1 ).

Рассмотрим AR(1) на примере парной регрессии.