Дыхание микробов его типы. Дыхание бактерий. Основы микробиологии, физиологии питания и санитарии

Существует два типа дыхания мкробов – аэробное и анаэробное.

Аэробное дыхание микроорганизмов - это процесс, при котором акцептором водорода (прото­нов и электронов) является молекулярный кислород. В результате окисления, главным образом сложных орга­нических соединений, образуется энергия, которая вы­деляется в среду или накапливается в макроэргических фосфатных связях АТФ. Различают полное и неполное окисление.

Полное окисление. Основной источник энергии у ми­кроорганизмов- углеводы. При их расщеплении, кото­рое происходит разными путями, получается важный промежуточный продукт - пировиноградная кислота. Полное окисление пировиноградной кислоты происходит в цикле трикарбоновых кислот (цикл Креб-са) и дыхательной цепи. В результате расщеп­ления глюкозы в аэробных условиях процесс окисления идет до конца--до образования углерода диоксида и воды с освобождением большого количества энергии: С 6 Н 12 О 6 + 6О 2 -*■ 6СО 2 + 6Н 2 О + 2874,3 к Дж.

Неполное окисление. Не все аэробы доводят реакции окисления до конца. При избытке углеводов в среде образуются продукты неполного окисления, в которых заключена энергия. Конечными продуктами неполного аэробного окисления сахара могут быть органические кислоты: лимонная, яблочная, щавелевая, янтарная и другие, они образуются плесневыми грибами. Например, осуществляется аэробное дыхание уксуснокислыми бак­териями, у которых при окислении этилового спирта об­разуется уксусная кисло­та и вода:

СН 3 СН 2 ОН + О 2 -* СН 3 СООН + Н 2 О + 494,4 к Дж.

У некоторых бактерий в процессе дыхания происхо­дит окисление неорганических соединений. Примером окисления неорганических соединений могут служить процессы нитрификации, при которых нитрифицирующие бактерии вначале окисляют аммиак до азотистой кис­лоты, а затем до азотной. В каждом случае при этом выделяется энергия: в первой фазе 274,9 кДж, во вто­рой-87,6 кДж.

Анаэробное дыхание осуществляется без участия мо­лекулярного кислорода. Различают анаэроб­ное нитратное дыхание, анаэроб­ное сульфатное дыхание и брожение. При анаэробном дыхании акцептором водорода являются окисленные неорганические соединения, которые легко отдают кислород и превращаются в более восстанов­ленные формы, что сопровождается выделением энергии.

1. анаэроб­ное нитратное дыхание - восстановление нитратов до молекулярного азота

2. анаэроб­ное сульфатное дыхание - восстановление сульфатов до сероводорода.

3. Брожение - расщепление органических углеродсо-держащих соединений в анаэробных условиях. Оно ха­рактеризуется тем, что последним акцептором водорода служит молекула органического вещества с ненасыщен­ными связями. Вещество при этом разлагается только до промежуточных продуктов, представляющих собой сложные органические соединения (спирты, органиче­ские кислоты). Заключенная в них энергия в небольших количествах выделяется в окружающую среду. При бро­жении энергии освобождается меньше. Например, при брожении глюкозы освобождается в 24,5 раза меньше энергии, чем при ее аэробном окислении.



Все виды броже­ний до образования пировиноградной кислоты протека­ют одинаково. Дальнейшее превращение пировиноград­ной кислоты зависит от свойств микроба. Гомофермен-тативные молочнокислые бактерии превращают ее в молочную кислоту, дрожжи - в этиловый спирт и т. д.

Классификация микробов по типу дыхания.

По типу дыхания микроорганизмы классифицируют на четыре группы.

1. Облигатные (безусловные) аэробы растут при свободном доступе кислорода. К ним относятся уксуснокислые бактерии, возбудители туберкулеза, сибирской язвы и многие другие.

2. Микроаэрофильные бактерии развиваются при низкой (до 1 %) концентрации кислорода в окружающей атмосфере. Такие условия благоприятны для актиномицетов, лептоспир, бруцелл.

3. Факультативные анаэробы развиваются как при доступе кислорода воздуха, так и в отсутствие его. Имеют соответственно два набора ферментов. Это энтеробактерии, возбудитель рожи свиней.

4. Облигатные (безусловные) анаэробы развиваются при полном отсутствии кислорода в окружающей среде. Анаэробные условия (обходимы маслянокислым бактериям, возбудителям столбняка, ботулизма, газовой гангрены, эмфизематозного карбункула, некробактериоза.


Дыхание - метаболический процесс протекающий в клетках с освобождением энергии и генерированием АТФ, в котором конечным акцептором электронов (водорода) служат неорганические соединения. В зависимости от конечного акцептора электронов различают аэробное и анаэробное дыхание. При аэробном дыхании акцептором водорода является кислород, при анаэробном - неорганические окисленные соединения типа нитратов и сульфатов.
Аэробное дыхание. В качестве энергетического субстрата для дыхательного метаболизма микроорганизмы используют широкий круг природных соединений. Независимо от сложности структуры окисляемого субстрата потребление его в качестве источника энергии основано на одном и том же принципе: постепенное расщепление до образования простых соединений, способных вступать в реакции цикла трикарбоновых кислот. Таким соединением основных метаболических путей является пируват.
Окисление пирувата при аэробном дыхании осуществляется в цикле Кребса, в который он поступает при посредстве ацетил-КоА. Полное окисление его приводит к освобождению двух молекул углекислоты и восьми атомов водорода. Акцептором водорода, как указано выше, у аэробных бактерий является кислород. Передача

водорода (электронов) на кислород осуществляется через последовательную цепь молекул-переносчиков, так называемую дыхательную цепь, или цепь транспорта электронов:
Субстрат gt; НАД* Н2 gt; Флавопротеид gt; Кофермент О
gt; Цитохром с gt; Цитохром аа3 gt; 02
Дыхательная цепь представляет собой систему пространственно организованных молекул-переносчиков, осуществляющих перенос электронов от окисляемого субстрата к акцептору. Она развита у аэробов и факультативных анаэробов, только у последних терминальным акцептором электронов, кроме кислорода, являются нитраты и сульфаты.
Компонентами дыхательной цепи, локализованными в мембране, являются такие переносчики белковой природы, как флавопротеиды, FeS-белки, цитохромы, и небелковой природы - хиноны (убихиноны, менахиноны). НАД(Ф)-зависимые дегидрогеназы, отщепляющие водород от окисляемого субстрата - растворимые ферменты; флавопротеидные дегидрогеназы могут находиться либо в мембране, либо в растворимой форме в цитоплазме.
хиноны осуществляют перенос атомов и цитохромы - электронов. Так как содержащие переносчики электронов, погружены в цитоплазму, то имеется прямое взаимодействие между дыхательной цепью, с одной стороны, и окисляемым субстратом, АДФ и неорганическим фосфатом цитоплазмы - с другой. Такое свободное взаимодействие дыхательной цепи с цитоплазмой определяет отличительные особенности функционирования дыхательного аппарата прокариот от эукариот. Так, дыхательные цепи прокариот менее стабильны по сотаву переносчиков электронов и энергетически менее эффективны. В дыхательной цепи эукариот имеются три участка, где происходит выброс протонов и
А/л + , у большинства прокариот - только один- н
два участка, т. е. суммарный выход энергии у прокариот ниже.

Функционирование дыхательной цепи осуществляется
следующим образом. Водород окисляемого субстрата,
освобожденный в реакциях цикла Кребса или мобилизованный непосредственно НАД (Н2)-зависимыми дегидрогеназами передается в дыхательную цепь на флавиновые дегидрогеназы, затем на убихиноны. Здесь атом водорода расщепляется на протон и электрон. Протон выделяется в среду, электрон передается на систему цитохромов до цитохромоксидазы. Она передает электрон на кислород-терминальный акцептор, который активизируется и соединяется с водородом, образуя воду и перекиси. Последние разлагаются каталазой на воду и кислород. Перенос электронов приводит к значительному изменению свободной энергии в клетке.
Расчеты энергетического баланса показали, что при расщеплении глюкозы гликолитическим путем и через цикл традсарбоновых кислот с последующим окислением в дыхательной цепи до С02 и Н20 на каждый моль глюкозы образуется 38 молей АТФ. Причем максимальное количество АТФ образуется в дыхательной цепи - 34 моля; 2 моля - в ЭПМ-пути и 2 - в ЦТК.
Ввиду большого разнообразия ферментных систем, входящих в дыхательную цепь, окисляемых субстратов и терминальных акцепторов у бактерий существует большое количество разнообразных дыхательных цепей. Так, в дыхательной цепи уксусно-кислых бактерий отсутствуют цитохромы а + аз: дегидрогеназы -*С -gt;Cj -gt;Aj -gt;02. Еще меньший набор компонентов имеет дыхательная цепь Agrobacterium tumefaciens: НАДН дегидрогеназа -»Q -»С -Ю2. Дыхательная цепь клубеньковых бактерий и азотобактера характеризуется наличием разнообразных цитохромов: дегидрогеназы -gt; Ь-gt; с-> а-gt; аз -gt;02. Укороченные дыхательные цепи характерны для многих бактерий. В энергетическом обмене они менее полезны для бактерий из-за низкого выхода АТФ.
Биолюминесценция. У некоторых бактерий существует ответвление от основнорй дыхательной цепи. Электроны от НАД передаются не на ФАД а на ФМН (флавомононуклеотид). Последний реагирует с ферментом люциферазой, кислородом и альдегидом пальмитиновой кислоты. Люцифераза (Л) катализирует

реакцию восстановительного альдегида (АН2) с АТФ (продукт этой реакции при последующем окислении испускает видимый свет):

Эта реакция получила название «светлячковой» из-за ее наличия у светлячка Photinus piralis. Ее используют для количественного определения АТФ, потому что интенсивность свечения находится в прямой зависимости от количества АТФ.
Механизм биолюминесценции состоит в том, что в результате взаимодействия ФМН с люциферазой, кислородом и альдегидом электроны в некоторых молекулах переходят в возбужденное состояние и возвращение их на основной уровень сопровождается испусканием света. Образования АТФ при люминесценции не происходит. Поэтому эффективность функционирования дыхательной цепи снижается, т. е. клетка не получает всей энергии, заключенной в окисляемом субстрате, так как часть ее превращается в световую.
Свечение бывает тем интенсивнее, чем лучше условия аэрации культуры. Светящиеся бактерии являются весьма чувствительными индикаторами молекулярного кислорода. М. Бейеринк применял светящиеся бактерии в качестве индикатора для обнаружения кислорода при бактериальном фотосинтезе (в те времена не было известно, что бактериальный фотосинтез протекает без выделения кислорода).
Способностью к биолюминесценции обладают факультативно-анаэробные морские бактерии, объединенные в род Photobacterium (светящиеся бактерии).В аэробных условиях они окисляют органические субстраты с испусканием лунно-голубого света. Биолюминесценция рассматривается как приспособление некоторых микроорганизмов к защите от вредного действия кислорода.
Неполное окисление. Большинство аэробных микроорганизмов в процессе дыхания осуществляют полное окисление углеводов до углекислоты и водь*. При этом

высвобождается вся энергия, заключенная в субстрате. Примером может служить окисление глюкозы пекарскими дрожжами:

Однако окисление может быть и неполным. Это зависит от видовой принадлежности микробов и условий развития. Обычно неполное окисление наблюдается при избытке в среде углеводов и недостатке кислорода. Конечными продуктами неполного окисления являются органические кислоты, такие как уксусная, лимонная, фумаровая, глюконовая и др. Типичным примером неполного окисления является образование уксусной кислоты из спирта бактериями рода Acetobacter:

Этот окислительный процесс используется микроорганизмами для получения энергии. При неполном окислении образование макроэргических фосфатных связей происходит в процессе переноса электронов. Однако общий выход энергии при этом значительно меньший, чем при полном окислении. Часть энергии окисляемого исходного субстрата сохраняется в образующихся органических кислотах. В связи с тем, что сходные кислоты (янтарная, молочная) образуются при брожении углеводов, неполное окисление называют «окислительным брожением». Отличительной особенностью неполного окисления является участие кислорода в реакциях. Поэтому аэрация - необходимое условие образования органических кислот микроорганизмами. Установлено, что образование а- глутаминовой кислоты бактериями (Corynebacterium glutamicum) происходит только в строго аэробных условиях. Причем выход данной аминокислоты может быть очень высоким - 0,6 моля глутамина на 1 моль использованной глюкозы.
Микроорганизмы, развивающиеся за счет энергии неполного окисления, используются в микробиологической промышленности для получения органических кислот, в том числе и аминокислот.
Анаэробное дыхание. В анаэробных условиях, т. е при отсутствии молекулярного кислорода, некоторые микроорганизмы,
такие как Micrococcus denitrificans и бактерии родов Desulfovibrio и Desulfotomaculum в качестве акцептора водорода используют окисленные минеральные соединения - нитраты, сульфаты, которые легко отдают кислород, превращаясь в восстановленные формы. Продуктами восстановления нитратов служит нитрит и молекулярный азот; сульфаты восстанавливаются до сероводорода и других соединений. Образовавшиеся восстановленные продукты выделяются из клетки. Окисление органического вещества в анаэробных условиях происходит путем дегидрогенирования Отщепляемый водород поступает в дыхательную цепь и переносится на соответствующий акцептор. Конечная реакция катализируется нитратредуктазой. Последняя в анаэробных условиях функционирует как цитохромоксидаза.
Нитратредуктаза является индуцибельным ферментом. Синтез ее происходит только в анаэробных условиях при наличии нитрата. Кислород ингибирует синтез нитратредуктазы. При наличии нитратредуктазы в клетке (если бактерии из анаэробных условий переносятся в аэробные) кислород конкурирует с нитратом за электроны в дыхательной цепи, подавляя тем самым функции данного фермента. Вот почему нитратное и сульфатное дыхание осуществляется только в анаэробных условиях.
Способность микроорганизмов использовать в качестве акцепторов электронов нитраты и сульфаты позволяет производить им полное окисление субстрата и получать таким путем необходимое количество энергии. Так, денитрифицирующие бактерии при нитратном дыхании производят полное окисление органических субстратов, выход энергии при этом только на 10% ниже, чем при аэробном дыхании. Образование АТФ происходит в результате фосфор ил ирова ния в дыхательной цепи.

Дыхание микроорганизмов

Описанные выше процессы ассимиляции пищи протекают с затратой энергии. Потребность в энергии обеспечивается процессами энергетического обмена, сущность которых заключается в окислении органических веществ, сопровождаемом выделением энергии. Получаемые при этом продукты окисления выделяются в окружающую среду.

Схематично реакцию окисления-восстановления при участии фермента дегидрогеназы можно представить следующим образом:

АН 2 + В - А + ВН 2 + энергия

Способы получения энергии у микроорганизмов разнообразны.

В 1861 г. французский ученый Л.Пастер впервые обратил внимание на уникальную способность микроорганизмов развиваться без доступа кислорода, в то время как все высшие организмы - растения и животные - могут жить только в атмосфере, содержащей кислород.

По этому признаку (по типам дыхания) Л.Пастер разделил микроорганизмы на две группы - аэробы и анаэробы.

Аэробы для получения энергии осуществляют окисление органического материала кислородом воздуха. К ним относятся грибы, некоторые дрожжи, многие бактерии и водоросли. Многие аэробы окисляют органические вещества полностью, выделяя в виде конечных продуктов СО 2 и Н 2 О. Этот процесс в общем виде может быть представлен следующим уравнением:

С 6 Н 12 О 6 + 6О 2 = 6СО 2 + 6Н 2 О + 2822 кДж.

Анаэробы - это микроорганизмы, способные к дыханию без использования свободного кислорода. Анаэробный процесс дыхания у микроорганизмов происходит за счет отнятия у субстрата водорода. Типичные анаэробные дыхательные процессы принято называть брожениями . Примерами такого типа получения энергии могут служить спиртовое, молочнокислое и маслянокислые брожения. Рассмотрим на примере спиртового брожения:

С 6 Н 12 О 6 = 2С 2 Н 5 ОН + 2СО 2 + 118 кДж.

Отношение анаэробных микроорганизмов к кислороду различно. Одни из них совсем не переносят кислорода и носят название облигатных, или строгих, анаэробов. К ним относятся возбудители маслянокислого брожения, столбнячная палочка, возбудители ботулизма. Другие микробы могут развиваться как в аэробных, так и в анаэробных условиях. Их называют - факультативными, или условными анаэробами; это молочнокислые бактерии, кишечная палочка, протей и др.

Ферменты микроорганизмов

Ферменты - вещества, способные каталитически влиять на скорость биохимических реакций. Они играют важную роль в жизнедеятельности микроорганизмов. Открыты ферменты в 1814 г. русским академиком К.С.Кирхгофом.

Как и другие катализаторы, ферменты в реакциях превращения веществ принимают участие лишь в качестве посредников. Количественно в реакциях они не расходуются. Ферменты микроорганизмов обладают целым рядом свойств:

1) При температуре до 40-50єС увеличивается скорость ферментативной реакции, но затем скорость падает, фермент перестает действовать. При температуре выше 80°С практически все ферменты необратимо инактивируются.

2) По химической природе ферменты бывают однокомпонентными, состоящими только из белка, и двухкомпонентными, состоящими из белковой и небелковой частей. Небелковая часть у ряда ферментов представлена тем или иным витамином.

3) На активность фермента оказывает большое влияние рН среды. Для одних ферментов наилучшей является кислая среда, для других - нейтральная или слабощелочная.

4) Ферменты обладают высокой активностью. Так, молекула каталазы разрушает в минуту 5 млн молекул пероксида водорода, а 1 г амилазы при благоприятных условиях превращает в сахар 1 т крахмала.

5) Каждый фермент обладает строгой специфичностью действия, т. е. способностью влиять только на определенные связи в сложных молекулах или лишь на определенные вещества. Например, амилаза вызывает расщепление только крахмала, лактаза - молочного сахара, целлюлаза - целлюлозы и т. д.

6) Ферменты, присущие данному микроорганизму и входящие в число компонентов его клетки, называются конститутивными . Существует и другая группа - ферменты индуцируемые (адаптивные), которые вырабатываются клеткой только при добавлении к среде вещества (индуктора), стимулирующего синтез данного фермента. В этих условиях микроорганизм синтезирует фермент, которым, он не обладал.

7) По характеру действия ферменты подразделяются на экзоферменты , которые выделяются клеткой во внешнюю среду, и эндоферменты , которые прочно связаны с внутренними структурами клетки и действуют внутри нее.

8) Хотя ферменты вырабатываются клеткой, но и после ее смерти они временно еще остаются в активном состоянии и может произойти автолиз (от греч. аutos - сам, lysis - растворение) - саморастворение или самопереваривание клетки под влиянием ее собственных внутриклеточных ферментов.

В настоящее время известно более 1000 ферментов. Ферменты делятся на 6 классов:

1-й класс - оксидоредуктазы - играют большую роль в процессах брожения и дыхания микроорганизмов, т. е. в энергетическом обмене.

2-й класс - трансферазы (ферменты переноса) катализируют реакции переноса групп атомов от одного соединения к другому.

3-й класс - гидролазы (гидролитические ферменты). Они катализируют реакции расщепления сложных соединений (белки, жиры и углеводы) с обязательным участием воды.

4-й класс - лиазы включают двухкомпонентные ферменты, отщепляющие от субстратов определенные группы (СО 2 , Н 2 О, NН з и т. д.) негидролитическим путем (без участия, воды).

5-й класс - изомеразы - это ферменты,.катализирующие обратимые превращения органических соединений в их изомеры.

6-й класс - лигазы (синтетазы) - это ферменты, катализирующие синтез сложных органических соединений из более простых. Лигазы играют большую роль в углеводном и азотном обмене микроорганизмов.

Применение ферментов микробов в пищевой и легкой промышленности позволяет значительно интенсифицировать технологический процесс, повысить выход и улучшить качество готовой продукции. Препараты амилолитических ферментов применяют при производстве этилового спирта из крахмалосодержащего сырья вместо зернового солода, а в хлебопекарной промышленности взамен солода при приготовлении заварного ржаного хлеба; добавляют грибные амилазы и в пшеничное тесто. Поскольку в этом препарате помимо амилазы имеются, хотя и в небольшом количестве, другие ферменты (мальтаза, протеазы), процесс изготовления теста ускоряется, увеличиваются объем и пористость хлеба, улучшаются его внешний вид, аромат и вкус. Применение этих ферментных препаратов в пивоварении позволяет частично заменить солод ячменем. С помощью грибной глюкоамилазы получают глюкозную патоку и кристаллическую глюкозу из крахмала. Пектолитические ферментные грибные препараты используют в соко-морсовом производстве и виноделии. В результате разрушения пектина этими ферментами ускоряется процесс выделения сока, повышается его выход, фильтрация и осветление. Ферментные препараты, содержащие микробные протеазы, используют для повышения стойкости (предохранения от белкового помутнения) вина и пива, а в сыроделии - взамен (частично) сычужного фермента. Целесообразно применять микробные протеазы для размягчения мяса, ускорения созревания мяса и сельди, получения из отходов рыбной и мясной промышленности пищевых гидролизатов и для других технологических процессов переработки животного и растительного сырья.

Химический состав микроорганизмов

По составу веществ клетки микроорганизмов мало чем отличаются от клеток животных и растений. В них содержится 75-85% воды, остальные 16-25% составляет сухое вещество. Вода в клетке находится в свободном и в связанном состоянии. Связанная вода входит в состав коллоидов клетки (белки, полисахариды и др.) и с трудом высвобождается из них. Свободная вода участвует в химических реакциях, служит растворителем для различных соединений, образующихся в клетке в процессе обмена веществ.

Сухое вещество клетки состоит из органических и минеральных веществ.

белки - до 52%,

полисахариды - до 17%,

нуклеиновые кислоты (РНК до 16%, ДНК до 3%),

липиды - до 9%

Эти соединения входят в состав различных клеточных структур микроорганизмов и выполняют важные физиологические функции. В клетках микроорганизмов находятся и другие вещества - органические кислоты, их соли, пигменты, витамины и др.

Контрольные вопросы

1. Что такое тургор?

2. Что такое диссимиляция?

3. Какие микроорганизмы называются автотрофными?

4. Что такое осмос?

5. Какие микроорганизмы называются факультативными?

6. Что такое плазмолиз?

7. в каких процессах участвуют липазы?

8. Какое количество воды входит в состав микроорганизмов?

10. Какие микроорганизмы называются анаэробными?

При развитии, росте, размножении клеток микроорганизмов происходят сложные превращения питательных веществ, требующие определенных затрат энергии. Микробная клетка получает энергию в процессе дыхания. Сущность этого процесса состоит в том, что сложные органические вещества окисляются до более простых с выделением энергии.

Для окисления органических веществ одни микроорганизмы используют кислород, другие способны обходиться без него, а для третьих кислород является даже вредным. В зависимости от этого микроорганизмы подразделяют на аэробные, получающие энергию в результате окисления органических веществ с использованием молекулярного кислорода. У других микроорганизмов окислительные процессы протекают без участия кислорода; их называют анаэробами. Анаэробные микроорганизмы подразделяют на облигатные, или безусловные, для которых кислород не только не нужен, но и вреден, и факультативные, или условные, которые могут жить как при доступе воздуха, так и без него. Степень анаэробности у факультативных анаэробов различна. Одни из них лучше развиваются в анаэробных условиях или при ничтожно малом содержании кислорода в среде (микроаэрофилы), другие -- при доступе воздуха. Известны факультативные анаэробы (например, некоторые дрожжи), способные в зависимости от условий развития переключаться с анаэробного на аэробный тип дыхания. Рост микроорганизмов с разным типом дыхания в пробирках с твердой питательной средой может быть на поверхности, в середине и в глубине.

Отношение микроорганизмов к воздуху определяется способом их энергетического обмена.

Аэробные микроорганизмы в процессе дыхания окисляют органические вещества почти полностью, до образования в качестве конечных продуктов диоксида углерода и воды. Полное окисление сопровождается выделением всей энергии окисляемого продукта. Такое окисление, например сахара, может быть выражено следующим уравнением:

С 6 Н 12 0 6 + 60 2 = 6С0 2 + 6Н 2 0 2822 кДж.

При неполном окислении органических веществ выделяется меньше энергии, чем при полном. Не выделившаяся часть энергии остается в этих случаях в продуктах неполного окисления. Так, окисление этилового спирта уксуснокислыми бактериями может идти до стадии образования уксусной кислоты и воды с неполным выделением энергии:

С 2 Н 5 ОН + 0 2 = СН 3 СООН +Н 2 0 485,7 кДж.

Полное окисление спирта идет по схеме

С 2 Н 5 ОН + 30 2 = 2СО 2 + ЗН 2 0 1365 кДж.

При этом выделяется вся содержащаяся в этиловом спирте энергия.

Анаэробные микроорганизмы получают энергию в результате бескислородного дыхания, которое называют брожением. При бескислородном дыхании окисление всегда протекает неполно. Примером бескислородного дыхания является спиртовое брожение, вызываемое дрожжами в анаэробных условиях. Это брожение протекает по схеме

С 6 Н 12 О 6 = 2С 2 Н 5 ОН +2С0 2 113 кДж.

В результате спиртового брожения сахар превращается в этиловый спирт и диоксид углерода с выделением энергии. Как видно из двух последних уравнений, сахар окисляется в данном случае неполно, так как один из конечных продуктов спиртового брожения -- этиловый спирт -- обладает значительным запасом энергии, которая в анаэробных условиях оказалась невыделенной.

Анаэробным процессом дыхания является также молочнокислое брожение, играющее ведущую роль в процессах производства молочных продуктов. Этот тип брожения осуществляется главным образом молочнокислыми бактериями, которые относятся к условным анаэробам, многие из которых хорошо растут и в присутствии кислорода воздуха. Молочнокислое брожение заключается в разложении молекулы сахара на две молекулы молочной кислоты с выделением тепла:

С 6 Н 12 0 6 = 2СН 2 СНОНСООН 75,4 кДж.

В процессе молочнокислого брожения также освобождается лишь небольшая часть потенциальной энергии сахара, так как значительный запас энергии остается в молочной кислоте.

Примером строго анаэробных микроорганизмов являются маслянокислые бактерии, процесс дыхания которых сопровождается разложением сахара с образованием масляной кислоты, диоксида углерода и водорода. Этот процесс называется маслянокислым брожением и в основном идет по следующей схеме:

С 6 Н 12 О 6 = С 3 Н 7 СООН + 2С0 2 + 2Н 2 62,8 кДж.

Приведенные уравнения выражают лишь конечный результат процессов. В действительности эти процессы проходят в несколько фаз, сопровождаясь образованием ряда промежуточных и побочных продуктов.

По отношению к воздуху микроорганизмы молока и молочных продуктов можно расположить в такой последовательности: плесени и гнилостные бактерии (большинство) -- аэробы;

уксуснокислые бактерии, дрожжи, микрококки, бактерии группы кишечной палочки, флюоресцирующие бактерии, некоторые виды споровых бактерий -- условные анаэробы (лучше развиваются при наличии в среде воздуха);

молочнокислые стрептококки -- условные анаэробы;

молочнокислые палочки, пропионовокислые бактерии -- условные анаэробы (лучше развиваются в отсутствие воздуха);

маслянокислые бактерии, некоторые виды споровых бактерий-- строгие анаэробы.

Дыхание(биологическое окисление) у бактерий тесно связано с питанием и дает энергию для осуществления функций клетки. При этом в ходе биохимических реакций образуется АТФ - универсальный аккумулятор и переносчик химической энергии у живых существ. Различают аэробный и анаэробный типы дыхания. Микробы, окисляющие органические соединения с использованием кислорода воздуха (в качестве акцептора ионов Н+), называют аэробами. В отличие от них, анаэробы получают энергию в ходе окислительно-восстановительных реакций, при которых акцептором Н+ является не кислород, а нитрат или сульфат (в бескислородных условиях). Многие микробы, имея полный набор дыхательных ферментов, могут существовать как в кислородной, так и бескислородной среде - это факультативные (необязательные) анаэробы с нитратным типом дыхания. Облигагные (обязательные) анаэробы существуют лишь в строго анаэробных условиях, т.к. в аэробных условиях образуются токсичные перекиси (Н2О2 и др.), которые не разрушаются из-за отсутствия у облигатных анаэробов фермента каталазы, для них характерен сульфатный тип дыхания. Необходимыми условиями для культивирования микробов являются:

  • 1) наличие подходящей по составу питательной среды;
  • 2) оптимальной (по содержанию О2 и др.) атмосферы над питательной средой;
  • 3) оптимальной температуры.

Выделение чистой культуры анаэробов занимает 4 дня и отличается тем, что исследование ведут в анаэробных условиях на специальных средах и материал предварительно подращивают сутки в среде для накопления анаэробов. Методы культивирования анаэробов основаны на удалении кислорода из питательной среды и из атмосферы (используют механическое и физическое удаление или замещение, химическое или биологическое связывание О2)

  • - перед посевом среды регенерируют (кипятят и быстро охлаждают);
  • - делают посевы в высокие столбики среды в пробирках;
  • - наслаивают поверх питательной среды вазелиновое масло;
  • - культивируют в анаэроостате, из которого откачан воздух и замещён инертным газом или бескислородной смесью (азот, водород, углекислый газ);
  • - культивируют в эксикаторе, на дно которого помещены химические поглотители кислорода (щелочной раствор пирогаллола и др.);
  • - культивируют в герметично закрытой чашке с плотной средой, на две половины которой отдельно засевают анаэробы и аэробы, которые в ходе размножения поглощают кислород (метод Фортнера).