Понятие о лимитирующих факторах было введено. Лимитирующие факторы. Законы лимитирующих факторов

Доклад Нестеровой А.

Лимитирующие факторы и биоразнообразие. Классификации факторов. Ключевые и лимитирующие факторы в наземной и водной средах, их влияние на видовое разнообразие

Основные определения

Взаимоотношение особой или групп особей с условиями окружающей среды изучает аутэкология. Любой организм в среде своего обитания подвергается воздействию разнообразных климатических, эдафических и биотических факторов, поэтому существование любого организма или любой группы организмов зависит от комплекса определенных условий. Любое условие, приближающееся к пределу толерантности или превышающее его, называется лимитирующим условием, или экологическим фактором. По определению, экологический фактор – это любой нерасчленяемый далее элемент среды, способный оказывать косвенное или прямое влияние на живые организмы хотя бы на протяжении одной из фаз их индивидуального развития . Какими бы разными по природе не были экологические факторы, результаты их действия экологически сравнимы, так как они всегда влияют на жизнедеятельность организмов, и, следовательно, на численность популяций.

Первым, кто начал изучение влияния разнообразных факторов на рост растений был Ю. Либих. Он установил, что урожай культур часто лимитируется не теми элементами питания, которые требуются в больших количествах, такими, например, как CO 2 и вода (поскольку данные вещества обычно присутствуют в среде в избытке), а теми, которые требуются в ничтожных количествах и которых в почве очень мало (например, цинк (Zn). Таким образом, в 1840 году Ю. Либихом была сформулирована идея о том, что выносливость организма определяется самым слабым звеном в цепи его экологических потребностей. Данный вывод известен в науке как либиховский «закон минимума». Действие данного закона наглядно показано на рис.1 .

Рис.1. Модель, иллюстрирующая действие закона минимума

Высота клепок бочки соответствует напряженности экологических факторов, жидкость в бочке – «жизненной силе». Как видно, «жизненная сила» вытекает через самую низкую клепку, в месте, где значение экологического фактора минимально.

Ограничивающие факторы среды определяют географический ареал вида. Природа этих факторов может быть различной (рис. 2). Так, продвижение вида на север может лимитироваться недостатком тепла, в аридные районы – недостатком влаги или слишком высокими температурами. Ограничивающим распространение фактором могут служить и биотические отношения, например, занятость территории более сильным конкурентом или недостаток опылителей для растений. Так, опыление инжира всецело зависит от единственного вида насекомых – осы Blastophaga psenes. Родина этого дерева – Средиземноморье. Завезенный в Калифорнию инжир не плодоносил до тех пор, пока туда не завезли ос-опылителей. Распространение бобовых в Арктике ограничивается распределением опыляющих их шмелей. На острове Диксон, где нет шмелей, не встречаются и бобовые, хотя по температурным условиям существование там этих растений еще допустимо .

Рис.2. Глубокий снежный покров – лимитирующий фактор в распространении оленей

Последующие многочисленные исследования показали, что для успешного применения данного закона, необходимо его дополнить двумя вспомогательными принципами. Первый – ограничительный. Он указывает, что закон Либиха строго применим только в условиях стационарного состояния, когда входящие и выходящие потоки веществ и энергии в экосистеме находятся в равновесии. Только в данном случае скорость функционирования экосистем управляется законом минимума.

Второй вспомогательный принцип относится к взаимодействию различных факторов. Высокая концентрация или доступность одного вещества или действие другого (не минимального) фактора может изменять скорость потребления элемента питания, содержащегося в минимальном количестве. Иногда организм способен заменять дефицитный элемент хотя бы частично другим близкородственным элементом. Например, в местах, где много стронция (Sr), в раковинах моллюсков кальций (Ca) до некоторой степени заменяется стронцием. Также выявлено, что некоторым растениям требуется меньше Zn, если они растут не на ярком солнечном свету, а в тени. Следовательно, для данной группы растений концентрация Zn в тени является менее лимитирующим фактором, чем на свету .

Лимитирующим фактором может быть не только недостаток, но и избыток таких факторов, как свет, тепло, вода. Представление о лимитирующем влиянии экологического максимума связано с именем В. Шелфорда. Пределы выносливости живых организмов определяются значениями как экологического минимума, так и экологического максимума. Диапазон между двумя этими величинами принято называть пределом толерантности. В. Шелфордом был сформулирован «закон толерантности», который гласит: «лимитирующим может быть как минимальное, так и максимальное значение экологического фактора; диапазон между минимумом и максимумом определяет область выносливости (толерантности) организма к данному фактору» .

Модель толерантности, как правило, имеет вид купола (рис.3). Рассмотрение данного купола толерантности позволяет отметить следующие закономерности:

    При определенных значениях фактора, создаются наиболее благоприятные для жизнедеятельности организмов условия; эти условия называются оптимальными, а соответствующая им область на шкале факторов – оптимумом ;

    Чем больше отклоняются значения факторов от оптимума, тем сильнее угнетается жизнедеятельность особей, в связи с этим выделяется зона их нормальной жизнедеятельности ;

    Диапазон значений факторов, за которыми нормальная жизнедеятельность особей становится невозможной, называется пределом выносливости ;

    Максимально и минимально переносимые значения фактора – это критические точки , за пределами которых существование уже невозможно, наступает смерть.

Рис.3. Купол толерантности: существование вида определяется его выносливостью по отношению к воздействию абиотических факторов. Когда значение фактора слишком низкое или высокое, вид гибнет

Закон толерантности был дополнен в 1975г Ю.Одумом следующими постулатами:

Организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон в отношении другого;

Организмы с широким диапазоном толерантности в отношении всех экологических факторов обычно наиболее распространены;

Если условия по одному экологическому фактору не оптимальны для вида, то диапазон толерантности может сузиться и в отношении других экологических факторов (например, если содержание азота в почве мало, то требуется больше воды для злаков);

Диапазоны толерантности к отдельным факторам и их комбинациям различны;

Период размножения является критическим для всех организмов, поэтому именно в этот период увеличивается число лимитирующих факторов.

Чтобы выразить степень толерантности организмов к различным факторам среды используют приставку «стено» (от греческого stenos - узкий) или «эври» (от греч. ευρί - «широкий»). Существуют стенобионтные и эврибионтные виды. Стенобионты живут в пределах узкого диапазона фактора, а эврибионты – в пределах широкого диапазона (рис.4).

Рис.4. Экологическая пластичность видов

Эврибионты являются широко распространенными, так как выдерживают значительные отклонения от оптимальных значений разных факторов, обладают широким диапазоном выносливости и живут в различных, порой резко отличающихся друг от друга условиях среды.Например, лисица относится к эврибионтным организмам, так как она обитает от лесотундры до степи, питаясь и животной, и растительной пищей.

Другой тип организмов - узко приспособленные, не переносящие резких колебаний температуры, влажности и т. д. Бегемот и буйвол – животные только районов высокой влажности и температуры. Таковы почти все растения влажных тропических лесов. Икра гольца развивается при температуре 0–12° С с оптимумом около 4° С, а икра лягушки развивается при температуре 0–30° С с оптимумом около 22° С. В первом случае можно говорить о стенотермности, а во втором случае – об эвритермности. Как видно, для каждого организма и в целом для вида есть свой оптимум условий. Он неодинаков не только для разных видов, находящихся в различных условиях, но и для отдельных стадий развития одного организма. Для каждого вида характерна своя степень выносливости, например, растения и животные умеренного пояса могут существовать в довольно широком температурном диапазоне, виды же тропического климата не выдерживают значительных её колебаний.

Классификация экологических факторов

Традиционно все экологические факторы делят на две основные группы: абиотические и биотические. Первая группа включает комплекс климатических факторов (свет, температура, влажность, давление и др.), а также физические свойства почвы и воды. Ко второй группе относятся факторы питания и различные формы взаимодействия особей и видов между собой.

В природе особи каждого вида участвуют одновременно в межвидовой и внутривидовой конкуренции. Межвидовая конкуренция способствует сужению диапазона используемых популяцией местообитаний и ресурсов, в то время как внутривидовая конкуренция, наоборот, расширяет пределы выносливости и уменьшает специализацию популяции.

Однако нельзя назвать представленную классификацию исчерпывающей, так как изменения микроклимата могут быть обусловлены как абиотическими факторами среды, так и биотическими факторами. Например, скопления многих животных часто приводят к росту температуры и относительной влажности.

В связи с недостаточной четкостью представленной классификации, был разработан ряд других, среди которых:

Все многообразие действующих в природе экологических факторов может быть обобщено в виде «синтетической системы», представленной в табл.1:

Классификация

Климатические факторы

Первичные периодические факторы

Температура, свет

Вторичные периодические факторы

влажность

Непериодические факторы

Внезапный шквальной ветер, значительная ионизация атмосферы, грозы, пожары

Физические неклиматические факторы

Факторы водной среды

Эдафические факторы

Водный режим, механический состав, гранулометрический состав, засоленность

Факторы питания

Количество пищи

Качество пищи

Биотические факторы

Внутривидовые взаимодействия

Межвидовые взаимодействия

Табл.1. «Синтетическая система» экологических факторов

К числу важнейших экологических факторов, определяющих зональные типы биомов, относятся температурный режим и количество атмосферных осадков. Диапазон этих факторов на Земле велик, и каждому градиенту тепла и влаги отвечает специфический набор видов (рис.5).

Рис.5. Зависимость зональных типов биомов от соотношения температурного режима и количества атмосферных осадков

В разных зонах можно выделить адаптивные группы видов, наиболее характерные для соответствующих типов биомов (тундровые, таежные, неморальные, степные, пустынные и т.п.) или группы видов, отражающих связь с конкретными местообитаниями: «луговые» и «болотные» и т.п. Все эти группы объединяются понятием жизненные формы (рис.6).

Рис.6. Растения тундры. 1. Голубика. 2. Брусника. 3. Вороника чёрная. 4. Морошка. 5. Ллойдия поздняя. 6. Лук скорода. 7. Княженика. 8. Пушица влагалищная. 9. Осока мечелистная. 10. Берёзка карликовая. 11. Ива клинолистная

Экологическая классификация жизненных форм выявляет возможные пути приспособления организмов к среде обитания. Остановимся подробнее на рассмотрении адаптации организмов к наземной и водной средам обитания.

Ключевые и лимитирующие факторы в водной среде

Как следует из самого названия, ключевые факторы отличаются от лимитирующих своей первостепенной важностью для жизнедеятельности организмов. К ключевым факторам как в наземной, так и в водной средах можно отнести температуру, свет, кислород и соленость. Водная среда является наиболее равномерной по всему объёму, основные проявления стратификации (слоистости) наблюдаются по температуре и солености.

Водную среду обитания образуют важнейшие компоненты гидросферы Земли, а именно: мировой океан, континентальные воды и подземные воды. К континентальным водам относятся реки, озера и ледники.

Большая часть поверхности Земли (около 366 из 510 млн. км 2 , или 72%) покрыта водой. Распространение и жизнедеятельность организмов в водной среде в значительной степени зависят от ее химического состава. Недостатка в воде как в химическом веществе в водных средах нет, за исключением случаев пересыхания водоемов. Тем не менее, проблемы, связанные с водой, возникают даже у водных организмов.

Особенности водной среды обитания и приспособленность организмов к специфическим экологическим факторам:

1. Низкое содержание растворенного кислорода. Содержание О 2 в атмосфере составляет 210 мл/л, растворимость О 2 в воде зависит от температуры: при 0°С составляет 10,3 мл/л, а при 20°С – 6,6 мл/л. Таким образом, содержание кислорода в воде примерно в 20–30 раз меньше, чем в атмосфере. При этом фактическое содержание кислорода может снижаться до 1 мл/л. Поэтому содержание кислорода является лимитирующим (ограничивающим) фактором для большинства гидробионтов.

Поверхностные слои воды содержат больше кислорода, а в глубинные слои кислород может поступать или путем диффузии (которая в воде протекает очень медленно), или за счет вертикального перемешивания водных масс.

2. Высокая теплоемкость и высокая теплопроводность воды обеспечивают выравнивание температур. По отношению к температурному фактору все организмы делятся на пойкилотермные (неспособные регулировать температуру тела) и гомойотермные (поддерживающие постоянную температуру тела).

Прямое влияние температуры на пойкилотермных гидробионтов заключается в изменении характера обмена веществ. Высокая теплопроводность воды приводит к появлению теплоизолирующих (жировых) слоев у гомейотермных (теплокровных) животных. Многие гидробионты защищаются от льдообразования в клетках, повышая внутриклеточное содержание антифризов (антифризы – вещества, снижающие температуру замерзания воды).

3. Сравнительно высокая вязкость воды. Оказывает наибольшее влияние на планктонные организмы (уменьшает скорость погружения и обеспечивает их парение в толще воды) и на нектонные организмы, передвигающиеся с большой скоростью (создает сопротивление). Для планктона характерно увеличение поверхности тела по сравнению с объемом тела, что облегчает парение. Для нектона характерна обтекаемая форма тела, что облегчает активное передвижение.

4. Высокая электропроводность воды делает возможным развитие электрических органов: высоковольтных (защита, нападение) и низковольтных (получение информации).

5. Интенсивное поглощение света в воде: красная часть спектра поглощается водой, а синяя часть – рассеивается; в итоге красные лучи доходят лишь до глубины 10 м, а сине-зеленые – до 160 м и более. По освещенности выделяют зоны:

Эуфотическая зона – благоприятные условия для фотосинтеза;

Дисфотическая, или сумеречная зона – неблагоприятные условия для фотосинтеза (здесь обитают, преимущественно, красные водоросли и цианобактерии);

Афотическая зона – фотосинтез невозможен.

6. Доступность водорастворимых веществ (ионы Na + , K + , Cl – , NH4 + , NO3 –) и недоступность водонерастворимых веществ (связанные ионы Ca 2+ , ионы тяжелых металлов, фосфаты). Доступность элементов оказывает наибольшее влияние на водные растения. Лимитирующими факторами для водорослей являются концентрации биогенов: фосфатов и нитратов. По содержанию биогенов различают:

Эутрофные воды – высокое содержание биогенов;

Мезотрофные воды – умеренное содержание биогенов; олиготрофные воды – низкое содержание биогенов;

Дистрофные воды – высокое содержание биогенов в связанном состоянии.

7. Общая соленость воды оказывает наибольшее влияние на животных.

В соленых водах (гипертоническая среда) возникает проблема сохранения воды в пределах организма. У Одноклеточных животных реже сокращаются сократительные вакуоли, у Многоклеточных – развиваются дистальные (всасывающие) части почечных канальцев, нефридиев и других органов выделения. У костистых рыб избыток солей выделяется через жабры.

В пресных водах (гипотоническая среда) возникает проблема удаления воды из организма. У одноклеточных животных чаще сокращаются сократительные вакуоли, у многоклеточных – развиваются почечные (мальпигиевы) клубочки, проксимальные части почечных канальцев, нефридиев и других органов выделения, обеспечивающие интенсивное образование разбавленной мочи.

В разных зонах Мирового океана существуют свои особенности действия экологических факторов. Рассмотрим данные зоны:

Литораль. В зоне литорали на морские организмы действуют экологические факторы, оказывающие на организмы благоприятное и неблагоприятное воздействие.

К благоприятным факторам в зоне литорали относятся: высокое содержание биогенов терригенного (материкового) происхождения; высокая аэрация воды вследствие прибоя; высокая освещенность.

Неблагоприятные (лимитирующие) факторы: периодическое обсыхание; разрушающее действие прибоя; перепады температур (температура воды и воздуха часто различаются); перепады солености (за счет стекания пресных вод и испарения морской воды в лужах); множество водных и наземных хищников.

Действие неблагоприятных (лимитирующих) факторов привело к развитию соответствующих адаптаций. Водоросли не высыхают, поскольку образуют густые скопления, сохраняющие влагу. Подвижные животные (черви, морские звезды, ракообразные, брюхоногие моллюски) скрываются в разнообразных укрытиях. Неподвижные животные обычно имеют раковины и панцири или же уменьшают поверхность испарения (актинии втягивают щупальца). Некоторые животные (крабы, рыбы–периофтальмусы) продолжают активный образ жизни во время отлива. На участках с очень сильным прибоем организмы или приобретают раковины (рачки–балянусы, мидии, морские блюдечки, некоторые морские ежи), или характеризуются сильно расчлененной формой тела (водоросли, кишечнополостные, морские лилии).

Коралловые рифы. Экосистемы коралловых рифов формируются на отмелях, образованных рифообразующими кораллами с известковым (реже – роговым) скелетом. Эти кишечнополостные требуют высокой температуры воды – не ниже 18°С (термофилы) – и высокой солености (галофилы). Кораллам необходимы симбиотические известковые водоросли (для образования известкового скелета и дополнительного питания), поэтому рифообразующие кораллы могут существовать только при высокой освещенности: на глубине не более 40…50 м. Освещенность зависит от прозрачности воды, поэтому кораллы обитают в чистой воде. Кораллы поглощают большое количество кислорода (а его содержание в теплой воде и так невысокое), поэтому наиболее интенсивно они развиваются в прибойных участках.

Коралловые рифы относятся к наиболее продуктивным экосистемам Мирового океана (чистая первичная продуктивность составляет 1000 мг углерода на 1 кв. м за сутки) и отличаются высоким уровнем видового разнообразия (известно свыше 2500 видов коралловых рыб). Это связано с исключительно благоприятными условиями, в которых обитают кораллы, а также с тем, что биогены слабо мигрируют за пределы рифов.

Экосистемы коралловых рифов крайне уязвимы. Ливневые дожди вызывают опреснение воды и гибель живых кораллов (при их гниении дополнительно снижается содержание кислорода). Тропические ураганы и землетрясения разрушают сами рифы. Антропогенное загрязнение океана ослабляет живые кораллы, и они становятся уязвимыми для морских звезд «терновый венец».

Эпипелагиаль. К благоприятным факторам эпипелагиали открытого океана относятся: достаточно высокая аэрация; высокая освещенность. Лимитирующим фактором является низкое содержание биогенов за счет их миграции в придонные воды. Однако концентрация биогенов может возрастать за счет апвеллинга – выноса глубинных вод на поверхность, например, в приполярных зонах.

Основными продуцентами эпипелагиали являются планктонные диатомовые водоросли и перидинеи (способные к миксотрофному питанию) – около 1000 видов. Из-за низкого содержания биогенов продуктивность открытого океана очень низкая: ≈ 50 мг углерода/1 м2∙сутки в тропической зоне и 150…200 мг углерода/1 м2∙сутки в высоких широтах.

Разнообразие планктона в открытом океане выше, чем на шельфе, поскольку многие виды стеногалинны и не переносят опреснения прибрежных вод.

Абиссаль и абиссопелагиаль. Благоприятным фактором абиссали и абиссопелагиали является стабильность условий обитания. К лимитирующим факторам относятся: отсутствие света и невозможность фотосинтеза; высокое давление.

При снижении освещенности органы зрения у животных гипертрофируются, но при полном отсутствии света происходит полная редукция органов зрения. Для обитателей глубин характерна люминесценция с участием симбиотических светящихся бактерий.

Из-за нехватки света отсутствуют фотосинтезирующие продуценты. Следовательно, глубоководные экосистемы являются зависимыми от экосистем эпипелагиали, и их собственная продуктивность стремится к нулю. При наличии неорганических окислителей (например, вблизи гидротермальных сульфатных источников) продуцентами являются десульфирующие и другие хемосинтезирующие бактерии. Они участвуют в образовании симбиотических систем с различными беспозвоночными.

Ключевые и лимитирующие факторы в наземной среде

Наземно-воздушная обитания – самая сложная по экологическим условиям. Выход в наземно-воздушную среду обитания у разных групп организмов оказался возможным благодаря появлению специфических адаптаций, в том числе, и ароморфного характера. Постоянные обитатели наземно-воздушной среды обитания называются аэробионты.

К особенностям наземно-воздушной среды обитания и приспособленности организмов к специфическим экологическим факторам относятся:

1. Недостаток воды часто является лимитирующим фактором для наземных организмов.

2. Низкая теплоемкость и низкая теплопроводность воздуха приводит к значительным перепадам температуры: при изменении прямой освещенности, суточные перепады, сезонные перепады (сезонность характерна для умеренных и высоких широт). В то же время, низкая теплоемкость и теплопроводность воздуха делают возможным развитие теплокровности у птиц и млекопитающих.

Лимитирующие факторы - это условия, которые выходят за рамки выносливости организма. Они ограничивают любое проявление его функций. Рассмотрим далее более подробно лимитирующее действие факторов.

Общая характеристика

Особенности влияния

Рассматривая теорию минимумов, не следует смешивать ведущие и лимитирующие факторы среды, поскольку последние могут быть и главными, и второстепенными. Ограничивающим является обычно то условие, которое отклонилось от нормы наиболее далеко. Если показатели находятся за рамками устойчивости, вне зависимости от того, в сторону минимума они изменились или в сторону максимума, они превращаются в лимитирующие факторы. Это имеет место и в тех случаях, когда все остальные условия благоприятны либо оптимальны.

Лимитирующие факторы Шелфорда

Свое развитие рассмотренная выше теория получила спустя 70 лет. Американский ученый Шелфорд установил, что не только элемент, присутствующий в минимальной концентрации, может оказывать влияние на развитие организма, но и его избыток может вызывать неблагоприятные последствия. К примеру, для растения вредным будет и излишнее и недостаточное количество воды. В последнем случае произойдет закисание почвы, а в первом - будет затруднена ассимиляция питательных соединений. На многие организмы негативно влияет изменение уровня рН и прочие лимитирующие факторы. Толерантность, в рамках которой возможно нормальное существование, ограничивается, собственно, недостатком либо избытком условий, показатели которых могут быть приближены к пределам переносимости.

Диапазон выносливости

Пределы толерантности не являются постоянными. К примеру, диапазон может сужаться, если какое-либо условие приближается к той или иной границе. Такая ситуация также имеет место при размножении организмов, когда многие показатели становятся ограничивающими. Из этого следует, что влияние которым обладают многие лимитирующие экологические факторы, имеет изменчивый характер. Это значит, что одно условие может или не может быть угнетающим или ограничивающим.

Акклиматизация

Вместе с этим следует помнить о том, что организмы сами в состоянии снизить негативное влияние, создав, к примеру, определенный микроклимат. В этом случае появляется в некотором роде компенсация условий. Наиболее эффективно она проявляется на уровне сообществ. При такой компенсации формируются условия для физиологической адаптации вида - эврибиота, который имеет широкое распространение. Акклиматизируясь на определенной территории, он формирует своеобразный экотип, популяцию, границы толерантности которой соответствуют местности. Более глубокие адаптационные процессы могут способствовать образованию генетических рас.

Реализация теории на практике

Чтобы иметь наиболее ясное представление о том, как влияют на организмы лимитирующие факторы среды, в качестве примера можно взять развитие растений под влиянием углекислого газа. Его содержание в воздухе невелико, поэтому даже небольшое колебание его уровня будет иметь большое значение для насаждений. Углекислый газ является продуктом дыхания растения и животных, горения органических веществ, активности вулканов и пр. Его содержание зависит не только от характера размещения его источников и количества потребителей. Оно также изменяется и во времени. Так, зимой и осенью концентрация углекислого газа повышена вследствие различий фотосинтетической активности зеленых насаждений. При этом летом при интенсивной ассимиляции растений его количество существенно уменьшается. Колебания СО 2 в воздухе оказывает существенное влияние на активность фотосинтеза и уровень питания растений. Даже небольшие изменения негативно воздействуют на их развитие и рост, внешний вид, внутренние процессы. Обычное содержание СО 2 в воздухе близкое к 0.03% не считается оптимальным для нормальной жизни растений. В этой связи высокая степень интенсивности фотосинтеза может достигаться или быстрым перемещением различных масс, которые обеспечат его приток к ассимилирующим частям, или за счет деятельности гетеротрофов, размножение которых сопровождается его выделением.

Освещенность и температура

Рассмотрим, как могут влиять лимитирующие факторы на фенотип одуванчика. Из-за значительной изменчивости его экземпляров, которые растут на хорошо освещенных территориях, у растения преобладают черты светолюбивых насаждений. В частности, они отличаются:

  • Толстыми, мелкими, мясистыми листовыми пластинками с густым жилкованием.
  • Разветвленной корневой системой.
  • Расположением листьев под углом относительно солнечных лучей.
  • Своеобразным движением, обеспечивающим защиту от чрезмерного освещения.

Вместе с этим, одуванчики, которые растут в тени, обладают соответствующими чертами:

  • Слаборазвитой корневой системой.
  • Крупными широкими, тонкими с редким жилкованием листьями, расположенными перпендикулярно лучам и пр.

При анализе срезов листовых пластин первого и второго вида одуванчика, можно обнаружить и более глубокие гистологические различия, которые дополняют морфологические признаки, рассмотренные выше. Также достаточно наглядно проявляется влияние температурных колебаний. При этом, если трансформацию при изменении освещенности можно наблюдать, сравнивая разные экземпляры, то в данном случае ее можно увидеть на одном растении. При пониженной температуре весенние от +4 до +6 градусов на растениях формируются ранние сильно изрезанные листья. Если в таком виде перенести одуванчик в оранжерею, где t +15…+18 град., начнут развиваться пластины с цельными краями. При помещении растения в промежуточные условия листья будут иметь незначительную изрезанность.

Цепная реакция

Одним из существенных дополнений к рассмотренной теории выступает положение о том, что изменение любого условия порождает далеко идущие последствия. В настоящее время практически невозможно найти участок на планете, на котором отсутствуют лимитирующие факторы. Во многих случаях активность самого человека формирует ограничивающие или угнетающие условия. В качестве одного из таких ярких примеров можно привести полное истребление огромных популяций морской стеллеровой коровы. Этот процесс занял у человека относительно немного времени - несколько лет - в сравнении с практически вековым периодом естественного восстановления экосистемы.

Лимитирующие факторы. Закон минимума (закон Ю. Либиха), определение лимитирующего фактора

Лимитирующий фактор - фактор среды, выходящий за пределы выносливости организма. Лимитирующий фактор ограничивает любое проявление жизнедеятельности организма. С помощью лимитирующих факторов регулируется состояние организмов и экосистем.

Закон минимума Ю. Либиха - в экологии - концепция, согласно которой существование и выносливость организма определяется самым слабым звеном в цепи его экологических потребностей.

Согласно закону минимума жизненные возможности организмов лимитируют те экологические факторы, количество и качество которых близки к необходимому организму или экосистеме минимуму.

Определение понятия «экологические факторы»

Среда - это все, что окружает организм, т.е. это та часть природы, с которой организм находится в прямых или косвенных взаимодействиях.

Под средой мы понимаем комплекс окружающих условий, влияющих на жизнедеятельность организмов. Комплекс условий складывается из разнообразных элементов - факторов среды. Не все из них с одинаковой силой влияют на организмы. Так, сильный ветер зимой неблагоприятен для крупных, обитающих открыто животных, но он не действует на более мелких, которые укрываются под снегом или в норах, либо живут в земле. Те факторы, которые оказывают какое-либо действие на организмы и вызывают у них приспособительные реакции, называются экологическими факторами.

Влияние экологических факторов сказывается на всех процессах жизнедеятельности организмов и, прежде всего, на их обмене вещества. Приспособления организмов к среде носят название адаптаций. Способность к адаптации - одно из основных свойств жизни вообще, так как обеспечивает самую возможность ее существования, возможность организмов выжить и размножаться.

Классификация экологических факторов.

Экологические факторы имеют разную природу и специфику действия. По своему характеру они подразделены на две крупные группы: абиотические и биотические. Если мы будем подразделять факторы по причинам их возникновения, то они могут быть подразделены на природные (естественные) и антропогенные. Антропогенные факторы могут также быть абиотическими и биотическими.

Абиотические факторы (или физико-химические факторы) - температура, свет, рН среды, соленость, радиоактивное излучение, давление, влажность воздуха, ветер, течения. Это все свойства неживой природы, которые прямо или косвенно влияют на живые организмы.

Биотические факторы - это формы воздействия живых существ друг на друга. Окружающий органический мир - составная часть среды каждого живого существа. Взаимные связи организмов - основа существования популяций и биоценозов.

Антропогенные факторы - это формы действия человека, которые приводят к изменению природы как среды обитания других видов или непосредственно сказываются на их жизни.

Действие экологических факторов может приводить:

  • · к устранению видов с биотопов (смена биотопа, территории, сдвиг ареала популяции; пример: миграции птиц);
  • · к изменению плодовитости (плотности популяций, репродукционные пики) и смертности (смерть при быстрых и резких изменениях условий окружающей среды);
  • · к фенотипической изменчивости и адаптации: модификационная изменчивость - адаптивные модификации, зимняя и летняя спячка, фотопериодические реакции и т.п.

Лимитирующие факторы. Закон Либиха

Реакция организма на воздействие фактора обусловлена дозировкой этого фактора. Очень часто фактор среды, особенно абиотический, переносится организмом лишь в определенных пределах. Наиболее эффективно действие фактора при некоторой оптимальной для данного организма величине. Диапазон действия экологического фактора ограничен соответствующими крайними пороговыми значениями (точками минимума и максимума) данного фактора, при котором возможно существование организма. Максимально и минимально переносимые значения фактора - это критические точки, за пределами которых наступает смерть. Пределы выносливости между критическими точками называют экологической валентностью или толерантностью живых существ по отношению к конкретному фактору среды. Распределение плотности популяции подчиняется нормальному распределению. Плотность популяции тем выше, чем ближе значение фактора к среднему значению, которое называется экологическим оптимумом вида по данному параметру. Такой закон распределения плотности популяции, а следовательно, и жизненной активности получил название общего закона биологической стойкости.

Диапазон благоприятного воздействия фактора на организмы данного вида называется зоной оптимума (или зоной комфорта). Точки оптимума, минимума и максимума составляют три кардинальные точки, определяющие возможность реакции организма на данный фактор. Чем сильнее отклонение от оптимума, тем больше выражено угнетающее действие данного фактора на организм. Этот диапазон величины фактора называется зоной пессимума (или зоной угнетения). Рассмотренные закономерности воздействия фактора на организм известно, как правило оптимума.

Установлены и другие закономерности, характеризующие взаимодействия организма и среды. Одна из них была установлена немецким химиком Ю. Либихом в 1840 году и получила название закона минимума Либиха, согласно которому рост растений ограничивается нехваткой единственного биогенного элемента, концентрация которого лежит в минимуме. Если другие элементы будут содержаться в достаточном количестве, а концентрация этого единственного элемента опустится ниже нормы, растение погибнет. Такие элементы получили название лимитирующих факторов. Итак, существование и выносливость организма определяются самым слабым звеном в комплексе его экологических потребностей. Или относительное действие фактора на организм тем больше, чем больше этот фактор приближается к минимуму по сравнению с прочими. Величина урожая определяется наличием в почве того из элементов питания, потребность в котором удовлетворена меньше всего, т.е. данный элемент находится в минимальном количестве. По мере повышения его содержания урожай будет возрастать, пока в минимуме не окажется другой элемент.

Позднее закон минимума стал трактоваться более широко, и в настоящее время говорят о лимитирующих экологических факторах. Экологический фактор играет роль лимитирующего в том случае, когда он отсутствует или находится ниже критического уровня, или превосходит максимально выносимый предел. Иными словами, этот фактор обусловливает возможности организма в попытке вторгнуться в ту или иную среду. Одни и те же факторы могут быть или лимитирующими или нет. Пример со светом: для большинства растений это необходимый фактор как поставщик энергии для фотосинтеза, тогда как для грибов или глубоководных и почвенных животных этот фактор не обязателен. Фосфаты в морской воде - лимитирующий фактор развития планктона. Кислород в почве не лимитирующий фактор, а в воде - лимитирующий.

Следствие из закона Либиха: недостаток или чрезмерное обилие какого-либо лимитирующего фактора, может компенсироваться другим фактором, изменяющим отношение организма к лимитирующему фактору.

Лимитирующие факторы являются такими агентами, количественные значения которых выходят за пределы приспособительной способности живых организмов, что приводит к ограничению их распространения на соответствующей территории.

Так, лимитирующие влияют на географический ареал распространения различных видов, способны провоцировать ограничение их роста или даже гибель при недостатке отдельных веществ, а также при их избыточном количестве. Следует отметить, что влияние факторов окружающей среды при определенных условиях может меняться, быть лимитирующим или радикально не влиять на

Агрохимиком Ю. Либихом был установлен Он утверждал, что уровень урожая зависит от фактора с минимальными количественными характеристиками. Надо сказать, что данный закон действительно справедлив на уровне химических соединений, но имеет ограниченный характер, поскольку урожай зависит от целого комплекса факторов: концентрации соответствующих веществ, света, температуры, влажности и т.д. При этом лимитирующие факторы отрицательно влияют или самостоятельно, или в определенном сочетании.

Несмотря на тесную взаимосвязь агентов окружающей среды, они не способны заменять друг друга, что указано в законе независимости факторов, который был выведен В. Р. Вильямсом. Так, например, влажность нельзя заменить действием света или

Наиболее четко влияние экологии описывает закон лимитирующего фактора: даже один агент окружающей среды, который находится за пределами своего оптимума, способен вызывать стрессовое состояние организма или даже его гибель.

Уровень, который соответствует границам выносливости определенного фактора, называется степенью толерантности. Стоит отметить, что данная величина не является постоянной. Для различных организмов она отличается. Этот диапазон может значительно сужаться в случаях, когда влияет фактор, действие которого близко к пределу выносливости организма.

Надо сказать, что лимитирующие факторы для одного вида являются обычными условиями существования для других. Границей толерантности для всех организмов является максимальная или минимальная летальная температура, за пределами которой они погибают. Связано это с тем, что температурный фактор способен влиять на метаболизм и фотосинтез.

Важными агентами, которые могут иметь лимитирующее влияние, являются вода, а также солнечное излучение. Их недостаток приводит к прекращению реакций и энергии, что ведет к гибели организмов.

Лимитирующие факторы являются причиной появления ряда специфических приспособительных реакций, которые именуются адаптивными. Они развиваются под действием трех важных процессов: изменчивости живых организмов, наследственности и естественного отбора. Основным источником адаптационных изменений являются мутации в геноме. Они могут возникать при воздействии как естественных, так и искусственных факторов, которые в некоторых случаях способны менять ареал распространения видов.

Стоит отметить, что накопление мутаций ведет к дезинтеграционным явлениям. В процессе эволюции на все организмы действует целый комплекс абиотических и При этом возникают как успешные адаптации, которые помогают приспосабливаться к негативным факторам окружающей среды, так и неуспешные, которые приводят к вымиранию вида.

К лимитирующим могут относиться любые факторы среды: освещение, температура, влажность, микросреда, состав почвы и др. Учение о лимитирующих факторах основано на двух основополагающих постулатах: законе Либиха (1840) и законе Шелфорда (1913).

Каждый вид растений, микроорганизмов и животных существует в условиях, при которых их жизнь наиболее комфортна. Для того, чтобы представители каждой популяции могли полноценно питаться, развиваться и размножаться, необходимо соответствие каждого экологического фактора определенным значениям, которые укладываются в более или менее широком диапазоне. К насекомым это относится в той же степени, что и к другим живым организмам, поэтому в дальнейшем мы будем рассматривать влияние лимитирующих факторов на примере этого класса.

Для жизнеспособности организмов опасно как снижение, так и превышение оптимальных значений температуры, влажности и т.д. Выход их величин за пределы выносливости приводит к гибели организма, популяции или даже экосистемы.

Например, если в почве недостает какого-то определенного микроэлемента, это вызывает снижение урожайности растений. Из-за отсутствия пищи гибнут насекомые, которые питались этими растениями. Последнее, свою очередь, отражается на выживаемости хищников-энтомофагов: других насекомых, птиц, некоторых Земноводных и т.д.

Каждый организм характеризуется определенным экологическим минимумом и максимумом, между которыми находится зона нормальной жизнедеятельности (или оптимума). Чем дальше тот или иной фактор отклоняется от значения оптимума, тем в большей степени заметно его негативное воздействие. За пределами критических точек (крайних значений лимитирующего фактора) существование организма невозможно.

Для обозначения степени толерантности (устойчивости) видов к различным значениям лимитирующих факторов, их принято разделять на маловыносливые - стенобионты - и выносливые, или эврибионты . К стенобионтам можно отнести низших насекомых, обитающих в пещерах (Бессяжковые и др.), а также большинство тропических отрядов, которые существуют лишь в условиях высокой температуры и влажности. Например, Чешуекрылые отряда Morpho (фото) обитают только в густых тропических лесах Центральной и Южной Америки и очень плохо разводятся в искусственных условиях. В частности, они очень требовательны к световому режиму: каждый вид этих бабочек летает лишь в определенное время дня.

Лимитирующие факторы неживой природы

Среди всех абиотических факторов насекомые обладают наибольшей чувствительностью к температуре, освещению и влажности.

Что касается первого, на территории нашей страны большинство видов способно жить в диапазоне температур от 3 до 40 градусов, хотя некоторые имеют механизмы приспособления, позволяющие им существовать и за пределами зоны нормальной жизнедеятельности. Так, ряд высокоразвитых насекомых проявляет устойчивость к замерзанию, так как жидкость в их организме не переходит в кристаллы, а витрифицируется - становится подобна стеклу. Это распространено среди некоторых жуков, Чешуекрылых и Двукрылых. Например, бабочки махаона (фото) может переносить глубокое замораживание почти до - 200 градусов.

Освещение также немаловажно. Под действием оптимальных доз ультрафиолета в организме насекомых происходят важные биохимические процессы: выделение гормонов, формирование пигмента и даже усвоение некоторых минеральных веществ. Приверженность к определенному световому режиму определяет их образ жизни (дневной, ночной), а также предпочтительную среду обитания. Так, жуков-щелкунов, обитающие в почве, не переносят яркого света и гибнут под воздействием интенсивного ультрафиолетового излучения.

Очень по-разному действует на насекомых такой лимитирующий фактор, как влажность. Некоторые из них, например, комары, мошки или примитивные отряды вроде поденок, живут преимущественно вблизи водоемов, с которыми связаны не только самые комфортные условия их жизни, но и процесс . По этой причине осушение болот является одним из самых эффективных методов борьбы с распространением комаров. Среди насекомых встречаются и ксерофиты, предпочитающие засушливые местности, например, муравьи, населяющие полупустыни.

Лимитирующие факторы живой природы

Ограничивать жизнедеятельность насекомых могут не только явления неживой природы, но и факторы биологического происхождения. Биологические лимитирующие факторы в виде хищников угрожают всем растительноядным видам: так, для бабочек даже в пределах класса угрозу способны создавать десятки хищников, от богомолов и муравьев до златоглазок и некоторых кузнечиков.

В обычных условиях каждый вид и популяция стремится занять свою экологическую нишу, однако иногда складываются такие условия, что два и более видов конкурируют между собой. В этом случае они становятся лимитирующими факторами друг для друга. Чаще всего конкуренция развивается из-за недостатка пищевых ресурсов; нередко она происходит между летающими насекомыми, опыляющими одни и те же растения.

У общественных форм - муравьев и термитов - конкуренция заметна не только за пределами вида, но и внутри него. Эти насекомые живут автономными колониями, и каждая семья создает для любой другой потенциальную угрозу, уничтожая доступную пищу и занимая ее потенциальный «дом».