Примеры биологической техники. Современные примеры бионики в архитектуре и дизайне интерьеров. Аналоги природных форм в медицине

Бионика - это наука, изучающая живую природу с целью использования полученных знаний в практической деятельности человека. Проблемы бионики: изучение закономерностей структуры и функции отдельных частей живых организмов (нервной системы, анализаторов, крыльев, кожи) с целью создания на этой основе нового типа вычислительных машин, локаторов, летательных, плавательных аппаратов и т. д.; изучение биоэнергетики для создания экономичных двигателей, подобных мышце; исследование процессов биосинтеза веществ с целью развития соответствующих отраслей химии. Бионика тесно связана с техническими (электроника, связь, морское дело и др.) и естественнонаучными ( , медицина) дисциплинами, а также с кибернетикой (см.).

Бионика (англ. bionics, от bion - живое существо, организм; греч. Bioo - живу)- наука, изучающая живую природу с целью использования полученных знаний в практической деятельности человека.

Термин бионика впервые появился в 1960 г., когда специалисты различных профилей, собравшиеся на симпозиум в Дайтоне (США), выдвинули лозунг: «Живые прототипы - ключ к новой технике». Бионика явилась своеобразным мостом, связавшим биологию с математикой, физикой, химией и техникой. Одна из важнейших целей бионики - установить аналогии между физико-химическими и информационными процессами, встречающимися в технике, и соответствующими процессами в живой природе. Специалиста-бионика привлекает все многообразие «технических идей», выработанных живой природой за многие миллионы лет эволюции. Особое место среди задач бионики занимают разработка и конструирование систем управления и связи на основе использования знаний из биологии. Это - бионика в узком смысле слова. Бионика имеет важное значение для кибернетики, радиоэлектроники, аэронавтики, биологии, медицины, химии, материаловедения, строительства и архитектуры и др. К задачам бионики относятся также освоение биологических методов добычи полезных ископаемых, технологии производства сложных веществ органической химии, строительных материалов и покрытий, которые использует живая природа. Бионика учит искусству рационального копирования живой природы, изысканию технических условий целесообразного использования биологических объектов, процессов и явлений.

Один из возможных путей здесь - функциональное (математическое, или программное) моделирование, заключающееся в изучении структурной схемы процесса, функций объекта, числовых характеристик этих функций, их назначения и изменения во времени. Такой подход дает возможность изучать интересующий процесс математическими средствами, а техническое воплощение модели осуществить тогда, когда в принципе установлена ее эффективность и осталось проверить экономические, энергетические и другие возможности конструирования такого рода модели имеющимися техническими средствами. Существует и другой путь - физико-химическое моделирование, когда специалист в области бионики изучает биохимические и биофизические процессы с целью исследования принципов превращения (включая разложение и синтез) веществ, происходящих в живом организме. Этот путь более всего примыкает к химико-технологической проблематике и открывает новые возможности в развитии энергетики и химии полимеров. Третий подход, развиваемый бионикой,- это непосредственное использование живых систем и биологических механизмов в технических системах. Такой подход принято называть методом обратного моделирования, так как в этом случае специалист-бионик изыскивает возможности и условия приспособления живых систем для решения чисто инженерных задач, иначе говоря, пытается моделировать на биологическом объекте техническое устройство или процесс. Возникшая в ответ на запросы практики, бионика послужила началом исследований, основанных на применении биологических знаний во всех областях техники. Основной ее результат заключается в установлении первых путей для все большего технического освоения биологии.

Бионика в жизни человека

Говорят, что раз в столетие на Земле рождается гений. Таким гением был Леонардо да Винчи. Величайший художник, скульптор, математик, инженер и анатом Леонардо да Винчи стремился найти истину, познать и описать ее.

«В наставницы себе я взял природу – учительницу всех учителей».

Почему этот великий ученый в учителя себе взял природу?

Жизнь в самой примитивной форме возникла на Земле около 2 млрд. лет назад. Миллионы столетий длился беспощадный естественный отбор, в результате которого выжили самые сильные и совершенные. Позаимствовать самое лучшее у природы, чтобы расширить возможности человека первым и предложил Леонардо да Винчи. В 1485 году он создал механический летательный аппарат – орнитоптель, принцип работы которого он скопировал у птиц. И хоть тогда человеку не удалось научиться летать, но это положило начало новой науке – бионики. Бионика – это симбиоз биологии и техники.

Если историю Земли – 4,5 млрд. лет − представить как один день, то получится, что человек разумный появился на планете меньше минуты назад. Миновали буквально доли секунды, а он уже возомнил себя творцом и уже может создавать не хуже природы. До недавнего времени, изобретая новое, человек не догадывался, что это уже существует. Надо только увидеть и применить. 99% научных открытий человек подсмотрел у природы. Все, что нас окружает имеет свой природный аналог.

Био́ника (от Βίον - живущее ) - прикладная о применении в технических устройствах и системах принципов организации, свойств, функций и структур . Проще говоря, бионика - это соединение и . Дата рождения бионики: 13 сентября 1960 года. У бионики есть символ: скрещенные скальпель, паяльник и знак интеграла. Этот союз биологии, техники и математики позволяет надеяться, что наука бионика проникнет туда, куда не проникал еще никто, и увидит то, чего не видел еще никто.

Человек всегда мечтал покорить небо. Но оно было доступно только птицам. И именно птицы подарили людям идею полета.

Мечты о полетах и их реальное воплощение – это очень разные вещи. И не смотря на смелые идеи, такие как у Леонардо да Винчи, человечество еще долгие века оставалось бы приковано к земле. Изучение птиц, строения их крыльев и хвоста, привело к тому, что человек изобрел самолет. Строение глаза человека положило начало фотообъективу, строение соцветия подсолнуха – солнечным батареям. Вычесывая соцветия репейника и шерсти совей собаки после прогулки, знаменитый дизайнер изобрел застежки-липучки. Насекомые подсказали ученым идею о вертолетах. Рыбы натолкнули на создание подводных лодок. Корпорация MercedesBenz разработала бионическое транспортное средство, скопированное с тропической рыбы-кузовка. Несмотря на свою чемоданообразную форму, машина имеет крайне низкое сопротивление воздуха.

Мы сталкиваемся каждый день с бионическими изобретениями даже не подозревая об этом. Чаще всего принципы, принятые у природы, встречаются в архитектуре. Например, в конструкции знаменитой Эйфелевой башни лежит строение бедренной кости человека. На головке кости имеется множество опорных точек, благодаря им, нагрузка на сустав распределяется равномерно. Это позволяет изогнутой бедренной кости выдерживать большой вес тела. Такие же опорные точки можно найти и в основании Эйфелевой башни. Ее конструкция считается архитектурным эталоном устойчивости.

Природный аналог есть и у другой башни – Останкинской. Ее стройный силуэт узнаваем. Прототипом Останкинской башни является стебель пшеницы. Его способность не ломаться под тяжестью соцветия и легли в основу башни.

Архитекторы все чаще обращаются к принципам функционирования живых организмов. Чтобы понять, как это работает, конструктору приходится изучать биологию. Природными прототипами архитектурных конструкций становятся рыбы, птицы, растения и даже человеческое тело.

Бионика не стоит на месте. Эта наука творит настоящую революцию. Обычное наблюдение, моделирование способно на многое. Моя будущая профессия связана с машиностроением. Машиностроительная отрасль является наиболее роботизированной. Впервые своё практическое применение промышленные роботы получили благодаря американским инженерам Д. Деволу и Д. Энгельбергу в конце 50-х начале 60-х годов ХХ века. Их используют для выполнения разных технологических процессов с целью повышения эффективности деятельности предприятия.

В конструкции робот может содержать один или несколько манипуляторов, при этом сам манипулятор может обладать различной грузоподъемностью, точностью позиционирования, степенью свободы. При создании промышленного робота активно используют бионические модели. Манипулятор промышленного робота состоит из определенного количества подвижных соединенных друг с другом звеньев (осей). Он устроен по принципу конечностей членистоногих. Чем больше осей, тем более универсальная конструкция у робота. Расположение и гибкость соединения осей робота были тщательно сделаны по человеческому образцу (соединение суставов). Регулирование осей манипулятора происходит с помощью датчиков. Они аналогичны органам чувств и реагируют на свет, положение в пространстве

Природа хранит ещё множество загадок, гармония её творений всегда удивляла и будет удивлять мир человека. Но вот вопрос: «Успеем ли мы воспользоваться оставшимися «патентами живой природы»? Учитывая темпы, с которыми растения и животные исчезают с лика земли, а статистика неумолимо констатирует: ежегодно – один вид животных и ежедневно – один вид растений, − поставленный вопрос звучит очень тревожно. В связи с этим сохранение редких и исчезающих видов животных и растений, поддержание окружающей среды в условиях, благоприятных для жизни всего живого на Земле, − насущная проблема, и залог дальнейшего развития человечества.

Лозунг бионики: «Природа знает лучше». Что же это за наука такая? Уже само название и такой девиз дают нам понять, что бионика связана с природой. Многие из нас ежедневно сталкиваются с элементами и результатами деятельности науки бионики, даже не подозревая об этом.

Вы слышали о такой науке, как бионика?

Биология - популярное знание, с которым нас знакомят ещё в школе. Почему-то многие считают, что бионика - один из подразделов биологии. На самом деле это утверждение не совсем точное. Действительно, в узком смысле слова бионика - это наука, изучающая живые организмы. Но чаще всего мы привыкли ассоциировать с этим учением нечто другое. Прикладная бионика - наука, которая сочетает в себе биологию и технику.

Предмет и объект бионических исследований

Что изучает бионика? Чтобы ответить на этот вопрос, нужно рассмотреть структурное деление самого учения.

Биологическая бионика исследует природу такой, какая она есть, без попытки вмешательства. Объектом её изучения являются процессы, происходящие внутри биологических систем.

Теоретическая бионика занимается изучением тех принципов, которые были замечены в природе, и на их основе создаёт теоретическую модель, в дальнейшем применяемую в технологиях.

Практическая (техническая) бионика - это применение теоретических моделей на практике. Так сказать, практическое внедрение природы в технический мир.

Откуда всё начиналось?

Отцом бионики называют великого Леонардо да Винчи. В записях этого гения можно найти первые попытки технического воплощения природных механизмов. Чертежи да Винчи иллюстрируют его стремление создать летательный аппарат, способный двигать крыльями, как при полёте птицы. В своё время такие идеи были слишком дерзкими, чтобы стать востребованными. Они заставили обратить на себя внимание значительно позже.

Первым, кто стал применять принципы бионики в архитектуре, был Антони Гауди-и-Курнет. Его имя прочно впечатано в историю этой науки. Архитектурные сооружения по проектам великого Гауди впечатляли в момент их сооружения, и такой же восторг они вызывают через много лет у современных наблюдателей.

Следующим, кто поддержал идею симбиоза природы и технологий, стал Под его руководством началось широкое применение бионических принципов в проектировании зданий.

Утверждение бионики как самостоятельной науки произошло лишь в 1960 году на научном симпозиуме в Дайтоне.

Развитие компьютерной техники и математического моделирования позволяют современным архитекторам намного быстрее и с большей точностью воплощать в архитектуре и других отраслях подсказки природы.

Природные прототипы технических изобретений

Самым простым примером проявления науки бионики является изобретение шарниров. Всем знакомое крепление, основанное на принципе вращения одной части конструкции вокруг другой. Такой принцип используют морские ракушки, для того чтобы управлять двумя своими створками и по надобности открывать их или закрывать. Тихоокеанские сердцевидки-великаны достигают размеров 15-20 см. Шарнирный принцип в соединении их ракушек хорошо просматривается невооружённым взглядом. Мелкие представители этого вида применяют такой же способ фиксации створок.

В быту мы часто используем разнообразные пинцеты. Природным аналогом такого прибора становится острый и клещеобразный клюв веретенника. Эти птицы применяют тонкий клюв, втыкая его в мягкую почву и доставая оттуда мелких жуков, червяков и прочее.

Многие современные приборы и приспособления оснащены присосками. Например, их используют для усовершенствования конструкций ножек различных кухонных приспособлений, чтобы избежать их скольжения во время работы. Также присосками оснащают специальную обувь мойщиков окон высотных зданий для обеспечения их безопасной фиксации. Это нехитрое приспособление тоже позаимствовано у природы. Квакша, имея на ногах присоски, необычайно ловко держится на гладких и скользких листьях растений, а осьминогу они необходимы для тесного контакта со своими жертвами.

Можно найти множество таких примеров. Бионика - это как раз та наука, которая помогает человеку заимствовать у природы технические решения для своих изобретений.

Кто первый - природа или люди?

Иногда случается, что то или иное изобретение человечества уже давно «запатентовано» природой. То есть изобретатели, создавая нечто, не копируют, а придумывают сами технологию или принцип работы, а позже оказывается, что в естественной природе это уже давно существует, и можно было просто подсмотреть и перенять.

Так произошло с обычной липучей застёжкой, которая используется человеком для застегивания одежды. Было доказано, что в для сцепления тонких бородочек между собой тоже применяются крючочки, подобно тем, которые есть на застёжке-липучке.

В строении фабричных труб наблюдается аналогия с полыми стеблями злаков. Продольная арматура, используемая в трубах, сходна со склеренхимными тяжами в стебле. Стальные кольца жёсткости - междоузлия. Тонкая кожица с внешней стороны стебля - это аналог спиральной арматуры в строении труб. Несмотря на колоссальное сходство структуры, учёные самостоятельно изобрели именно такой метод постройки фабричных труб, а уже позже увидели тождество такого строения с природными элементами.

Бионика и медицина

Применение бионики в медицине даёт возможность спасти жизнь многим пациентам. Не прекращаясь, ведутся работы по созданию искусственных органов, способных функционировать в симбиозе с организмом человека.

Первым посчастливилось испытать датчанину Деннису Аабо. Он потерял половину руки, но сейчас имеет возможность воспринимать предметы на ощупь с помощью изобретения медиков. Его протез подключён к нервным окончаниям пострадавшей конечности. Сенсоры искусственных пальцев способны собирать информацию о прикосновении к предметам и передавать её в мозг. Конструкция на данный момент ещё не доработана, она очень громоздкая, что затрудняет её использование в быту, но уже сейчас можно назвать такую технологию настоящим открытием.

Все исследования в данном направлении полностью основываются на копировании природных процессов и механизмов и их техническом исполнении. Это и есть медицинская бионика. Отзывы учёных гласят, что в скором времени их труды дадут возможность менять износившиеся живые органы человека и вместо них использовать механические прототипы. Это действительно станет величайшим прорывом в медицине.

Бионика в архитектуре

Архитектурно-строительная бионика - особая отрасль бионической науки, задачей которой становится органическое воссоединение архитектуры и природы. В последнее время всё чаще при проектировании современных конструкций обращаются к бионическим принципам, позаимствованным у живых организмов.

Сегодня архитектурная бионика стала отдельным архитектурным стилем. Рождалась она с простого копирования форм, а сейчас задачей этой науки стало перенять принципы, организационные особенности и технически их воплотить.

Иногда такой архитектурный стиль называют экостилем. Всё потому, что основные правила бионики - это:

  • поиск оптимальных решений;
  • принцип экономии материалов;
  • принцип максимальной экологичности;
  • принцип экономии энергии.

Как видите, бионика в архитектуре - это не только впечатляющие формы, но и прогрессивные технологии, позволяющие создавать сооружение, отвечающие современным требованиям.

Характеристики архитектурных бионических строений

Опираясь на былой опыт в архитектуре и строительстве, можно сказать, что все сооружения человека непрочны и недолговечны, если они не используют законы природы. Бионические здания, помимо удивительных форм и смелых архитектурных решений, обладают стойкостью, способностью выдерживать неблагоприятные природные явления и катаклизмы.

В экстерьере зданий, построенных в этом стиле, могут просматриваться элементы рельефов, форм, контуров, умело скопированные инженерами-проектировщиками с живых, природных объектов и виртуозно воплощенные архитекторами-строителями.

Если вдруг при созерцании архитектурного объекта покажется, что вы смотрите на произведение искусства, с большой вероятностью перед вами строение в стиле бионика. Примеры таких конструкций можно увидеть практически во всех столицах стран и больших технологически развитых городах мира.

Конструкция нового тысячелетия

Ещё в 90-х годах испанской командой архитекторов был создан проект здания, основывающийся на совершенно новой концепции. Это 300-этажное строение, высота которого будет превышать 1200 м. Задумано, что передвижение по этой башне будет происходить с помощью четырёх сотен вертикальных и горизонтальных лифтов, скорость которых - 15 м/с. Страной, согласившейся спонсировать данный проект, оказался Китай. Для строительства был выбран самый густонаселённый город - Шанхай. Воплощение проекта позволит решить демографическую проблему региона.

Башня будет иметь полностью бионическую структуру. Архитекторы считают, что только это сможет обеспечить прочность и долговечность конструкции. Прототипом строения является дерево кипарис. Архитектурная композиция будет иметь не только цилиндрическую форму, похожую на ствол дерева, но и «корни» — новый вид бионического фундамента.

Наружное покрытие здания - это пластичный и воздухопроницаемый материал, имитирующий кору дерева. Система кондиционирования этого вертикального города будет аналогом теплорегулирующей функции кожи.

По прогнозам учёных и архитекторов, такое здание не останется единственным в своём роде. После успешного воплощения количество бионических строений в архитектуре планеты будет только увеличиваться.

Бионические здания вокруг нас

В каких известных творениях была использована наука бионика? Примеры таких сооружений несложно отыскать. Взять хотя бы процесс создания Эйфелевой башни. Долгое время ходили слухи, что этот 300-метровый символ Франции построен по чертежам неизвестного арабского инженера. Позже была выявлена полная её аналогия со строением большой берцовой кости человека.

Кроме башни Эйфеля во всём мире можно найти множество примеров бионических сооружений:

  • возводилась по аналогии с цветком лотоса.
  • Пекинский национальный оперный театр - имитация водяной капли.
  • Плавательный комплекс в Пекине. Внешне повторяет кристаллическую структуру решётки воды. Удивительное дизайнерское решение совмещает и полезную возможность конструкции аккумулировать энергию солнца и в дальнейшем использовать её для питания всех электроприборов, работающих в здании.
  • Небоскрёб "Аква" внешне похож на поток падающей воды. Находится в Чикаго.
  • Дом основателя архитектурной бионики Антонио Гауди - это одно из первых бионических сооружений. До сегодняшнего дня он сохранил свою эстетическую ценность и остаётся одним из самых популярных туристических объектов в Барселоне.

Знания, необходимые каждому

Подводя итоги, можно смело заявить: всё, что изучает бионика, актуально и нужно для развития современного общества. Каждый должен ознакомиться с научными принципами бионики. Без этой науки невозможно представить технический прогресс во многих сферах деятельности человека. Бионика - это наше будущее в полной гармонии с природой.

1. Бионика как наука - история развития, определения, сущность
2. Аналоги природных форм в медицине
3. Принципы бионики на службе у медицины
Заключение
Список литературы

1. Бионика как наука - история развития, определения, сущность

Формальной датой рождения одной из новых наук, возникшей в современном нам ХХ в., бионики, принято считать 13 сентября 1960 г. - день открытия первого американского национального симпозиума на тему «Живые прототипы искусственных систем - ключ к новой технике». Однако, само собой разумеется, что проведение такого симпозиума стало возможным только потому, что к этому времени было накоплено большое количество данных о принципах организации и функционирования живых систем, а также появились возможности практического использования добытых знаний для решения ряда актуальных задач техники.
Название «бионика » происходит от древнегреческого корня «bion» - элемент жизни, ячейка жизни или, более точно, элементы биологической системы.
Сразу же возникли эмблема и девиз, несущие в себе символическое изображение научной сути бионики, - синтезировать накопленные в различных науках знания. Присущий ХХ в. интенсивный процесс разъединения, дробления научных дисциплин, крайняя степень конкретизации целей и задач отдельных наук привели к возникновению более полутора тысяч отраслей знаний. В течение достаточно длительного отрезка времени такая дифференциация знаний способствовала успешному развитию большинства отраслей науки и техники, но в настоящее время узкая специализация ученых затрудняет познание, и появляется настоятельная потребность в интеграции результатов научных исследований на основе единых, всеобъемлющих принципов.
Первой попыткой к новому объединению явилась кибернетика, основным интеграционным принципом которой стала всеобщность методов управления живым и неживым и их связи.
Бионика же во многом является логическим продолжением кибернетики, но она устраняет противоречия, ставшие результатом специализации наук и их разобщения, и интегрирует разнородные сведения в соответствии с единством живой природы, или биологическим принципом. Поэтому эмблемой бионики являются скальпель и паяльник, соединенные знаком интеграла, а девизом - «Живые прототипы - ключ к новой технике».
Единого мнения о содержании бионики - едва ли не самой популярной из молодых наук, возникших в ХХ в., - до сих пор нет. Многие специалисты считают бионику новой ветвью кибернетики, другие относят ее к биологическим наукам, но, судя по всему, наиболее правы те, кто выделяет бионику в самостоятельную науку.
Обращаясь к наиболее устоявшемуся определению, можно сказать, что бионика - это наука, занимающаяся изучением принципов построения и функционирования биологических систем и их элементов и применением полученных знаний для коренного усовершенствования существующих и создания принципиально новых машин, приборов, аппаратов, строительных конструкций и технологических процессов. Бионику также можно назвать наукой о построении технических устройств, характеристики которых максимально приближены к характеристикам живых систем.
Как и у большинства наук, структура бионики неоднородна. В настоящее время принято выделять три методологических направления бионики: биологическое, математическое (теоретическое) и техническое.
Биологическая бионика базируется на самых разных разделах биологии и медицины, использует их достижения для выявления определенных принципов живой природы, которые могут быть положены в основу решения тех или иных проблем инженерного плана.
Содержанием теоретической бионики является разработка математического аппарата биологического моделирования, а также математических моделей явлений и процессов, протекающих в живых организмах, живых системах или даже в обществах организмов.
Сферой деятельности технической бионики является реализация математических моделей или иных сторон деятельности живых организмов, часто полученных в ходе исследований биологической и теоретической бионики, с целью усовершенствования существующих и создания совершенно новых технических средств и систем, превосходящих по своим техническим характеристикам уже созданные ранее и действующих по биологическому принципу.
В процессе продолжительной эволюции природа создала на Земле бесчисленное множество живых организмов, многие из которых по праву могут быть отнесены к «живым инженерным системам», функционирующим очень точно, научно и экономично, отличающимся поразительной точностью, целесообразностью, способностью реагировать на тончайшие изменения многочисленных факторов внешней среды, запоминать и учитывать эти изменения, отвечать на них многообразными приспособительными реакциями.
Рассмотрим применение методов и решений бионики в медицине - той отрасли биологических наук, с которой каждый человек не раз сталкивается за свою жизнь.
Многие из «изобретений» природы еще в глубокой древности помогали решать ряд технических задач. Так, например, проводя глазные хирургические операции, арабские врачи уже много сотен лет назад получили представление о преломлении световых лучей при переходе из одной прозрачной среды в другую. Изучение хрусталика глаза натолкнуло врачей древности на мысль об использовании линз, изготовленных из хрусталя или стекла, для увеличения изображения, а затем и для коррекции зрения.
Когда в одном из свои странствий Джеральд Дарелл был вынужден согласиться на пари, смыслом которого было назвать четыре выдающихся изобретения и доказать, что заложенный в них принцип использовали животные до того, как до этого додумался человек, одним из изобретений было названо использование осами анестезии. При «заготовлении» дорожными осами корма для будущих личинок они применяют методы, которые любой врач может назвать методами проводниковой анестезии - укус с впрыскиванием нейроплегического (нервнопаралитического) вещества в область крупных нервных стволов полностью парализует, но не умерщвляет паука, который недвижимо лежит в осином гнезде вплоть до появления из кладки личинок, для которых и заготавливалась эта пища.

2. Аналоги природных форм в медицине

Многие медицинские инструменты имеют прообраз среди представителей живого мира. Игла-скарификатор, служащая для забора периферической крови (например, с целью выполнения общего анализа крови, неоднократно назначаемого каждому из нас врачами всех профилей), сконструирована по принципу, полностью повторяющему строение зуба-резца летучей мыши, укус которой, с одной стороны, отличается безболезненностью, а с другой - всегда сопровождается достаточно сильным кровотечением.
Привычный всем поршневой шприц во многом имитирует кровососущий аппарат насекомых - комара и блохи, с укусом которых гарантированно знаком каждый человек. Применяемая во время хирургической операции игла, используемая для наложения швов на внутренние органы и ткани человека, за несколько веков не изменила своей первоначальной формы - формы реберных костей крупных рыб, а скальпель до сих пор повторяет форму тростникового листа с его природной режущей кромкой.
Но это лишь самые простые примеры, дошедшие до нас буквально из глубины веков, а современное развитие бионики касается множества высокоразвитых медицинских технологий. Типичным примером является современная технология реконструкции и наращивания зубной эмали, являющаяся одним из «китов» нынешней стоматологии и применяющаяся в косметологии технология наращивания ногтей и волос. Основой для этих технологий является принцип построения морских губок, а также техника строения гнезд стрижей-саланганов. Оба эти строительных принципа основаны на химиоотвердевающей и светоотвердевающей методиках.

3. Принципы бионики на службе у медицины

Не менее актуальным достижением бионики в медицине является использование биотоков. Когда в конце XVIII в. итальянский физиолог Луиджи Гальвани в качестве побочного результата опытов по анатомированию лягушек открыл биотоки, возникающие в мышцах при движении, будущее применение биотоков представлялось кране ограниченным. Однако результаты современных исследований утверждают прямо противоположное. Мозг, командуя движениями руки, продолжает посылать к мышцам руки биотоки - слабый электрический сигнал - и тогда, когда нижний сегмент руки ампутирован. Разумеется, движения в этом случае нет, т. к. импульсы, попадая в нервное окончание усеченной мышцы культи, дают лишь ощущение тех или иных движений, а материальный субстрат движений (мышцы) отсутствует.
Первая модель искусственной руки, управляемой биопотенциалом, была изготовлена в 1957 г. Она имела электромагнитный привод и весьма громоздкую систему усиления и преобразования снимаемых с какой-либо мышцы биоэлектрических сигналов. Первая искусственная рука воспринимала только общие сигналы типа «сжать пальцы», «разжать пальцы» и простейшее чередование этих команд, без восприятия сигналов регулирующего типа, сообщающих, с какой силой должно производиться движение. Попытка поздороваться с человеком, обладающим такой «железной рукой», неизбежно заканчивалась бы травмой.
Совершенствование протезов, управляемых биотоками, шло поистине «семимильными шагами», и уже летом 1960 г. участники I Международного конгресса Федерации по автоматическому управлению, проходившему в Москве, увидели, как мальчик, не имеющий кисти руки, взял искусственной рукой кусочек мела и написал на доске ясно и четко: «Привет участникам конгресса». Кистью протеза, которая четко сжималась и разжималась, управляли биотоки. Была достигнута четкость движений, достаточная для адекватного функционирования протеза, и следующей целью ученых было становление обратной связи, возможности ощущать протез.
Чуть позже, на конференции по бионике, проходившей в Баку, был продемонстрирован макет руки с чувствительными к давлению датчиками, укрепленными на кончиках пальцев, созданными из токопроводящей резины или тонкой проволоки. Под влиянием давления на датчики сигналы от них изменяют частоту вибраций зуммера, который укреплен на руке вблизи нерва, идущего в мозг. В настоящее время наиболее перспективными представляются датчики с использованием костно-вибрационных и электрокостных раздражений, однако для уточнения параметров сигналов, а также конструкции воздействующих элементов необходимо еще значительное время, заполненное экспериментами и научно-исследовательской работой.
Другим аспектом применения биотоков в медицине является их использование в лечении парезов и параличей, коррекции ряда патологических состояний при беременности, а возможно, и для облегчения состояния больных полиомиелитом и детским церебральным параличом, сколько-нибудь адекватного лечения которых в настоящее время не существует.
Проведение обширнейших и сложнейших операций на сердце и головном мозге стало возможным благодаря введению в медицинскую практику метода управляемой гипотермии (т. е. осознанного переохлаждения тела оперируемого для замедления обменных процессов в тканях и органах). Но мало кто знает, что именно гипотермия является основой анабиоза и паробиоза - состояния глубокой спячки - многих насекомых и некоторых мелких грызунов в неблагоприятное зимнее время. У этих животных гипотермия также направлена на замедление обменных процессов в органах и тканях, обусловливающее меньшее, чем в активном состоянии, потребление энергетических субстратов.
Метод передвижения некоторых простейших стал прообразом для создания автоматического желудочно-кишечного зонда, являющегося наиболее интересной и многообещающей перспективой инструментальных исследований в гастроскопии.
Возвращаясь к протезированию конечностей, следует отметить, что еще один современный тип протезов, применяющихся в основном для протезирования нижних конечностей, а точнее - протезы на силиконовой основе, также содержит в основе своей природный принцип - принцип гидравлического строения ходильных ножек паука, движения которых основаны на переходе состояния биологического коллоида по типу «гель-золь».
В какой-то степени достижения бионики в области медицины основаны на строении самого человека. Так, перфузионные пленки, накладываемые на обширные ожоговые поверхности и служащие для предупреждения раневой инфекции, практически полностью имитируют строение поверхностных слоев неповрежденной человеческой кожи, обладающей бактерицидными свойствами и характеризующейся полупроницаемостью.
Достижения бионики во многом подают надежды некоторого улучшения состояния или практически полной компенсации качества жизни для больных, положение которых ранее расценивалось как практически безнадежное.
Одним из первых шагов на этом пути является создание аппаратов, способных слышать. Потеря слуха является существенной и опасной для человека и приводит к полной или практически полной инвалидизации. Эта проблема остается одной из крайне сложных и практически неразрешимых проблем медицины.
Сравнительно недавно многие глухие люди получили реальную возможность слышать с помощью аппарата, созданного на основе новейшего открытия ученых-физиологов: низкочастотные колебания, воспринимаемые человеческим ухом, могут восприниматься и живым нервом зуба, и передаваться в мозг. Радиоинженеры создали так называемый «радиозуб» - систему, с помощью которой ранее не слышавшие люди могут слышать. Для установления такого прибора необходимо наличие одного-единственного живого зубного нерва, а полное отсутствие живых зубных нервов не характерно даже для тотально пораженной ротовой полости.
Конструкцию аппарата можно описать приблизительно следующим образом: миниатюрный микрофон, который можно носить на руке как часы, связан с таким же миниатюрным передатчиком, преобразующим звук в радиосигналы, которые улавливает приемник, вмонтированный в зуб. Приемник представляет собой тонкий слой полупроводникового сплава, наложенного на свободные нервные окончания, находящиеся в зубном канале. Этот полупроводниковый сплав образует пьезоэлектрический элемент, сверху покрытый слоем золота или серебра, который служит антенной. По внешнему виду такая конструкция практически ничем не отличается от привычных в современной ортопедической стоматологии металлизированных пломб и коронок.
Сигнал радиопередатчика, принятый такой антенной, попадает в пьезоэлемент; в пьезоэлементе возникают колебания, которые возбуждая свободные нервные окончания в зубе, передаются в виде нервных импульсов в корковые и подкорковые слуховые центры головного мозга. Таким образом человек, который до этого момента жил в мире без звуков, начинает слышать. Конечно, в реальной жизни для человека, снабженного таким аппаратом, остается значительное количество ограничений, например в использовании мобильных телефонов, а также при работе с так называемыми генераторами шума, но что значат эти ограничения в сравнении с полной глухотой, не дающей человеку полной социальной реабилитации.
В последнее время в ряде стран получили широкое распространение исследования так называемого квазислухового опознания, имеющие целью создание устройств, моделирующих слуховой аппарат. Некоторые устройства, воспроизводящие функции органов слуха, уже созданы и испытаны. Так, в лейденском университете в связи с исследованиями механизма восприятия звуков человеком разработана электронная модель уха (в виде системы фильтров), воспроизводящая частотные характеристики уха. Моделирование позволило уточнить модель слуха и в частности объединить такие явления, как восприятие тембра и звуков в их динамике.
Модель американских ученых В. Колдуэлла, Э. Гленера, Дж. Стюарта предназначена для анализа зависимости интенсивности звучания разных частот в произносимых человеком звуках от времени с целью выявления признаков, по которым человек опознает звуки, фонемы и слова, произносящиеся разными людьми. Эти исследования могут послужить как для медицинских целей в плане создания более совершенных слуховых аппаратов, так и для совершенствования компьютерной техники.

Заключение

Таким образом, уже из нескольких примеров можно сделать вывод о значительной роли бионики в современном научном мире, причем не просто как абстрактной науки, не лишенной небольшого прикладного значения, а как базисной основы современной техники и технологий. Природа оттачивала свое инженерное мастерство неисчислимое количество лет, что и объясняет детальную, даже миниатюрную отточенность функций и форм природных объектов. Человек обладает инженерным мастерством сравнительно недавно, значит, его обращение к природным объектам принципиально верное и сулит в будущем много интересного и неожиданного, а следовательно обусловливает развитие одной из новых наук - бионики.

Список литературы

1. Березин Ф. Б. Психологическая и психофизическая адаптация человека. Л.: Наука, 1988.
2. Джеральд Дарелл. По всему свету. Зеленая серия. М.: Армадо-пресс, 2001.
3. Венчиков А. И. Биотоки. М.: Медиз, 1962.
4. Матюхин В. А., Разумов А. Н. Экологическая физиология человека и восстановительная медицина. М.: ГОЭТАР «Медицина», 1999.
5. Пуговкина Н. А. Общая биология. М.: «просвещение», 1990.
6. История медицины: Сборник очерков. Изд-во Волгоград. мед. акад., 1994.
7. Удивительное в мире животных /под ред. Константинова А. С., Лариной Н. И. Изд-во Сарат. гос. ун-та, 1970.

Бионика. И её достижения

Выполнил:

Стёпин К.С.

Учитель:
Пономарева О.Н.

Введение_________________________________________________ 3

Первые применения бионики_________________________________ 4

Классические примеры:

Внутреннее строение стебля травянистого растения...................................... 5

Распространение плодов и семян............................................................... 5

Класс насекомые. Отряд двукрылые........................................................... 7

Строение и функции отделов головного мозга............................................. 6

Современные открытия:

Скелет глубоководных губок..................................................................... 8

Стаи термитов, на благо общества.............................................................. 9

Бегающие и прыгающие роботы................................................................ 9

Заключение______________________________________________ 10

Приложение_____________________________________________ 11

Список литературы________________________________________ 15


Введение

Био́ника (от греч. biōn - элемент жизни, буквально - живущий) - прикладная наука о применении в технических устройствах и системах принципов, свойств, функций и структур живой природы. Идея применения знаний о живой природе для решения инженерных задач принадлежит Леонардо да Винчи, который пытался построить летательный аппарат с машущими крыльями, как у птиц: орнитоптер.

Изучение закономерности формообразования организмов для построения по их подобию искусственных объектов обычно однозначно относят к области бионики [новое научное направление конца 50-х годов ХХ ст. Появление этой науки явилось следствием развития кибернетики, биофизики, биохимии, космической биологии, инженерной психологии и др. Симпозиум в Дайтоне (США) в сентябре 1960г. дал название новой науке – бионика. Лозунг симпозиума: «Живые прототипы – ключ к новой технике» хорошо определяет перспективы развития бионики на многие годы.] В действительности принципы построения биоформ, биоструктур, биофункций с целью их использования при создании технических систем или архитектурных объектов исследует не одна, а несколько биофизических наук.

Различают:

Биологическую бионику, изучающую процессы, происходящие в биологических системах;

Теоретическую бионику, которая строит математические модели этих процессов;

Техническую бионику, применяющую модели теоретической бионики для решения инженерных задач.

Бионика тесно связана с биологией, физикой, химией, кибернетикой и инженерными науками: электроникой, навигацией, связью, морским делом и другими.

Появление кибернетики, рассматривающей общие принципы управления и связи в живых организмах и машинах, стало стимулом для более широкого изучения строения и функций живых систем с целью выяснения их общности с техническими системами, а также использования полученных сведений о живых организмах для создания новых приборов, механизмов, материалов и т. п.

Основные направления работ по бионике охватывают следующие проблемы:

à изучение нервной системы человека и животных и моделирование нервных клеток (нейронов) и нейронных сетей для дальнейшего совершенствования вычислительной техники и разработки новых элементов и устройств автоматики и телемеханики (нейробионика);

à исследование органов чувств и других воспринимающих систем живых организмов с целью разработки новых датчиков и систем обнаружения;

à изучение принципов ориентации, локации и навигации у различных животных для использования этих принципов в технике;

à исследование морфологических, физиологических, биохимических особенностей живых организмов для выдвижения новых технических и научных идей.


Первые применения бионики

Почти любая технологическая проблема, которая встает перед дизайнерами или инженерами, была уже давно успешно решена другими живыми существами. Например, производители прохладительных напитков постоянно ищут новые способы упаковки своей продукции. В то же время обычная яблоня давно решила эту проблему. Яблоко на 97% состоит из воды, упакованной отнюдь не в древесный картон, а в съедобную кожуру, достаточно аппетитную, чтобы привлечь животных, которые съедают фрукт и распространяют зерна.

Специалисты по бионике рассуждают именно таким образом. Когда они сталкиваются с некоей инженерной или дизайнерской проблемой, они ищут решение в «научной базе» неограниченного размера, которая принадлежит животным и растениям.

Примерно так же поступил Густав Эйфель, который в 1889 году построил чертеж Эйфелевой башни. Это сооружение считается одним из самых ранних очевидных примеров использования бионики в инженерии.

Конструкция Эйфелевой башни основана на научной работе швейцарского профессора анатомии Хермана фон Мейера (Hermann Von Meyer). За 40 лет до сооружения парижского инженерного чуда профессор исследовал костную структуру головки бедренной кости в том месте, где она изгибается и под углом входит в сустав. И при этом кость почему-то не ломается под тяжестью тела. Фон Мейер обнаружил, что головка кости покрыта изощренной сетью миниатюрных косточек, благодаря которым нагрузка удивительным образом перераспределяется по кости. Эта сеть имела строгую геометрическую структуру, которую профессор задокументировал (приложение рис. №1).

В 1866 году швейцарский инженер Карл Кульман (Carl Cullman) подвел теоретическую базу под открытие фон Мейера, а спустя 20 лет природное распределение нагрузки с помощью кривых суппортов было использовано Эйфелем (приложение рис. №2).

Другое знаменитое заимствование сделал швейцарский инженер Джордж де Местраль (Georges de Mestral) в 1955 году. Он часто гулял со своей собакой и заметил, что к ее шерсти постоянно прилипают какие-то непонятные растения. Устав постоянно чистить собаку, инженер решил выяснить причину, по которой сорняки прилипают к шерсти. Исследовав феномен, де Местраль определил, что он возможен благодаря маленьким крючкам на плодах дурнишника (так называется этот сорняк). В результате инженер осознал важность сделанного открытия и через восемь лет запатентовал удобную «липучку» Velcro, которая сегодня широко используется при изготовлении не только военной, но и гражданской одежды (приложение рис. №3).


Классические примеры

«Внутреннее строение стебля травянистого растения»

У поперечных срезов стеблей травянистых расте­ний - иное строение по сравнению с древесными. На­пример, в поперечном разрезе стебель растения пухоноса (приложение

рис. №5 -б) имеет форму круга. Стебель пухоноса полый и в нем воздухоносные полости 2, предназна­ченные для циркуляции воздуха. Склеренхимные тяжи 1 придают прочность растению при воздействии на них ветровых нагрузок. Кожица 3 защищает стебель от атмосферных и климатических явлений. Сердцевина стебля растет быстрее, чем кожица. Последняя как бы сдерживает ее рост. Сердцевина растянута, кожица сжата. Вследствие этого в структуре стебля создают­ся внутренние напряжения. Это и придает упругость стеблю.

Бионики, изучая закономерности формообразования природы, создают оригинальные, экономичные стро­ительные конструкции. Фабричная труба (приложение рис. №5 -в) на поперечном срезе по структуре похожа на сте­бель пухоноса. Продольная арматура 1 придает ей прочность подобно тяжам в стебле, пустоты 2 облег­чают конструкции. Центральное круглое отверстие в срезе - дымоотвод, спиральная арматура 3. На из­готовление трубы, конструкция которой заимствована у природы, использовано меньше строительных мате­риалов, чем если бы она была монолитная, затрачено меньше физического труда. Противостойкость ветро­вым нагрузкам у такой трубы не хуже природного аналога.

«Распространение плодов и семян»

Образцом для формы крыльев австрийского само­лета «Таубе» (приложение рис. №6 -а) еще на заре самолетостроения послужило летающее семя лианы зенония (приложение рис. №6 -б). Оно напоминает тыквенную семечку с изогнутыми концами. Благодаря малой массе семя обладает превосходными летными качествами. Именно это об­стоятельство и привлекло внимание изобретателя Этриха из Богемии. В 1904 г. он построил свой первый планер без хвостового оперения. Размах крыльев 6 м. Планер мог нести полезную нагрузку в 25 кг. В те­чение последующих лет Этрих, заимствуя природные аналогии, создавал новые модели планеров, совершен­ствовал их, улучшая летные качества.

Пыльца злаковых растений имеет две оболочки, наполненные воздухом, плотность которого меньше, чем плотность окружающего воздуха. Это создает пыльце подъемную силу, и поэтому она перемещается по воздуху на большие расстояния.

Принцип подъемной силы, реализуемый в приро­де, человек использовал в первых созданных им летательных аппаратах: воздушном шаре, наполненном горячим воздухом, в аэростате, дирижабле. Падаю­щий волан в бадминтоне напоминает плод-парашют одуванчика. Возможно, он или ему подобный плод-парашют подсказал Леонардо да Винчи идею па­рашюта.

«Класс насекомые. Отряд двукрылые»

Обратим внимание на наличие у комнатной мухи на ногах хеморецепторов - своеобразных миниатюрных биологических датчиков. У мухи их четыре типа: одни анализируют состав воды, другие определяют сахар, третьи исследуют различные соли, четвертые указывают на наличие белковой пищи. Такие же рецепторы есть и в ее хоботке. Благодаря им муха всегда знает, что именно у нее под ногами: еда, питье или что-то несъедобное. Хоботок мухи авто­матически отвечает на показания кожных рецепторов. Он вытянулся - и муха начинает пить или есть. По выпрямлению хоботка можно судить, какие вещества и в каких концентрациях улавливает насекомое. Ана­лиз вещества производится за несколько секунд. Таким образом, природа приобрела самые совершенные мето­ды химического анализа. Физики и химики могут воспользоваться ими, разгадав до конца методы, кото­рыми пользуется муха.

В лаборатории геофизики Института теплообмена и массообмена АН БССР из порошка кремнезема создано клейкое вещество, имеющее вязкость вазели­на. Если его нанести на колесо в электромагнитное поле,- оно мгновенно затвердевает. Колесо надежно приклеивается к опорной поверхности. При снятии магнитного поля вещество приобретает прежнее вяз­кое состояние. Инженеры создали шагающий робот (приложение рис. №7). Он ищет дефекты на металлической поверх­ности. К корпусу 5 крепятся шесть ног 4 и каждая из них имеет два привода (двигатель с передаточными механизмами). Один для горизонтального, другой для вертикального перемещения. Нога заканчивается баш­маком с подушкой 3, пропитанной клейким веществом. Он подается из резервуара к полым опорам ног. Шесть ног робота объединены в две группы, по три в каждой. Шагает робот одновременно одной груп­пой ног, а другая приклеена к опорной поверхности. Попеременно к башмакам то одной, то другой группы ног подается электрический ток - и подушки ног при­клеиваются к опорной поверхности.

Робот имеет глаз - телекамеру 1, шланг 2 с элект­рокабелем и трубку для подачи сжатого воздуха к пневмоприводам.

«Строение и функции отделов головного мозга»

Раскрыть принципы работы мозга, которые еще во многом остаются тайной, значит найти ключ к проектированию ЭВМ будущего. Новая наука - нейрокибернетика занимается конструированием ис­кусственного мозга. Первой ЭВМ поручали выполнять арифметические операции. По мере развития вычис­лительной техники ЭВМ стала выполнять более слож­ные операции, работать быстрее, размеры ее умень­шались (табл. стр. 8).


Параметры Мозг человека ЭВМ
Носитель информации Нервное возбуждение Электрический ток
Скорость ввода ин- Менее 1 бит/с в дли- Более 106 бит/с
формации в память тельную память
Время проведения операции Всю жизнь Миллиарды операций в секунду
Преимущества Сосредоточение исключительно Сосредоточение менее
сложных сложных функций в
функций в исключи- гораздо большем
тельно малом объеме. объёме. Низкая степень
Высокая степень со- совершенства элек-
вершенства физиоло- тронного нейрона
гических процессов в нейроне
Зависимость запо- Зависит Не зависит
минания индивиду-
альных особенно-
стей и эмоциональ-
ного состояния
Емкость памяти Теоретический макси- 107 бит в данный мо-
мум 108-1010 бит в мент
течение жизни
Тип памяти Смешанный Смешанный
Особенности па- Запоминание осмыс- Запоминание механи-
мяти ленное ческое
Вид обработки по- Параллельный Последовательный
ступившей инфор-
мации
Фильтрация инфор- Очень эффективная Бедная
мации
Время хранения ин- Непостоянное Постоянное
формации в памяти
Извлечение из па-
мяти нужной ин-
формации:
недавно введенной Быстрое Быстрое
давно введенной Медленное быстрое
При повреждении Работает Не работает
Восприятие информации По многим каналам: по форме, цвету, от- По одному каналу
тенку предмета, по
шрифту, почерку,
обонянию, осязанию,
тембру голоса, инто-
нации, чертежу и т. д.
Масса 1,2-1,3 кг В 3-10 раза больше,
чем мозг человека

Современные открытия

Современная бионика во многом связана с разработкой новых материалов, которые копируют природные. Тот же кевлар появился благодаря совместной работе биологов-генетиков и инженеров, специалистов по материалам.

В настоящее время некоторые ученые пытаются найти аналоги органов человеческого тела, чтобы создать, например, искусственное ухо (оно уже поступило в продажу в США) или искусственный глаз (в стадии разработки).

Скелет глубоководных губок

Другие разработчики концентрируются на изучении природных организмов. Например, исследователи из Bell Labs (корпорация Lucent) недавно обнаружили в теле глубоководных губок рода Euplectellas высококачественное оптоволокно. Исследователи из Bell Labs, структурного подразделения Lucent Technologies, обнаружили, что в глубоководных морских губках содержится оптоволокно, по свойствам очень близкое к самым современным образцам волокон, используемых в телекоммуникационных сетях. Более того, по некоторым параметрам природное оптоволокно может оказаться лучше искусственного (приложение рис. №8).

Согласно общепринятой сегодня классификации, губки образуют самостоятельный тип примитивных беспозвоночных животных. Они ведут абсолютно неподвижный образ жизни. Губка рода Euplectella обитает в тропических морях. Она в длину достигает размеров 15-20 см. Ее внутренний каркас сетчатой формы образуют цилиндрические стержни из прозрачного диоксида кремния. У основания губки находится пучок волокон, который по форме похож на своеобразную корону. Длина этих волокон - от 5 до 18 см, толщина - как у человеческого волоса. В ходе исследований этих волокон выяснилось, что они состоят из нескольких четко выделенных концентрических слоев с различными оптическими свойствами. Центральная часть цилиндра состоит из чистого диоксида кремния, а вокруг нее расположены цилиндры, в составе которых заметное количество органики.

Ученые были поражены тем, насколько близкими оказались структуры природных оптических волокон к тем образцам, что разрабатывались в лабораториях в течение многих лет. Хотя прозрачность в центральной части волокна несколько ниже, чем у лучших искусственных образцов, природные волокна оказались более устойчивыми к механическим воздействиям, особенно при разрыве и изгибе. Именно эти механические свойства делают уязвимыми оптические сети передачи информации - при образовании трещин или разрыве в оптоволокне его приходится заменять, а это очень дорогостоящая операция. Ученые из Bell Labs приводят следующий факт, демонстрирующий чрезвычайно высокую прочность и гибкость природных оптоволокон, - их можно завязывать в узел, и при этом они не теряют своих оптических свойств. Такие действия с искусственными оптоволокнами неизбежно приведут к поломке или, по крайней мере, образованию внутренних трещин, что в конечном итоге также означает потерю функциональных свойств материала.

Ученые пока не знают, каким образом можно воспроизвести в лаборатории подобное творение природы. Дело в том, что современное оптоволокно получают в печах из расплавов при очень высокой температуре, а морские губки, естественно, в ходе развития синтезируют его путем химического осаждения при температуре морской воды. Если удастся смоделировать этот процесс, он будет, помимо всего прочего, еще и экономически выгодным.

По результатам тестов оказалось, что материал из скелета этих 20-сантиметровых губок может пропускать цифровой сигнал не хуже, чем современные коммуникационные кабели, при этом природное оптоволокно значительно прочнее человеческого благодаря наличию органической оболочки. Вторая особенность, которая удивила ученых, - это возможность формирования подобного вещества при температуре около нуля градусов по Цельсию, в то время как на заводах Lucent для этих целей используется высокотемпературная обработка. Теперь ученые думают над тем, как увеличить длину нового материала, поскольку скелеты морских губок не превышают 15 см.

Стаи термитов, на благо общества

Кроме разработки новых материалов, ученые постоянно сообщают о технологических открытиях, которые базируются на «интеллектуальном потенциале» природы. Например, в октябре 2003 года в исследовательском центре Xerox в Пало Альто разработали новую технологию подающего механизма для копиров и принтеров.

В устройстве AirJet разработчики скопировали поведение стаи термитов, где каждый термит принимает независимые решения, но при этом стая движется к общей цели, например, построению гнезда.

Сконструированная в Пало Альто печатная схема оснащена множеством воздушных сопел, каждое из которых действует независимо, без команд центрального процессора, однако в то же время они способствуют выполнению общей задачи - продвижению бумаги. В устройстве отсутствуют подвижные части, что позволяет удешевить производство. Каждая печатная схема содержит 144 набора по 4 сопла, направленных в разные стороны, а также 32 тыс. оптических сенсоров и микроконтроллеров (приложение рис. №9).

Бегающие и прыгающие роботы

Но самые преданные адепты бионики - это инженеры, которые занимаются конструированием роботов. Сегодня среди разработчиков весьма популярна точка зрения, что в будущем роботы (подробнее о робототехнике см. здесь) смогут эффективно действовать только в том случае, если они будут максимально похожи на людей. Ученые и инженеры исходят из того, что им придется функционировать в городских и домашних условиях, то есть в «человеческом» интерьере - с лестницами, дверями и другими препятствиями специфического размера. Поэтому, как минимум, они обязаны соответствовать человеку по размеру и по принципам передвижения. Другими словами, у робота обязательно должны быть ноги (колеса, гусеницы и прочее не подходит для города). Но у кого копировать конструкцию ног, если не у животных?

В направлении создания прямоходящих двуногих роботов дальше всех продвинулись ученые из Стенфордского университета. Они уже почти три года экспериментируют с миниатюрным шестиногим роботом, гексаподом, построенным по результатам изучения системы передвижения таракана.

Первый гексапод был сконструирован 25 января 2000 г. (приложение рис. №10) Сейчас конструкция бегает весьма шустро - со скоростью 55 см (более трех собственных длин) в секунду - и так же успешно преодолевает препятствия.

В Стенфорде так же разработан одноногий прыгающий монопод человеческого роста, который способен удерживать неустойчивое равновесие, постоянно прыгая. Как известно, человек перемещается путем «падения» с одной ноги на другую и большую часть времени проводит на одной ноге. В перспективе ученые из Стенфорда надеются создать двуногого робота с человеческой системой ходьбы (приложение рис. №11).


Заключение

Концепция бионики отнюдь не нова. К примеру, еще 3000 лет назад китайцы пытались перенять у насекомых способ изготовления шелка. Но в конце ХХ века бионика обрела второе дыхание, современные технологии позволяют копировать миниатюрные природные конструкции с небывалой ранее точностью. Так, несколько лет назад ученые смогли проанализировать ДНК пауков и создать искусственный аналог шелковидной паутины - кевлар. В этом материале я перечислел несколько перспективных направлений современной бионики и привел самые известные случаи заимствований у природы.

В последнее десятилетие бионика получила значительный импульс к новому развитию. Это связано с тем, что современные технологии переходят на гига- и наноуровень и позволяют копировать миниатюрные природные конструкции с небывалой ранее точностью. Современная бионика в основном связана с разработкой новых материалов, копирующих природные аналоги, робототехникой и искусственными органами.

Природа открывает перед инженерами и учеными бесконечные возможности по заимствованию технологий и идей. Раньше люди были не способны увидеть то, что находится у них буквально перед носом, но современные технические средства и компьютерное моделирование помогает хоть немного разобраться в том, как устроен окружающий мир, и попытаться скопировать из него некоторые детали для собственных нужд.


Приложение

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-12