Проектная работа "Температурные шкалы". Температурные шкалы, термометры и их изобретатели. Как США вредят сами себе

27 ноября 1701 года родился шведский астроном, геолог и метеоролог Андерс Цельсий — человек, чью фамилию мы слышим каждый день. К этой дате мы вспоминаем о трёх главных открытиях этого учёного.

2013-11-27 15:42

Андерс Цельсий родился в Уппсале (Швеция) 27 ноября 1701 года. Его отец Нильс Цельсий и оба деда, Магнус Цельсий и Андерс Споул, были профессорами университета. Учёными были и многие другие родственники Цельсия, в том числе его дядя Улоф Цельсий — теолог, ботаник, историк и востоковед.

Маленький Андерс с детства живо интересовался окружающим миром и науками. Свою страсть к знаниям будущий астроном реализовал, поступив в Уппсальский университет - старейший центр образования в Скандинавии.

В те времена метеорология и геология входили в курс астрономии, который блестяще освоил Андерс Цельсий. Уже в 1730 году ему присвоили учёную степень профессора, и он начал преподавать в своей альма-матер. В 1741 году Цельсий основал Уппсальскую астрономическую обсерваторию.

Умер великий учёный в 1744 году в возрасте 42 лет от туберкулёза.

Цельсиева температурная шкала

Система измерения температуры обессмертила имя шведского астронома. Человечество применяет её уже почти три века подряд. Градус Цельсия вписан в Международную систему единиц (СИ).

В 1665 году голландский физик Христиан Гюйгенс вместе с английским физиком Робертом Гуком впервые предложили использовать в качестве отсчётных точек температурной шкалы точки таяния льда и кипения воды.

В 1742-м Андерс Цельсий на основе этой идеи разработал новую температурную шкалу. Первоначально в ней нулём была точка кипения воды, а -100 градусов - температура замерзания воды или плавления льда.

Уже после смерти Цельсия, в 1747 году, его соотечественники ботаник Карл Линней и астроном Мортен Штремер перевернули шкалу. Так ноль градусов стал нулём в его современном смысле, а температуру кипения приравняли к 100 градусам.

Несколько лет спустя шведский химик Йёнс Якоб Берцелиус в своём труде «Руководство по химии» назвал шкалу «Цельсиевой», и с тех пор стоградусная шкала температуры носит имя Андерса Цельсия.

Изучение формы Земли

Чтобы точно измерить размеры и форму земного шара, учёным требовалось знать длину отрезка астрономического меридиана в один градус на земной поверхности у экватора и на полюсе. До Северного или Южного полюса добраться при тогдашнем уровне развития технологий было невозможно, поэтому Цельсий решил провести исследования в Лапландии - самой северной части тогдашней Швеции.

Измерения были произведены совместно с французским астрономом Пьером Луи Моро де Мопертюи. Андерс Цельсий лично участвовал в экспедиции. Аналогичная работа была проделана на экваторе, на территории нынешнего Эквадора.

Сравнив результаты, Андерс Цельсий подтвердил предположение Ньютона о том, что Земля представляет собой эллипсоид, сплюснутый у полюсов.

Магнитная природа северных сияний

Всю свою жизнь Андерс Цельсий интересовался этим природным феноменом. Его поражали космический масштаб и скрытая мощь северных сияний. Всего учёный описал более трёхсот наблюдений - своих и чужих.

Андерс Цельсий первым обратил внимание на то, что интенсивность сияний в реальном времени коррелирует с отклонениями стрелки компаса, и предположил, что природа северных сияний связана с земным магнетизмом. Потомки подтвердили эту теорию гениального астронома.

Существует несколько различных единиц измерения температуры.

Наиболее известными являются следующие:

Градус Цельсия - применяется в Международной системе единиц (СИ) наряду с кельвином.

Градус Цельсия назван в честь шведского учёного Андерса Цельсия, предложившего в 1742 году новую шкалу для измерения температуры.

Первоначальное определение градуса Цельсия зависело от определения стандартного атмосферного давления, потому что и температура кипения воды и температура таяния льда зависят от давления. Это не очень удобно для стандартизации единицы измерения. Поэтому после принятия кельвина K, в качестве основной единицы измерения температуры, определение градуса Цельсия было пересмотрено.

Согласно современному определению, градус Цельсия равен одному кельвину K, а ноль шкалы Цельсия установлен таким образом, что температура тройной точки воды равна 0,01 °C. В итоге, шкалы Цельсия и Кельвина сдвинуты на 273,15:

В 1665 году голландский физик Христиан Гюйгенс вместе с английским физиком Робертом Гуком впервые предложили использовать в качестве отсчетных точек температурной шкалы точки таяния льда и кипения воды.

В 1742 году шведский астроном, геолог и метеоролог Андерс Цельсий (1701-1744) на основе этой идеи разработал новую температурную шкалу. Первоначально в ней 0° (нулём) была точка кипения воды, а 100° - температура замерзания воды (точка плавления льда). Позже, уже после смерти Цельсия, его современники и соотечественники ботаник Карл Линней и астроном Мортен Штремер использовали эту шкалу в перевёрнутом виде (за 0° стали принимать температуру таяния льда, а за 100° - кипения воды). В таком виде шкала и используется до нашего времени.

По одним сведениям, Цельсий сам перевернул свою шкалу по совету Штремера. По другим сведениям, шкалу перевернул Карл Линней в 1745 году. А по третьим - шкалу перевернул преемник Цельсия Мортен Штремер, и в XVIII веке такой термометр был широко распространён под названием «шведский термометр», а в самой Швеции - под именем Штремера, но известнейший шведский химик Йёнс Якоб Берце́лиус в своем труде «Руководство по химии» назвал шкалу «Цельсиевой» и с тех пор стоградусная шкала стала носить имя Андерса Цельсия.

Градус Фаренгейта.

Назван в честь немецкого учёного Габриеля Фаренгейта, предложившего в 1724 году шкалу для измерения температуры.

На шкале Фаренгейта точка таяния льда равна +32 °F, а точка кипения воды +212 °F (при нормальном атмосферном давлении). При этом один градус Фаренгейта равен 1/180 разности этих температур. Диапазон 0…+100 °F по шкале Фаренгейта примерно соответствует диапазону −18…+38 °C по шкале Цельсия. Ноль на этой шкале определяется по температуре замерзания смеси воды, соли и нашатыря (1:1:1), а за 96 °F принята нормальная температура человеческого тела.

Кельвин (до 1968 года градус Кельвина) - единица термодинамической температуры в Международной системе единиц (СИ), одна из семи основных единиц СИ. Предложена в 1848 году. 1 кельвин равен 1/273,16 части термодинамической температуры тройной точки воды. Начало шкалы (0 К) совпадает с абсолютным нулём.

Пересчёт в градусы Цельсия: °С = K−273,15 (температура тройной точки воды - 0,01 °C).

Единица названа в честь английского физика Уильяма Томсона, которому было пожаловано звание лорд Кельвин Ларгский из Айршира. В свою очередь, это звание пошло от реки Кельвин (River Kelvin), протекающей через территорию университета в Глазго.

Кельвин

Градус Цельсия

Градус Фаренгейта

Абсолютный ноль

Температура кипения жидкого азота

Сублимация (переход из твёрдого состояния в газообразное) сухого льда

Точка пересечения шкал Цельсия и Фаренгейта

Температура плавления льда

Тройная точка воды

Нормальная температура человеческого тела

Температура кипения воды при давлении в 1 атмосферу (101,325 кПа)

Градус Реомюра - единица измерения температуры, в которой температура замерзания и кипения воды приняты за 0 и 80 градусов, соответственно. Предложен в 1730 году Р. А. Реомюром. Шкала Реомюра практически вышла из употребления.

Градус Рёмера - неиспользуемая ныне единица температуры.

Температурная шкала Рёмера была создана в 1701 году датским астрономом Оле Кристенсеном Рёмером. Она стала прообразом шкалы Фаренгейта, который посещал Рёмера в 1708 году.

За ноль градусов берётся температура замерзания солёной воды. Вторая реперная точка - температура человеческого тела (30 градусов по измерениям Рёмера, то есть 42 °C). Тогда температура замерзания пресной воды получается как 7,5 градусов (1/8 шкалы), а температура кипения воды - 60 градусов. Таким образом, шкала Рёмера - 60-градусная. Такой выбор, по-видимому, объясняется тем, что Рёмер прежде всего астроном, а число 60 было краеугольным камнем астрономии со времён Вавилона.

Градус Ранкина – единица температуры в абсолютной температурной шкале, названа по имени шотландского физика Уильяма Ранкина (1820-1872). Используется в англоязычных странах для инженерных термодинамических расчётов.

Шкала Ранкина начинается при температуре абсолютного нуля, точка замерзания воды соответствует 491,67°Ra, точка кипения воды 671,67°Ra. Число градусов между точками замерзания и кипения воды по шкале Фаренгейта и Ранкина одинаково и равно 180.

Соотношение между кельвином и градусом Ранкина: 1 K = 1,8 °Ra, градусы Фаренгейта переводятся в градусы Ранкина по формуле °Ra = °F + 459,67.

Градус Делиля - ныне неупотребляемая единица измерения температуры. Была изобретена французским астрономом Жозефом Николя Делилем (1688-1768). Шкала Делиля схожа с температурной шкалой Реомюра. Использовалась в России до XVIII века.

Петр Первый пригласил французского астронома Жозефа Николя Делиля в Россию, учреждая Академию Наук. В 1732 году Делиль создал термометр, использующий ртуть в качестве рабочей жидкости. В качестве нуля была выбрана температура кипения воды. За один градус было принято такое изменение температуры, которое приводило к уменьшению объема ртути на одну стотысячную.

Таким образом, температура таяния льда составила 2400 градусов. Однако позже столь дробная шкала показалась избыточной, и уже зимой 1738 года коллега Делиля по петербургской академии, медик Йозиас Вайтбрехт (1702-1747), уменьшил число ступеней от температуры кипения до температуры замерзания воды до 150.

«Перевернутость» этой шкалы (как и изначального варианта шкалы Цельсия) по сравнению с принятыми в настоящее время обычно объясняют чисто техническими трудностями, связанными с градуировкой термометров.

Шкала Делиля получила достаточно широкое распространение в России, и его термометры использовались около 100 лет. Этой шкалой пользовались многие российские академики, в том числе Михаил Ломоносов, который, однако «перевернул» её, расположив ноль в точке замерзания, а 150 градусов - в точке кипения воды.

Градус Гука - историческая единица температуры. Шкала Гука считается самой первой температурной шкалой с фиксированным нулём.

Прообразом для созданной Гуком шкалы стал попавший к нему в 1661 термометр из Флоренции. В изданной через год «Микрографии» Гука встречается описание разработанной им шкалы. Гук определил один градус как изменение объёма спирта на 1/500, т. е. один градус Гука равен примерно 2,4 °C.

В 1663 году члены Королевского общества согласились использовать термометр Гука в качестве стандартного и сравнивать с ним показания других термометров. Голландский физик Христиан Гюйгенс в 1665 г. вместе с Гуком предложил использовать температуры таяния льда и кипения воды для создания шкалы температур. Это была первая шкала с фиксированным нулём и отрицательными значениями.

Градус Дальтона – историческая единица температуры. Он не имеет определённого значения (в единицах традиционных температурных шкал, таких как шкала Кельвина, Цельсия или Фаренгейта), поскольку шкала Дальтона - логарифмическая.

Шкала Дальтона была разработана Джоном Дальтоном для проведения измерений при высоких температурах, поскольку обычные термометры с равномерной шкалой давали ошибку из-за неравномерного расширения термометрической жидкости.

Нуль шкалы Дальтона соответствует нулю Цельсия. Отличительной чертой шкалы Дальтона является то, что в ней абсолютный нуль равен − ∞°Da, т. е. он является недостижимой величиной (что на самом деле так, согласно теореме Нернста).

Градус Ньютона - не используемая ныне единица температуры.

Температурная шкала Ньютона была разработана Исааком Ньютоном в 1701 году для проведения теплофизических исследований и стала, вероятно, прообразом шкалы Цельсия.

В качестве термометрической жидкости Ньютон использовал льняное масло. За ноль градусов Ньютон взял температуру замерзания пресной воды, а температуру человеческого тела он обозначил как 12 градусов. Таким образом, температура кипения воды стала равна 33 градусам.

Лейденский градус - историческая единица температуры, использовавшаяся в начале XX века для измерения криогенных температур ниже −183 °C.

Эта шкала происходит из Лейдена, где с 1897 года находилась лаборатория Камерлинг-Оннеса. В 1957 году Х. ван Дийк и М. Дюро ввели шкалу L55.

За ноль градусов бралась температура кипения стандартного жидкого водорода (−253 °C), состоящего на 75 % из ортоводорода и на 25 % из параводорода. Вторая реперная точка - температура кипения жидкого кислорода (−193 °C).

Планковская температура , названная в честь немецкого ученого-физика Макса Планка, единица температуры, обозначаемая T P , в Планковской системе единиц. Это одна из планковских единиц, которая представляет фундаментальный предел в квантовой механике. Современная физическая теория не способна описать что-либо более горячее из-за отсутствия в ней разработанной квантовой теории гравитации. Выше планковской температуры энергия частиц становится настолько большой, что гравитационные силы между ними становятся сравнимы с остальными фундаментальными взаимодействиями. Это температура Вселенной в первый момент (Планковское время) Большого взрыва в соответствии с текущими представлениями космологии.

05.06.2015 15:00 Фактически все страны на Земле, исключая США, измеряют температуру по шкале Цельсия. Это вполне логично: шкала Цельсия очень разумно определяет 0 градусов как температуру замерзания воды и 100 градусов - как температуру ее кипения. По шкале Фаренгейта этим значениям соответствуют 32 и 212 градусов.

Это не просто вопрос эстетики. Упрямое нежелание американцев отказаться от измерения температуры по шкале Фаренгейта и перейти к метрической системе имеет целый ряд вполне реальных последствий.

Одна ошибка при переводе из американской системы измерений в метрическую привела к крушению зонда NASA, стоимость которого составляла $125 млн, в атмосфере Марса. Так почему же США продолжают использовать эту устаревшую систему измерений?

В этом можно винить два исторических феномена: британский колониализм и американский конгресс.

Шкала Фаренгейта - отличный вариант 300 лет назад

В начале XVIII века измерительная система Фаренгейта была отличной и очень полезной системой. Ее изобрел немецкий ученый Даниэль Габриэль Фаренгейт, который родился в Польше в 1686 г.

Еще в молодости он был увлечен идеей измерения температуры. Сейчас это может показаться странным, однако в то время измерить температуру было довольно сложно. Никто в то время еще не изобрел последовательной, надежной системы, с помощью которой можно было бы измерять температуру.

В возрасте всего 28 лет Фаренгейт смог изготовить два термометра, которые показывали одинаковые значения. Никому до него не удавалось сделать этого.

Так как Фаренгейт был самым первым изобретателем термометра, то ему пришлось самому изобретать шкалу, с помощью которой он смог бы обозначать значения разных температур. И именно эта шкала сейчас известна как шкала Фаренгейта.

Фаренгейт установил нулевую отметку на самой низкой температуре, которую он мог получить, измеряя температуру воды с солью. Затем он сделал вторую отметку - 96 градусов, это средняя температура человеческого тела. В результате температура кипения оказалась 212 градусов, а температура замерзания воды - 32 градуса.

В 1724 г. Фаренгейт стал членом Королевского общества.

Именно потому, что он вошел в Британское Королевское общество, его система измерений широко распространилась в Британии.

По мере того как Британия завоевывала новые территории в XVIII и XIX веках, они распространяла эту систему на завоеванных территориях. В то время шкала Фаренгейта стала стандартом при измерении температуры на многих территориях земного шара.

Почему Америка до сих пор использует эту систему

Англоговорящий мир оказался на отшибе. К середине XX века большинство стран приняли шкалу Цельсия - популярную систему измерения температуры в рамках современной метрической системы.

Шкалу Цельсия изобрел в 1742 г. шведский астроном Андерс Цельсий. Он впервые провел эксперименты, направленные на определение международной измерительной системы на научной основе, и опубликовал их результаты.

Около 1790 г. шкала Цельсия была внедрена в метрическую систему. Простота и научная функциональность помогли этой системе получить широкое распространение во всем мире. Англоговорящие страны тоже стали применять эту систему во второй половине XX века. Даже Великобритания начала процесс перехода на метрическую систему в 1965 г. Страна до сих пор в полной мере не перешла на эту систему.

Фактически каждая страна, которая в прошлом была британской колонией, также перешла на метрическую систему. Некоторые страны сделали это даже раньше Великобритании (например, Индия), некоторые - уже после нее (такие как Канада, Австралия и ЮАР). Эти процессы, происходящие в разных странах, вынудили США также задуматься о возможности перехода на метрическую систему.

Переход на метрическую системы выглядит вполне разумным шагом, так как эта система более удобна, а также потому, что переход на единую систему с другими странами приведет к тому, что научное сотрудничество с ними станет проще.

Конгресс принял закон - 1975 Metric Conversion Act, согласно которому теоретически страна должна была начать процесс перехода на метрическую систему. Была даже создана специальная комиссия, которая должна была контролировать процесс перехода.

Однако этот закон так и не был до конца реализован. Так как, согласно закону, переход на метрическую систему должен был стать добровольным, а не обязательным, то мнение общества в этом вопросе стало решающим. А людям не очень-то хотелось напрягаться и учить новую систему измерений.

Автовладельцы выступили против идеи дорожных знаков с указанием расстояния в километрах, синоптики выступили против идеи прогнозов по температуре по шкале Цельсия, а покупатели - против перспективы покупки в килограммах. Профсоюзы выступили резко против этой идеи, иначе бы работникам пришлось изучать новую систему измерений.

Президент Рейган распустил Метрическую комиссию в 1982 г. Поэтому такое неудачное внедрение закона обеспечило Америке приверженность системе Фаренгейта.

На сегодняшний день США не единственная страна в мире, которая не использует метрическую систему, только Бирма и Либерия придерживаются системы Фаренгейта помимо них, при том, что в 2013 г. Бирма объявила о своем намерении перейти на метрическую систему.

Страны мира, в которых используется шкала Фаренгейта

Как США вредят сами себе

На сегодня "метрифицировано" лишь около 30% произведенной в США продукции. Фармацевтическую индустрию Соединенных Штатов называют "строго метрической", поскольку все характеристики фармацевтической продукции страны указываются исключительно в метрических единицах.

На напитках присутствуют обозначения и в метрической, и в традиционной для США системах величин. Эту индустрию считают "мягко метрической". Метрическая система используется в США также производителями пленки, инструментов и велосипедов. В остальном в США предпочитают мерить по старинке: в древних дюймах и фунтах. И это касается даже такой молодой индустрии, как высокие технологии.

Что же мешает весьма развитой индустриально стране перейти на общепринятую на нашей планете систему мер и весов? Этому есть ряд причин.

Одной из причин являются те затраты, которые пришлось бы понести экономике страны в случае перехода на систему СИ. Ведь пришлось бы переработать технические чертежи и инструкции к сложнейшему оборудованию. Это потребовало бы немалого труда высокооплачиваемых специалистов. А следовательно, денег.

Например, инженеры NASA сообщили, что перевод в единицы метрической системы чертежей космических шаттлов, программного обеспечения и документации обошлось бы в $370 млн, то есть примерно в половину стоимости обычного запуска космического шаттла.

Устаревшая система измерений, которая используется в США, включая шкалу Фаренгейта, негативно влияет на науку и научное сотрудничество США с другими странами, а также, как полагают многие, на ведение бизнеса и на сотрудничество в деловой сфере на международном уровне.

Американским компаниям приходится тратить дополнительные средства на выпуск двух наборов продуктов - один для США и другой для стран, пользующихся метрической системой.

Родители и сиделки могут легко ошибиться при переводе из одних единиц в другие, когда они дают медикаменты детям или больным - двум категориям лиц, которые особенно чувствительны к передозировке.

Кроме того, американским студентам приходится учить две системы измерений, что делает саму систему обучения более сложной.

Поэтому, несмотря на то что Даниэль Фаренгейт сделал миру большое одолжение, когда изобрел первый надежный термометр, его система измерений давно устарела. И поэтому многие полагают, что Америке давно пора перейти на метрическую систему и пользоваться, в частности, шкалой Цельсия для измерения температур.

www.vestifinance.ru/articles/58353

Температурные шкалы

Температурной шкалой называют конкретную функциональную числовую связь температуры со значениями измеряемого термометрического свойства. В связи с этим представляется возможным построение температурной шкалы на основе выбора любого термометрического свойства. В то же время нет ни одного термометрического свойства, которое линейно изменяется с

изменением температуры и не зависит от других факторов в широком интервале измерения температур. Первые шкалы появились в XVIII в. Для построения их выбирались две опорные, или реперные точки t 1 и t 2 , представляющие собой температуры фазового равновесия чистых веществ. Разность температур t 1 –t 2 называют основным температурным интервалом.

Фаренгейт (1715 г.), Реомюр (1776 г.) и Цельсий (1742 г.) при построении шкал основывались на допущении линейной связи между температурой t и термометрическим свойством, в качестве которого использовалось расширение объема жидкости V (формула 14.27) /8/

t=a+bV, (14.27)

где а и b - постоянные коэффициенты.

Подставив в уравнение (14.27) V=V 1 при t=t 1 и V=V 2 при t=t 2 , после преобразований получим уравнение (14.28) температурной шкалы /8/

В шкалах Фаренгейта, Реомюра и Цельсия точке плавления льда t 1 соответствовали +32, 0 и 0 °, а точке кипения воды t 2 - 212, 80 и 100 °. Основной интервал t 2 –t 1 в этих шкалах делится соответственно на N = 180, 80 и 100 равных частей, и 1/N часть каждого из интервалов называют градусом Фаренгейта - t °F , градусом Реомюра – t °R и градусом Цельсия-t °С. Таким образом, для шкал, построенных по указанному принципу, градус не является единицей измерения, а представляет собой единичный промежуток - масштаб шкалы.

Для пересчета температуры из одной указанной шкалы в другую используют соотношение (14.29)

t °С= 1,25 °R =-(5/9)( - 32), (14.29)

Позднее было выяснено, что показания термометров, имеющих разные термометрические вещества (например, ртуть, спирт и др.), использующих одно и то же термометрическое свойство и равномерную градусную шкалу, совпадают лишь в реперных точках, а в других точках показания расходятся. Последнее особенно заметно при измерении температур, значения которых расположены далеко от основного интервала.

Указанное обстоятельство объясняется тем, что связь между температурой и термометрическим свойством на самом деле нелинейна и эта нелинейность различна для различных термометрических веществ. В частности, в рассматриваемом случае нелинейность между температурой и изменением объема жидкости объясняется тем, что температурный коэффициент объемного расширения жидкости сам изменяется от температуры и это изменение различно для различных капельных жидкостей.

На основе описанного принципа построения может быть получено любое количество температурных шкал, значительно различающихся между собой. Такие шкалы называют условными, а масштабы этих шкал - условными градусами. Проблема создания температурной шкалы, не зависящей от термометрических свойств веществ, была решена в 1848 г. Кельвином, а предложенная им шкала была названа термодинамической. В отличие от условных температурных шкал термодинамическая температурная шкала является абсолютной.

Термодинамическая шкала температур основана на использовании второго закона термодинамики. В соответствии с этим законом коэффициент полезного действия тепловой машины, работающей по обратимому циклу Карно, определяется только температурами нагревателя Т Н и холодильника Т X и не зависит от свойств рабочего вещества, таким образом коэффициент полезного действия вычисляют по формуле (14.30) /8/

(14.30)

где Q Н и Q X - соответственно количество теплоты, полученное рабочим веществом от нагревателя и отданное холодильнику.

Кельвином было предложено для определения температуры использовать равенство (14.31) /8/

T Н /Т X = Q Н /Q X , (14.31)

Следовательно, используя один объект в качестве нагревателя, а другой - в качестве холодильника и проводя между ними цикл Карно, можно определить отношение температур объектов путем измерения отношения теплоты, взятой от одного объекта и отданной другому. Полученная шкала температур не зависит от свойств рабочего (термометрического) вещества и называется абсолютной шкалой температур. Чтобы абсолютная температура (а не только отношение) имела определенное значение, было предложено принять разность термодинамических температур между точками кипения воды Т КВ и таяния льда Т ТЛ , равной 100 °. Принятие такого значения разности преследовало цель сохранения преемственности числового выражения термодинамической температурной шкалы от стоградусной температурной шкалы Цельсия. Таким образом, обозначая количество теплоты, полученной от нагревателя (кипящая вода) и отдаваемой холодильнику (тающий лед), соответственно через Q КВ и Q ТЛ и приняв Т КВ – Т ТЛ ==100, используя (14.31), получим равенство (14.32) и (14.33)

(14.32)

(14.33)

Для любой температуры Т нагревателя при неизменном значении температуры Т ТЛ холодильника и количества теплоты Q ТЛ , отдаваемой ему рабочим веществом машины Карно, будем иметь равенство (14.34) /8/

(14.34)

Выражение (14.34) является уравнением стоградусной термодинамической шкалы температур и показывает, что значение температуры Т по данной шкале линейно связано с количеством теплоты Q , полученной рабочим веществом тепловой машины при совершении ею цикла Карно, и, как следствие, не зависит от свойств термометрического вещества. За один градус термодинамической температуры принимают такую разность между температурой тела и температурой таяния льда, при которой производимая по обратимому циклу Карно работа равна 1/100 части работы, совершаемой в цикле Карно между температурой кипения воды и таяния льда (при условии, что в обоих циклах количество теплоты, отдаваемой холодильнику, одинаково). Из выражения (14.30) следует, что при максимальном значении должна быть равна нулю Т X . Эта наименьшая температура была названа Кельвином абсолютным нулем. Температуру по термодинамической шкале обозначают Т К. Если в выражение, описывающее газовый закон Гей-Люссака: (где Ро - давление при t=0 °С ; -температурный коэффициент давления), подставить значение темпе­ратуры, равное - , то давление газа P t станет равным нулю. Естественно предположить, что температура , при которой обеспечивается предельное минимальное давление газа, сама является минимально возможной, и по абсолютной шкале Кельвина принята за нуль. Следовательно, абсолютная температура .

Из закона Бойля-Мариотта известно, что для газов температурный коэффициент давления а равен температурному коэффициенту объемного расширения . Экспериментально было найдено, что для всех газов при давлениях, стремящихся к нулю, в интервале температур 0-100 °С температурный коэффициент объемного расширения = 1/273,15.

Таким образом, нулевое значение абсолютной температуры соответствует °С. Температура таяния льда по абсолютной шкале составит ==273,15 К. Любая температура в абсолютной шкале Кельвина может быть определена как (где t температура в °С). Необходимо отметить, что один градус Кельвина (1 К) соответствует одному градусу Цельсия (1 °С), так как обе шкалы базируются на одинаковых реперных точках. Термодинамическая шкала температур, основанная на двух реперных точках (температура таяния льда и кипения воды), обладала недостаточной точностью измерения. Практически трудно воспроизвести температуры указанных точек, так как они зависят от изменения давления, а также от незначительных примесей в воде. Кельвин и независимо от него Д. И. Менделеев высказали соображения о целесообразности построения термодинамической шкалы температур по одной реперной точке. Консультативный комитет по термометрии Международного комитета мер и весов в 1954 г. принял рекомендацию о переходе к определению термодинамической шкалы с использованием одной реперной точки - wтройной точки воды (точки равновесия воды в твердой, жидкой и газообразной фазах), которая легко воспроизводится в специальных сосудах с погрешностью не более 0,0001 К. Температура этой точки принята равной 273,16 К, т.е. выше температуры точки таяния льда на 0,01 К. Такое число выбрано для того, чтобы значения температур по новой шкале практически не отличались от старой шкалы Цельсия с двумя реперными точками. Второй реперной точкой является абсолютный нуль, который экспериментально не реализуется, но имеет строго фиксированное положение. В 1967 г. XIII Генеральная конференция по мерам и весам уточнила определение единицы термодинамической температуры в следующей редакции: «Кельвин-1/273,16 часть термодинамической температуры тройной точки воды». Термодинамическая температура может быть также выражена в градусах Цельсия: t = Т- 273,15 К. Использование второго закона термодинамики, предложенное Кельвином с целью установления понятия температуры и построения абсолютной термодинамической температурной шкалы, не зависящей от свойств термометрического вещества, имеет огромное теоретическое и принципиальное значение. Однако реализация указанной шкалы с использованием в качестве термометра тепловой машины, работающей по обратимому циклу Карно, практически неосуществима.

Термодинамическая температура эквивалентна газотермической, используемой в уравнениях, описывающих законы идеальных газов. Газотермическую температурную шкалу строят на основе газового термометра, в котором в качестве термометрического вещества используется газ, приближающийся по свойствам к идеальному газу. Таким образом, газовый термометр является реальным средством для воспроизведения термодинамической температурной шкалы. Газовые термометры бывают трех типов: постоянного объема, постоянного давления и постоянной температуры. Обычно применяют газовый термометр постоянного объема (рисунок 14.127), в котором изменение температуры газа пропорционально изменению давления. Газовый термометр состоит из баллона 1 и соединительной трубки 2, заполненных через вентиль 3 водородом, гелием или азотом (для высоких температур). Соединительная трубка 2 подсоединена к трубке 4 двухтрубного манометра, у которого трубку 5 можно перемещать вверх или вниз благодаря гибкому соединительному шлангу 6. При изменении температуры объем системы, заполненной газом, изменяется, и для приведения его к первоначальному значению трубку 5 вертикально перемещают до тех пор, пока уровень ртути в трубке 4 не совпадет с осью Х-Х. При этом столб ртути в трубке 5, отсчитанный от уровня Х-Х, будет соответствовать давлению газа Р в баллоне.

Рисунок 14.127 – Схема газового термометра

Обычно измеряемую температуру Т определяют относительно некоторой точки отсчета, например по отношению к температуре тройной точки воды T 0 , при которой давление газа в баллоне будет Ро . Искомая температура вычисляется по формуле (14.35)

(14.35)

Газовые термометры используют в интервале ~ 2- 1300 К. Погрешность газовых термометров находится в пределах 3-10- 3 - 2-10- 2 К в зависимости от измеряемой температуры. Достижение такой высокой точности измерения -сложная задача, требующая учета многочисленных факторов: отклонения свойств реального газа от идеального, наличие примесей в газе, сорбцию и десорбцию газа стенками баллона, диффузию газа через стенки, изменение объема баллона от температуры, распределение температуры вдоль соединительной трубки.

В силу большой трудоемкости работы с газовыми термометрами предпринимались попытки изыскать более простые методы воспроизведения термодинамической температурной шкалы.

На основе проведенных в различных странах исследований на VII Генеральной конференции по мерам и весам в 1927 г. было принято термодинамическую шкалу заменить «практической» температурной шкалой и назвать ее международной температурной шкалой. Эта шкала была согласована со стоградусной термодинамической шкалой настолько тесно, насколько позволял уровень знаний того времени.

Для построения международной температурной шкалы было выбрано шесть воспроизводимых реперных точек, значения температуры которых по термодинамической шкале были тщательно измерены в различных странах с помощью газовых термометров и приняты наиболее достоверные результаты. С помощью реперных точек градуируются эталонные приборы для воспроизведения международной температурной шкалы. В интервалах между реперными точками значения температур рассчитывают по предлагаемым интерполяционным формулам, устанавливающим связь между показаниями эталонных приборов и температурой по международной шкале. В 1948, 1960 и 1968 гг. в положения о международной температурной шкале был внесен ряд уточнений и дополнений, так как на основе усовершенствованных методов измерений были обнаружены отличия этой шкалы от термодинамической, особенно в области высоких температур, а также в связи с необходимостью продлить температурную шкалу до более низких температур. В настоящее время действует принятая на XIII конференции по мерам и весам усовершенствованная шкала под названием «международная практическая температурная шкала 1968» (МПТП-68). Определение «практическая» указывает, что эта температурная шкала в общем не совпадает с термодинамической. Температуры МПТШ-68 снабжаются индексом (T 68 или t 68 ).

МПТШ-68 базируется на 11 основных реперных точках, приведенных в таблице 9. Наряду с основными имеется 27 вторичных реперных точек, охватывающих диапазон температур от 13,956 до 3660 К (от - 259,194 до 3387 °С). Числовые значения температур, приведенные в таблице 14.4, соответствуют термодинамической шкале и определены с помощью газовых термометров.

В качестве эталонного термометра в интервале температур от 13,81 до 903,89 К (630,74 °С - точка затвердевания сурьмы-вторичная реперная точка) принимается платиновый термопреобразователь сопротивления. Этот интервал разбит на пять подынтервалов, для каждого из которых определены интерполяционные формулы в виде полиномов до четвертой степени. В интервале температур от 903,89 до 1337,58 К используется эталонный платина-платинородиевый термоэлектрический термометр. Интерполяционной формулой, связывающей термоэлектродвижущую силу с температурой, здесь является полином второй степени.

Для температур выше 1337,58 К (1064,43°С) МПТШ-68 воспроизводится с помощью квазимонохроматического термометра с использованием закона излучения Планка.

Таблица 14.4 - Основные реперные точки МПТШ-68

Мы выбрали данную тему, потому что с понятиями «температура», «измерение температуры», «термометр» мы постоянно сталкиваемся как при рассмотрении физических или химических процессов в науке и производстве, так и в быту, когда ставим больному градусник или смотрим на спиртовой термометр за окном чтобы узнать, надевать ли теплое пальто. Однако обычно при этом под температурой мы понимаем просто степень нагретости тела и не задумываемся о том, что же такое температура с физической точки зрения. Температура является одной из наиболее часто измеряемых физических величин, поскольку практически нет ни одной области деятельности, где не требовалось измерять и регулировать температуру, так же это один из важнейших экологических факторов, от которого зависит выживание на планете, ее формы и виды. Жизнь человека, также, напрямую зависит от температуры окружающей среды.

В Международной системе единиц (СИ) термодинамическая температура используется в качестве одной из семи основных физических величин, входящих в Международную систему величин, а её единицей является кельвин, представляющий собой, соответственно, одну из семи основных единиц СИ.

Цель работы: Ознакомиться с понятием температуры.

Задачи: Просмотреть температурные шкалы, получить представление о некоторых видах термометров, их принципах действия, проработать задачи, провести опыт.

1.Температура, T .

Температу́ра (от латин. temperatura — надлежащее смешение, нормальное состояние) — скалярная* физическая величина, характеризующая состояние термодинамического равновесия** макроскопической системы***. Температура всех частей системы, находящейся в равновесии, одинакова. Если система не находится в равновесии, то между её частями, имеющими различную температуру, происходит теплопередача (переход энергии от более нагретых частей системы к менее нагретым), приводящая к выравниванию температур в системе.

Температура относится к интенсивным величинам, не зависящим от массы системы.

Интуитивно понятие температура появилось как мера градации наших ощущений тепла и холода; на бытовом уровне температура воспринимается как параметр, служащий для количественного описания степени нагретости материального объекта.

Слово «температура» возникло в те времена, когда люди считали, что в более нагретых телах содержится большее количество особого вещества — теплорода, чем в менее нагретых. Поэтому температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково — градусами.

Из того, что температура - это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (т.е. в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах — градусах.

Средняя кинетическая энергия хаотического поступательного движения молекул тела пропорционально термодинамической (абсолютной) температуре:

(k=1.38*10^-23Дж/k-постоянная Больцмана(является коэффициентом, переводящем температуру из градусной меры(K) в энергетическую(Дж), множитель 3/2 был введен для удобства, благодаря чему исчезают множители в других формулах.)

Средняя скорость теплового движения.

Как следует из формулы

холодный газ отличается от нагретого до большой температуры энергией хаотического движения молекул, поэтому хаотическое движение молекул называется тепловым.

Среднюю (точнее, средне-квадратичную) скорость теплового движения молекул можно выразить через температуру газа с помощью формулы

Последнюю формулу можно привести к более удобному виду, если выразить массу молекулы и обозначить (R ~ 8, 31 Дж/(К. моль) называют универсальной газовой постоянной)

* Скалярная величина — величина, каждое значение которой может быть выражено одним действительным числом. Т. е. скалярная величина определяется только своим значением, в отличие от вектора, который кроме значения имеет направление. К скалярным величинам относятся длина, площадь, время, температура и т. д.

**Термодинамическое равновесие — состояние системы, при котором остаются неизменными по времени макроскопические величины этой системы (температура, давление, объем,) в условиях изолированности от окружающей среды.

*** Макроскопическая система — система состоящая из большого числа частиц и не требующая для своего описания привлечения микроскопических характеристик отдельных частиц.

****Изолированная система (замкнутая система) — термодинамическая система, которая не обменивается с окружающей средой ни веществом, ни энергией.

2.Температурные шкалы.

Температурные шкалы , способы деления на части интервалов температуры, измеряемых термометрами по изменению какого-либо удобного для измерений физического свойства объекта, при прочих равных условиях однозначно зависящего от температуры (объёма, давления, электрического сопротивления, интенсивности излучения, показателя преломления, скорости звука и др.) и называемого термометрическим свойством . Для построения шкалы температур приписывают её численные значения двум фиксированным точкам (реперным точкам температуры), например точке плавления льда и точке кипения воды. Деля разность температур реперных точек (основной температурный интервал ) на выбранное произвольным образом число частей, получают единицу измерения температуры, а задавая, опять-таки произвольно, функциональную связь между выбранным термометрическим свойством и температурой, получают возможность вычислять температуру по данной температурной шкале.

Ясно, что построенная таким способом эмпирическая температурная шкала является произвольной и условной. Поэтому можно создать любое число температурных шкал, различающихся выбранными термометрическими свойствами, принятыми функциональными зависимостями температуры от них (в простейшем случае связь между термометрическим свойством и температурой полагают линейной) и температурами реперных точек.

Примерами температурных шкал служат шкалы Цельсия, Реомюра, Фаренгейта, Ранкина и Кельвина.

Пересчёт температуры от одной температурной шкалы к другой, отличающейся термометрическим свойством, невозможен без дополнительных экспериментальных данных.

Принципиальный недостаток эмпирических температурной шкал — их зависимость от выбранного термометрического свойства — отсутствует у абсолютной (термодинамической) температурная шкалы.

2.1. Шкала Кельвина.

Ке́львин (обозначение: K) — единица термодинамической температуры в Международной системе единиц (СИ), одна из семи основных единиц СИ. Предложена в 1848 году. Один кельвин равен 1/273,16 части термодинамической температуры тройной точки воды*. Начало шкалы (0 К) совпадает с абсолютным нулём**.

Пересчёт в градусы Цельсия: °С = K−273,15 (температура тройной точки воды — 0,01 °C).

Единица названа в честь английского физика Уильяма Томсона, которому было пожаловано звание лорд Кельвин Ларгский из Айршира. В свою очередь, это звание пошло от реки Кельвин (River Kelvin), протекающей через территорию университета в Глазго.

До 1968 года кельвин официально именовался градусом Кельвина.

* Тройна́я то́чка воды́ — строго определенные значения температуры и давления, при которых вода может одновременно и равновесно существовать в виде трёх фаз — в твердом, жидком и газообразном состояниях. Тройная точка воды — температура 273,16 К и давление 611,657 Па.

** Абсолю́тный нуль температу́ры (реже — абсолютный ноль температуры) — минимальный предел температуры, которую может иметь физическое тело во Вселенной. Абсолютный нуль служит началом отсчёта абсолютной температурной шкалы, например, шкалы Кельвина. В 1954 X Генеральная конференция по мерам и весам установила термодинамическую температурную шкалу с одной реперной точки — тройной точки воды, температура которой принята 273,16 К (точно), что соответствует 0,01 °C, так что по шкале Цельсия абсолютному нулю соответствует температура −273,15 °C.


2.2 . Шкала Реомюра.

Гра́дус Реомю́ра (°R) — единица измерения температуры, в которой температура замерзания и кипения воды приняты за 0 и 80 градусов, соответственно. Предложен в 1730 году Р. А. Реомюром. Шкала Реомюра практически вышла из употребления.

По ожиданиям Реомюра спирт расширяется приблизительно на 8% (на 8,4% по расчёту: коэффициент расширения спирта 0,00108 К-) при нагреве от температуры таяния льда до температуры кипения (≈78 градусов Цельсия). Поэтому эту температуру Реомюр установил как 80 градусов на своей шкале, на которой одному градусу соответствовало расширение спирта на 1 тысячную, а ноль шкалы был выбран как температура замерзания воды. Однако, из-за того, что в качестве жидкости в те времена использовались не только спирт, но и различные его водные растворы, то многими изготовителями и пользователями термометров ошибочно считалось, что 80 градусов Реомюра это температура кипения воды. И после повсеместного внедрения ртути в качестве жидкости для термометров, а также появления и распространения шкалы Цельсия, к концу 18 века шкала Реомюра была переопределена таким образом окончательно. Из равенства 100 градусов Цельсия = 80 градусов Реомюра получается 1 °C = 0,8 °R (соответственно 1 °R = 1,25 °C). Хотя на самом деле на оригинальной шкале Реомюра должно быть 1 °R = 0,925 °C. Ещё при жизни Реомюра были проведены измерения точки кипения воды в градусах его шкалы (но не со спиртовым термометром — это было невозможно). Жан Тийе в присутствии Жана-Антуана Нолле получил значение 85. Но все последующие измерения дали величины от 100 до 110 градусов. Если использовать вышеупомянутые современные данные, то для точки кипения воды в градусах Реомюра получается значение 108. (В 1772 г. во Франции в качестве стандартной была принята температура кипения воды, равная 110 градусов Реомюра).


2.3. Шкала Цельсия.

Гра́дус Це́льсия (обозначение: °C ) — широко распространённая единица измерения температуры, применяется в Международной системе единиц (СИ) наряду с кельвином.

Градус Цельсия назван в честь шведского учёного Андерса Цельсия, предложившего в 1742 году новую шкалу для измерения температуры.

Первоначальное определение градуса Цельсия зависело от определения стандартного атмосферного давления, потому что и температура кипения воды и температура таяния льда зависят от давления. Это не очень удобно для стандартизации единицы измерения. Поэтому после принятия кельвина K, в качестве основной единицы измерения температуры, определение градуса Цельсия было пересмотрено.

Согласно современному определению, градус Цельсия равен одному кельвину K, а ноль шкалы Цельсия установлен таким образом, что температура тройной точки воды равна 0,01 °C. В итоге, шкалы Цельсия и Кельвина сдвинуты на 273,15:

История:

В 1665 году голландский физик Христиан Гюйгенс вместе с английским физиком Робертом Гуком впервые предложили использовать в качестве отсчетных точек температурной шкалы точки таяния льда и кипения воды.

В 1742 году шведский астроном, геолог и метеоролог Андерс Цельсий (1701—1744) на основе этой идеи разработал новую температурную шкалу. Первоначально в ней 0° (нулём) была точка кипения воды, а 100° — температура замерзания воды (точка плавления льда). Позже, уже после смерти Цельсия, его современники и соотечественники ботаник Карл Линней и астроном Мортен Штремер использовали эту шкалу в перевёрнутом виде (за 0° стали принимать температуру таяния льда, а за 100° — кипения воды). В таком виде шкала и используется до нашего времени.



2.4. Шкала Фаренгейта.

Гра́дус Фаренге́йта (обозначение: °F ) — единица измерения температуры. Назван в честь немецкого учёного Габриеля Фаренгейта, предложившего в 1724 году шкалу для измерения температуры.

На шкале Фаренгейта точка таяния льда равна +32 °F , а точка кипения воды +212 °F (при нормальном атмосферном давлении). При этом один градус Фаренгейта равен 1/180 разности этих температур. Диапазон 0…+100 °F по шкале Фаренгейта примерно соответствует диапазону −18…+38 °C по шкале Цельсия. Ноль на этой шкале определяется по температуре замерзания смеси воды, соли и нашатыря (1:1:1), а за 96 °F принята нормальная температура человеческого тела.

Преобразование из шкалы Фаренгейта в шкалу Цельсия:

Градусы Фаренгейта широко использовались во всех англоязычных странах до 1960-х годов, когда большинство из них перешло на метрическую систему с градусами Цельсия, однако иногда в этих странах фаренгейты используются до сих пор.

В настоящее время градус Фаренгейта используется в быту как основная единица измерения температуры в следующих странах: США и зависимые территории (Гуам, Виргинские острова, Палау, Пуэрто-Рико и т.д.), Белиз, Бермудские Острова, Ямайка.


2.5.Шкала Ранкина.

Шкала Ранкина (измеряется в градусах Ранкина — °Ra) — абсолютная температурная шкала, названа по имени шотландского физика Уильяма Ранкина (1820—1872). Используется в англоязычных странах для инженерных термодинамических расчётов.

Шкала Ранкина начинается при температуре абсолютного нуля, точка замерзания воды соответствует 491,67°Ra, точка кипения воды 671,67°Ra. Число градусов между точками замерзания и кипения воды по шкале Фаренгейта и Ранкина одинаково и равно 180.

Соотношение между кельвином и градусом Ранкина: 1 K = 1,8 °Ra, градусы Фаренгейта переводятся в градусы Ранкина по формуле °Ra = °F + 459,67. Число градусов между точками замерзания и кипения воды по шкале Фаренгейта и Ранкина одинаково и равно 180. Этим она отличается от абсолютной шкалы Кельвина, где 1 кельвин соответствует 1°С.

Диаграмма перевода температур :

3.Термометры.

Термометр (от греч. terme - тепло, metreo - измеряю) - прибор для измерения температуры: воздуха, воды, почвы, тела человека и других физических тел. Термометры применяются в метеорологии, гидрологии, медицине и других науках и отраслях хозяйства.

История изобретения:

Считают, что изобретателем первого термометра-термоскопа был знаменитый итальянский учёный Галилео Галилей (1597 г.). Термоскоп Галилея представлял собой стеклянный шарик с припаянной к нему стеклянной трубкой. Шарик слегка нагревали, и конец трубки опускали в сосуд с водой. Через некоторое время воздух в шарике охлаждался, его давление уменьшалось, и вода под действием атмосферного давления поднималась по трубке вверх на некоторую высоту. В дальнейшем при потеплении, давление воздуха в шарике увеличивалось, и уровень воды в трубке понижался, а при охлаждении - повышался.

При помощи термоскопа можно было судить только об изменении степени нагретости тел: числовых значений температуры он не показывал, поскольку не имел шкалы. Современную форму (запаяв трубку и перевернув её шариком вниз) термометру придал Габриель Даниель Фаренгейт, голландский физик, выдувальщик стекла. А постоянные (реперные) точки - кипящей воды и тающего льда - на шкале термометра разместил шведский астроном и физик Андерс Цельсий в 1742 году.

В настоящее время существуют много видов термометров: цифровые, электронные, инфракрасные, пирометры, биметаллические, дистанционные, электроконтактные, жидкостные, термоэлектрические, газовые, термометры сопротивления и т.д. У каждого термометра - свой принцип действия и своя сфера применения. Рассмотрим некоторые из них.

3.1.Жидкостные термометры.

Жидкостные термометры используют тепловое расширение жидкостей. В зависимости от температурного диапазона, в котором предстоит служить термометру, его заполняют ртутью, этиловым спиртом или другими жидкостями.

Жидкостные термометры, заполненные ртутью, применяют для точных измерений температуры (до десятой доли градуса) в лабораториях. Термометры, заполненные спиртом, применяют в метеорологии для измерения температур ниже -38° (так как при более низкой температуре ртуть отвердевает).

Спиртовой термометр.

3.2.Газовые термометры.

Газовый термометр — прибор для измерения температуры, основанный на законе Шарля*.

Принцип работы: В начале XVIII в. 1703 году Шарль установил, что одинаковое нагревание любого газа приводит к одинаковому повышению давления, если при этом объём остается постоянным. При изменении температуры по шкале Цельсия зависимость давления газа при постоянном объёме выражается линейным законом. А отсюда следует, что давление газа (при V = const) можно принять в качестве количественной меры температуры. Соединив сосуд, в котором находится газ, с манометром и проградуировав прибор, можно измерять температуру по показаниям манометра**.

В широких пределах изменений концентраций газов и температур и малых давлениях температурный коэффициент давления разных газов примерно одинаковый, поэтому способ измерения температуры с помощью газового термометра оказывается малозависящим от свойств конкретного веществ, используемого в термометре в качестве рабочего тела. Наиболее точные результаты получаются, если в качестве рабочего тела использовать водород или гелий.

*Зако́н Ша́рля или второй закон Гей-Люссака — один из основных газовых законов, описывающий соотношение давления и температуры для идеального газа. Формулировка закона Шарля следующая: для данной массы газа отношение давления газа к его температуре постоянно, если объем газа не меняется. Эту зависимость математически записывают так: P/Т=const, если V=const и m=const.

**Манометр (греч. manos — редкий, неплотный, разрежённый + др.-греч μέτρον — мера, измеритель) — прибор, измеряющий давление жидкости или газа.

3.3. Механические термометры.

Механические термометры действуют по тому же принципу, что и жидкостные, но в качестве датчика обычно используется спираль из металла или биметалла - двух металлических полосок с разными способностями удлиняться при изменении температуры, скреплённых заклёпками. Механические термометры применяют для измерений температуры жидкостей и газов в отопительных и санитарных установках, в системах кондиционирования и вентиляции, а также для измерений температуры сыпучих и вязких сред (например, теста или глазури) в пищевой промышленности.

3.4.Оптические термометры.

Оптические термометры (пирометры) позволяют регистрировать температуру благодаря изменению светимости или спектра излучения тел. Оптические термометры применяют для измерения температуры поверхности объектов в труднодоступных (и жарких) местах.


3.5.Электрические термометры.

Принцип работы электрических термометров основан на изменении сопротивления* проводника при изменении температуры окружающей среды.

Электрические термометры более широкого диапазона основаны на термопарах** (контакт между металлами с разной электроотрицательностью создаёт контактную разность потенциалов, зависящую от температуры).

Наиболее точными и стабильными во времени являются термометры сопротивления на основе платиновой проволоки или платинового напыления на керамику. Наибольшее распространение получили PT100 (сопротивление при 0 °C — 100Ω) PT1000 (сопротивление при 0 °C — 1000Ω) (IEC751). Зависимость от температуры почти линейна и подчиняется квадратичному закону при положительной температуре и уравнению 4 степени при отрицательных (соответствующие константы весьма малы, и в первом приближении эту зависимость можно считать линейной). Температурный диапазон −200 — +850 °C

*Электри́ческое сопротивле́ние — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему.

**Термопа́ра (термоэлектрический преобразователь) — устройство, применяемое для измерения температуры в промышленности, научных исследованиях, медицине, в системах автоматики.

4.Задачи.

1. Определите среднюю квадратичную скорость молекул кислорода и аргона в воздухе при температуре 20°C.


2. При какой температуре тепловая скорость молекул азота равна 90км/ч?


Опыт Галилея.

Заключение.

В заключении, мы рассмотрели понятие температуры с физической точки зрения, но ее можно рассматривать и как жизненно-важный фактор для человека.

К примеру: для человека, несвязанного с физикой, температура является как мера градации наших ощущений тепла и холода; на бытовом уровне температура воспринимается как параметр, служащий для количественного описания степени нагретости материального объекта.

В этом проекте были рассмотрены несколько видов температурных

шкал: Кельвина, Реомюра, Цельсия, Фаренгейта, Ранкина. Каждая шкал имеет свои особенности и недочеты.

Так же в проекте были затронуты некоторые виды термометров: жидкостные,

газовые, механические, оптические, электрические. У каждого термометра - свой принцип действия и своя сфера применения.

Решили задачи с применением формулы средней квадратичной скорости.

Провели опыт Галилея, связанный с изменением температуры. Created by Макаров and Степанов