Смысл числа e. История числа е

ЧИСЛО e . Число, приближенно равное 2,718, которое часто встречается в математике и естественных науках. Например, при распаде радиоактивного вещества по истечении времени t от исходного количества вещества остается доля, равная e –kt , где k – число, характеризующее скорость распада данного вещества. Обратная величина 1/k называется средним временем жизни атома данного вещества, так как в среднем атом прежде, чем распасться, существует в течение времени 1/k . Величина 0,693/k называется периодом полураспада радиоактивного вещества, т.е. временем, за которое распадается половина исходного количества вещества; число 0,693 приближенно равно log e 2, т.е. логарифму числа 2 по основанию e . Аналогично, если бактерии в питательной среде размножаются со скоростью, пропорциональной их числу в настоящий момент, то по истечении времени t начальное количество бактерий N превращается в Ne kt . Затухание электрического тока I в простом контуре с последовательным соединением, сопротивлением R и индуктивностью L происходит по закону I = I 0 e –kt , где k = R/L , I 0 – сила тока в момент времени t = 0. Аналогичные формулы описывают релаксацию напряжений в вязкой жидкости и затухание магнитного поля. Число 1/k часто называют временем релаксации. В статистике величина e –kt встречается как вероятность того, что за время t не произошло событий, наступающих случайно со средней частотой k событий в единицу времени. Если S – сумма денег, вложенных под r процентов с непрерывным начислением вместо начисления через дискретные промежутки времени, то к моменту времени t первоначальная сумма возрастет до Se tr /100.

Причина «вездесущности» числа e заключается в том, что формулы математического анализа, содержащие экспоненциальные функции или логарифмы, записываются проще, если логарифмы брать по основанию e , а не 10 или какому-либо другому основанию. Например, производная от log 10 x равна (1/x )log 10 e , тогда как производная от log e x равна просто 1/x . Аналогично, производная от 2 x равна 2 x log e 2, тогда как производная от e х равна просто e x . Это означает, что число e можно определить как основание b , при котором график функции y = log b x имеет в точке x = 1 касательную с угловым коэффициентом, равным 1, или при котором кривая y = b x имеет в x = 0 касательную с угловым коэффициентом, равным 1. Логарифмы по основанию e называются «натуральными» и обозначаются ln x . Иногда их также называют «неперовыми», что неверно, так как в действительности Дж.Непер (1550–1617) изобрел логарифмы с другим основанием: неперов логарифм числа x равен 10 7 log 1/e (x /10 7) .

Различные комбинации степеней e встречаются в математике так часто, что имеют специальные названия. Таковы, например, гиперболические функции

График функции y = ch x называется цепной линией; такую форму имеет подвешенная за концы тяжелая нерастяжимая нить или цепь. Формулы Эйлера

где i 2 = –1, связывают число e с тригонометрией. Частный случай x = p приводит к знаменитому соотношению e ip + 1 = 0, связывающему 5 наиболее известных в математике чисел.

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Обычный снос разрядов в числе. Когда записывается 4,47 · 10^8, подразумевается снос плавающей запятой на 8 разрядов вперёд - в данном случае это будет число 447 с 6 нулями впереди, т.е. 447.000.000 . В программировании могут использоваться E-значения, причём e нельзя писать само по себе , но E - можно (но не везде и не всегда, об этом будет отмечено ниже), т.к. предпоследнее может ошибочно принятым за число Эйлера . Если нужно записать огромное число сокращённо, может использоваться стиль 4,47·E8 (альтернативный вариант для производства и мелкошрифтной печати - 4,47×E8), чтобы число читалось более разгружено и разряды указывались более обособленно (между арифметическими знаками ставить пробелы нельзя - в противном случае, это математическое условие, а не число).

3,52E3 - это хорошо для записи без индексов, но читать разрядное смещение будет сложнее. 3,52 · 10^8 - условие, т.к. требует индекса и отсутствует мантисса (последнее существует только у оператора, а это - расширенный множитель). " · 10" - процесс стандартного (основного) операционного умножения, число после ^ - показатель сноса разрядов, поэтому его не нужно делать мелким, если необходимо писать документы в данной форме (соблюдая надстрочное положение), в некоторых случаях, желательно использовать масштаб в районе 100 - 120%, а не стандартные 58%. Используя мелкий масштаб для ключевых элементов условия, снижается визуальное качество цифровой информации - придётся всматриваться (может быть и не нужно, но факт остаётся фактом - «прятать» условия мелким шрифтом не нужно, можно было вообще «закопать» - сокращать масштаб отдельных элементов условия это неприемлемо, особенно на компьютере), чтобы заметить «сюрприз», а это очень вредно даже на бумажном ресурсе.

Если процесс умножения выполняет особые операции, то в таких случаях использование пробелов может быть избыточным, т.к. помимо умножения чисел, множитель может быть связывающим звеном для огромных и мелких чисел, химэлементов и т.д. и т.п., которые нельзя записать десятичной дробью обычных чисел или невозможно записать конечным результатом. Это может не касаться записи с " · 10^y", т.к. любое значение в выражении выполняет роль множителя, а "^y" - степень, указываемая надстрочным способом, т.е. является числовым условием. Но, убрав пробелы вокруг множителя и записав иначе - будет ошибкой, т.к. оператор отсутствует. Сам отрывок записи " · 10" - множитель-оператор + число, а не первый + второй оператор. Здесь и есть основная причина того, почему с 10-кой так нельзя. Если после числового оператора нет особых значений, т.е. нечисловых, но системных, то данный вариант записи не может быть оправдан - если есть системное значение, то такое значение должно подходить под определённые задачи с числовым или практическим сокращением чисел (для определённых действий, например, 1,35f8, где f - какое-либо уравнение, созданное для практических специальных задач, которое выводит действительные числа в результате конкретных практических опытов, 8 - значение, которое подставлено как переменное к оператору f и совпадает с числами при последовательном изменении условий наиболее удобным образом, если эта задача архиважная, то такие данные значения могут быть использованы со знаком без пробелов). Кратко, для подобных арифметических операций, но с другими целями, также можно проделывать с плюсами, минусами и делителями, если в этом есть крайняя необходимость для создания новых или упрощения существующих способов записи данных с сохранением точности на практике и может являться применимым числовым условием для определённых арифметических целей.

Итог: официально утверждённую форму экспоненциальной записи рекомендуется писать с пробелом и масштабом надстрочного шрифта в 58% и смещением в 33% (если изменение масштаба и смещения разрешается другими сторонами уровень в 100 - 120%, то можно установить 100% - это самый оптимальный вариант записи надстрочных значений, оптимальное смещение - ≈ 50%). На компьютере можно использовать 3,74e+2, 4,58E-1, 6,73·E-5, E-11, если последние два формата поддерживаются, на форумах лучше отказаться от e-сокращений по известным причинам, а стиль 3,65·E-5 или 5,67E4 может быть полностью понятным, исключения могут составлять лишь официальные сегменты общественности - там только с " · 10^x ", причём вместо ^x - используется только надстрочная запись степени .

Короче говоря, E является суперсокращением для десятичного антилогарифма, который часто помечают, как antilog либо antilg. Например, 7,947antilg-4 будет равен тому же, что и 7,947E-4. На практике это гораздо практичнее и удобнее, чем тягать «десятку» с надстрочным знаком степени лишний раз. Это можно назвать «экспоненциальным» логарифмическим видом числа как альтернативный вариант менее удобному «экспоненциальному» классическому. Только вместо «antilg», используется «E» либо сразу идёт второе число с пропуском (если число положительное) либо без него (на десятисегментных научных калькуляторах, типа "Citizen CT-207T").

Как нечто незначительное. Это случилось в 1618 г. В приложении к работе Непера (Napier) по логарифмам была дана таблица натуральных логарифмов различных чисел. Однако никто не понял, что это логарифмы по основанию , так как в понятие логарифма того времени такая вещь как основание не входила. Это сейчас мы называем логарифмом степень, в которую нужно возвести основание, чтобы получить требуемое число. Мы еще вернемся к этому позже. Таблица в приложении скорее всего была сделана Отредом (Ougthred), хотя автор ее не был указан. Через несколько лет, в 1624 г., в математической литературе снова появляется , но опять-таки завуалированно. В этом году Бриггс (Briggs) дал численное приближение десятичного логарифма , но само число в его работе не упоминается.

Следующее появление числа снова cомнительно. В 1647 г. Сен-Винсент (Saint-Vincent) вычислил площадь сектора гиперболы. Понимал ли он связь с логарифмами, остается только догадываться, но даже если понимал, то вряд ли он мог прийти к самому числу . Только к 1661 г. Гюйгенс (Huygens) понял связь между равнобочной гиперболой и логарифмами. Он доказал, что площадь под графиком равнобочной гиперболы равнобочной гиперболы на промежутке от до равна . Это свойство делает основанием натуральных логарифмов, но это не понимали математики того времени, однако они медленно приближались к этому пониманию.

Гюйгенс сделал следующий шаг в 1661 г. Он определил кривую, которую назвал логарифмической (в нашей терминологии мы будем называть ее экспоненциальной). Это кривая вида . И снова появляется десятичный логарифм , который Гюйгенс находит с точностью до 17 десятичных цифр. Однако он возник у Гюйгенса как некая константа и не был связан с логарифмом числа (итак, снова подошли вплотную к , но само число остается неузнанным).

В дальнейших работах по логарифмам опять-таки число не появляется в явном виде. Однако изучение логарифмов продолжается. В 1668 г. Никола Меркатор (Nicolaus Mercator) опубликовал работу Logarithmotechnia , которая содержит разложение в ряд . В этой работе Меркатор впервые использует название “натуральный логарифм” для логарифма по основанию . Число явно опять не появляется, а остается неуловимым где-то в стороне.

Удивительно, что число в явном виде впервые возникает не в связи с логарифмами, а в связи с бесконечными произведениями. В 1683 г. Якоб Бернулли пытается найти

Он использует биномиальную теорему для доказательства того, что этот предел находится между и , и это мы можем рассматривать как первое приближение числа . Хотя мы принимаем это за определение , это первый случай, когда число определяется как предел. Бернулли, конечно, не понял связи между своей работой и работами по логарифмам.

Ранее упоминалось, что логарифмы в начале их изучения никак не связывались с экспонентами. Конечно, из уравнения мы находим, что , но это гораздо более поздний способ восприятия. Здесь мы в самом деле подразумеваем под логарифмом функцию, тогда как сначала логарифм рассматривался только как число, которое помогало в вычислениях. Возможно, Якоб Бернулли первым понял, что логарифмическая функция является обратной показательной. С другой стороны, первым, кто связал логарифмы и степени, мог быть Джеймс Грегори (Games Gregory). В 1684 г. он определенно осознал связь между логарифмами и степенями, но, возможно, он был не первым.

Мы знаем, что число появилось в том виде, как сейчас, в 1690 г. Лейбниц в письме к Гюйгенсу использовал для него обозначение . Наконец у появилось обозначение (хотя оно не совпадало с современным), и это обозначение было признано.

В 1697 г. Иоганн Бернулли начинает изучение показательной функции и публикует Principia calculi exponentialum seu percurrentium . В этой работе вычисляются суммы различных экспоненциальных рядов, и получены некоторые результаты их почленным интегрированием.

Эйлер (Euler) ввел так много математических обозначений, что
неудивительно, что обозначение также принадлежит ему. Кажется смешным утверждение, что он использовал букву из-за того, что это первая буква его имени. Вероятно, это даже не потому, что взято от слова “exponential”, а просто это следующая гласная за “a”, а Эйлер уже использовал обозначение “a” в своей работе. Независимо от причины, обозначение впервые появляется в письме Эйлера Гольдбаху (Goldbach) в 1731 г. Он сделал много открытий, изучая в дальнейшем, но только в 1748 г. в Introductio in Analysin infinitorum он дал полное обоснование всем идеям, связанным с . Он показал, что

Эйлер также нашел первые 18 десятичных знаков числа :

правда, не объясняя, как он их получил. Похоже, что он вычислил это значение сам. На самом деле, если взять около 20 членов ряда (1), то получится точность, которую получил Эйлер. Среди других интересных результатов в его работе приведена связь между функциями синус и косинус и комплексной показательной функцией, которую Эйлер вывел из формулы Муавра.

Интересно, что Эйлер нашел даже разложение числа в непрерывные дроби и привел образцы такого разложения. В частности, он получил
и
Эйлер не привел доказательства, что эти дроби так же продолжаются, однако он знал, что если бы такое доказательство было, то оно доказывало бы иррациональность . Действительно, если бы непрерывная дробь для продолжалась так же, как в приведенном образце, (каждый раз прибавляем по ), то она никогда бы не прервалась, и (а значит, и ) не могло бы быть рациональным. Очевидно, это первая попытка доказать иррациональность .

Первым, кто вычислил довольно большое число десятичных знаков числа , был Шенкс (Shanks) в 1854 г. Глейшер (Glaisher) показал, что первые 137 знаков, вычисленные Шенксом, были верными, однако далее нашел ошибку. Шенкс ее исправил, и было получено 205 десятичных знаков числа . В действительности, нужно около
120 членов разложения (1), чтобы получить 200 верных знаков числа .

В 1864 г. Бенджамен Пирс (Peirce) стоял у доски, на которой было написано

В своих лекциях он мог бы сказать своим студентам: “Джентльмены, мы не имеем ни малейшего представления, что бы это значило, но мы можем быть уверены, что это значит что-то очень важное”.

Большинство считает, что Эйлер доказал иррациональность числа . Однако это сделал Эрмит (Hermite) в 1873 г. До сих пор остается открытым вопрос, является ли число алгебраическим. Последний результат в этом направлении — это то, что по крайней мере одно из чисел и является трансцендентным.

Далее вычисляли следующие десятичные знаки числа . В 1884 г. Бурман (Boorman) вычислил 346 знаков числа , из которых первые 187 совпали со знаками Шенкса, но последующие различались. В 1887 г. Адамс (Adams) вычислил 272 цифры десятичного логарифма .

ПЕРВУШКИН БОРИС НИКОЛАЕВИЧ

ЧОУ «Санкт-Петербургская Школа «Тет-а-Тет»

Учитель Математики Высшей категории

Число e

Число впервые появилось в математике как нечто незначительное. Это случилось в 1618 г. В приложении к работе Непера (Napier) по логарифмам была дана таблица натуральных логарифмов различных чисел. Однако никто не понял, что это логарифмы по основанию , так как в понятие логарифма того времени такая вещь как основание не входила. Это сейчас мы называем логарифмом степень, в которую нужно возвести основание, чтобы получить требуемое число. Мы еще вернемся к этому позже. Таблица в приложении скорее всего была сделана Отредом (Ougthred), хотя автор ее не был указан. Через несколько лет, в 1624 г., в математической литературе снова появляется , но опять-таки завуалированно. В этом году Бриггс (Briggs) дал численное приближение десятичного логарифма , но само число в его работе не упоминается.

Следующее появление числа снова cомнительно. В 1647 г. Сен-Винсент (Saint-Vincent) вычислил площадь сектора гиперболы. Понимал ли он связь с логарифмами, остается только догадываться, но даже если понимал, то вряд ли он мог прийти к самому числу . Только к 1661 г. Гюйгенс (Huygens) понял связь между равнобочной гиперболой и логарифмами. Он доказал, что площадь под графиком равнобочной гиперболы равнобочной гиперболы на промежутке от 1 до равна 1. Это свойство делает основанием натуральных логарифмов, но это не понимали математики того времени, однако они медленно приближались к этому пониманию.

Гюйгенс сделал следующий шаг в 1661 г. Он определил кривую, которую назвал логарифмической (в нашей терминологии мы будем называть ее экспоненциальной). Это кривая вида . И снова появляется десятичный логарифм , который Гюйгенс находит с точностью до 17 десятичных цифр. Однако он возник у Гюйгенса как некая константа и не был связан с логарифмом числа (итак, снова подошли вплотную к , но само число остается неузнанным).

В дальнейших работах по логарифмам опять-таки число не появляется в явном виде. Однако изучение логарифмов продолжается. В 1668 г. Никола Меркатор (Nicolaus Mercator) опубликовал работу Logarithmotechnia , которая содержит разложение в ряд . В этой работе Меркатор впервые использует название “натуральный логарифм” для логарифма по основанию . Число явно опять не появляется, а остается неуловимым где-то в стороне.

Удивительно, что число в явном виде впервые возникает не в связи с логарифмами, а в связи с бесконечными произведениями. В 1683 г. Якоб Бернулли пытается найти

Он использует биномиальную теорему для доказательства того, что этот предел находится между 2 и 3, и это мы можем рассматривать как первое приближение числа . Хотя мы принимаем это за определение , это первый случай, когда число определяется как предел. Бернулли, конечно, не понял связи между своей работой и работами по логарифмам.

Ранее упоминалось, что логарифмы в начале их изучения никак не связывались с экспонентами. Конечно, из уравнения мы находим, что , но это гораздо более поздний способ восприятия. Здесь мы в самом деле подразумеваем под логарифмом функцию, тогда как сначала логарифм рассматривался только как число, которое помогало в вычислениях. Возможно, Якоб Бернулли первым понял, что логарифмическая функция является обратной показательной. С другой стороны, первым, кто связал логарифмы и степени, мог быть Джеймс Грегори (Games Gregory). В 1684 г. он определенно осознал связь между логарифмами и степенями, но, возможно, он был не первым.

Мы знаем, что число появилось в том виде, как сейчас, в 1690 г. Лейбниц в письме к Гюйгенсу использовал для него обозначение . Наконец у появилось обозначение (хотя оно не совпадало с современным), и это обозначение было признано.

В 1697 г. Иоганн Бернулли начинает изучение показательной функции и публикует Principia calculi exponentialum seu percurrentium . В этой работе вычисляются суммы различных экспоненциальных рядов, и получены некоторые результаты их почленным интегрированием.

Эйлер (Euler) ввел так много математических обозначений, что
неудивительно, что обозначение также принадлежит ему. Кажется смешным утверждение, что он использовал букву из-за того, что это первая буква его имени. Вероятно, это даже не потому, что взято от слова “exponential”, а просто это следующая гласная за “a”, а Эйлер уже использовал обозначение “a” в своей работе. Независимо от причины, обозначение впервые появляется в письме Эйлера Гольдбаху (Goldbach) в 1731 г. Он сделал много открытий, изучая в дальнейшем, но только в 1748 г. в Introductio in Analysin infinitorum он дал полное обоснование всем идеям, связанным с . Он показал, что

Эйлер также нашел первые 18 десятичных знаков числа :

правда, не объясняя, как он их получил. Похоже, что он вычислил это значение сам. На самом деле, если взять около 20 членов ряда (1), то получится точность, которую получил Эйлер. Среди других интересных результатов в его работе приведена связь между функциями синус и косинус и комплексной показательной функцией, которую Эйлер вывел из формулы Муавра.

Интересно, что Эйлер нашел даже разложение числа в непрерывные дроби и привел образцы такого разложения. В частности, он получил

Эйлер не привел доказательства, что эти дроби так же продолжаются, однако он знал, что если бы такое доказательство было, то оно доказывало бы иррациональность . Действительно, если бы непрерывная дробь для , продолжалась так же, как в приведенном образце, 6,10,14,18,22,26, (каждый раз прибавляем по 4), то она никогда бы не прервалась, и (а значит, и ) не могло бы быть рациональным. Очевидно, это первая попытка доказать иррациональность .

Первым, кто вычислил довольно большое число десятичных знаков числа , был Шенкс (Shanks) в 1854 г. Глейшер (Glaisher) показал, что первые 137 знаков, вычисленные Шенксом, были верными, однако далее нашел ошибку. Шенкс ее исправил, и было получено 205 десятичных знаков числа . В действительности, нужно около
120 членов разложения (1), чтобы получить 200 верных знаков числа .

В 1864 г. Бенджамен Пирс (Peirce) стоял у доски, на которой было написано

В своих лекциях он мог бы сказать своим студентам: “Джентльмены, мы не имеем ни малейшего представления, что бы это значило, но мы можем быть уверены, что это значит что-то очень важное”.

Большинство считает, что Эйлер доказал иррациональность числа . Однако это сделал Эрмит (Hermite) в 1873 г. До сих пор остается открытым вопрос, является ли число алгебраическим. Последний результат в этом направлении — это то, что по крайней мере одно из чисел и является трансцендентным.

Далее вычисляли следующие десятичные знаки числа . В 1884 г. Бурман (Boorman) вычислил 346 знаков числа , из которых первые 187 совпали со знаками Шенкса, но последующие различались. В 1887 г. Адамс (Adams) вычислил 272 цифры десятичного логарифма .