Спектры. Спектральный анализ и его применение

Спектры, полученные от самосветящихся тел, называются спектрами испускания. Непосредственные наблюдения и фотографии спектров показывают, что спектры испускания бывают трех типов: сплошные, линейчатые и полосатые.

Сплошные спектры (см. цветной форзац, г) получаются от светящихся твердых и жидких тел в результате их нагревания.

Линейчатые спектры (см. цветной форзац, д) состоят из узких линий различных цветов, разделенных темными промежутками. Такие спектры часто получаются от светящихся газов или паров.

Свечение газа можно вызвать, пропуская через него электрический ток. Помещая стеклянную трубку с исследуемым газом перед щелью спектроскопа и пропуская через газ электрический ток, исследуют спектр испускания газа.

Линейчатые спектры паров и газов можно получить и при их нагревании, например, в пламени горелки. Таким же путем можно получить линейчатые спектры веществ, которые в обычных условиях находятся в твердом или жидком состоянии. Для этого крупинки твердых веществ или смоченный жидкостью асбест вводят в пламя газовой горелки. Испаряющиеся в пламени горелки вещества дают линейчатый спектр. Иногда такие вещества помешают в

электрическую дугу и, закрывая раскаленные угольные электроды диафрагмой, наблюдают в спектроскопе яркие линии на фоне более слабого сплошного спектра самой дуги. Заметим, что светящиеся спектральные линии часто называют эмиссионными линиями.

Изучение линейчатых спектров различных веществ показало, что каждый химический элемент дает свой линейчатый спектр, не совпадающий со спектрами других элементов. Линейчатые спектры химических элементов отличаются цветом, положением и числом отдельных светящихся линий. Характерные для каждого химического элемента линии получаются не только в видимой, но также в инфракрасной и в ультрафиолетовой частях спектра. Исследование линейчатых спектров впервые было выполнено в 1854-1859 гг. немецкими учеными Г. Кирхгофом и Р. Бунзеном.

Линейчатые спектры создаются излучением отдельных атомов химических элементов, не связанных в молекулы. Это излучение связано с процессами, происходящими внутри атомов. Исследование линейчатых спектров позволило установить строение электронных оболочек атомов различных химических элементов.

Полосатые спектры состоят из ряда светлых полос, разделенных темными промежутками (см. рис. 34.12, где изображен спектр паров иода, и цветной форзац, ж). Полосатые спектры создаются излучением молекул. При рассмотрении в спектроскоп с большой разрешающей способностью полосы разделяются на ряд линий.

>> Виды спектров

§ 82 ВИДЫ СПЕКТРОВ

Спектральный состав излучения веществ весьма разнообразен. Но, несмотря на это, все спектры, как показывает опыт, можно разделить на три типа.

Непрерывные спектры. Солнечный или спектр дугового фонаря является непрерывным. Это означает, что в спектре представ.тены волны всех длин волн. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу (см. рис. V, 1 на цветной вклейке).

Распределение энергии по частотам, т. е. спектральная плотность интенсивности излучения, для разных тел различно. Например, тело с очень черной поверхностью излучает электромагнитные волны всех частот, но кривая зависимости спектральной плотности интенсивности излучения от частоты имеет максимум при определенной частоте Vmax (рис. 10.3). Энергия , приходящаяся на очень малые (V -> 0) и очень большие (v -> v) частоты, ничтожно мала. При повышении температуры тела максимум спектральной плотности излучения смещается в сторону коротких волн.

Непрерывные (или сплошные) спектры , как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть те.ло до высокой температуры.

Характер непрерывного спектра и сам факт его существования не только определяются свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом.

Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновениях электронов с ионами.

Линейчатые спектры. Внесем в бледное пламя газовой горелки кусочек асбеста, смоченный раствором обыкновенной поваренной соли. При наблюдении пламени в спектроскоп увидим, как на фоне едва различимого непрерывного спектра пламени вспыхнет яркая желтая линия (см.рис. V, 2 на цветной вклейке).

Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени. На цветной вклейке приведены также спектры водорода и гелия. Каждый из спектров - это частокол цветных линий различной яркости, разделенных широкими темными полосами. Такие спектры называются линейчатыми. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах). На рисунке 10.4 показано примерное распределение спектральной плотности интенсивности излучения в линейчатом спектре. Каждая линия имеет конечную ширину.

Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы , которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип спектров.

Изолированные атомы излучают свет строго определенных длин волн.

Обычно для наблюдения линeйчaтыx спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

При увеличении плотности атомарного газа отдельные спектральные линии расширяются, и, наконец, при очень большом сжатии газа, когдаa взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

Полосатые спектры. Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляетет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спеутров полосатые спектры образуются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, используют свечение паров вещества в пламени или свечение газового разряда.

Спектры поглощения. Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны. Энергия этих волн определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны . Так, красное стекло пропускает волны, соответствующие красному свету ( 8 10 -5 см), и поглощает все остальные.

Если пропускать белый свет сквозь холодный, не излучающий газ, то на фоне непрерывного спектра источника появляются темные линии (см. рис. V, 5-8 на цветной вклейке). Газ поглощает наиболее интенсивно свет именно тех длин волн, которые он сам испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра - это линии поглощения, образующие в совокупности спектр поглощения.

Существуют непрерывные, линейчатые и полосатые спектры излучения и столько же видов спектров поглощения.


1. Является ли спектр лампы накаливания непрерывным!
2. В чем главное отличие линейчатых спектров от непрерывных и полосатых!

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения

Спектр (от лат. spectrum — представление, образ) — является совокупностью каждого из значений любой физической величины , которая характеризует систему либо процесс.

Зачастую используют определения частотного спектра колебаний (например, электромагнитных), спектра энергий, импульсов и масс частиц. Спектр может быть непрерывным и дискретным (прерывистым).

— это спектры электромагнитных излучений в ИК, видимом и UF диапазонах длин волн. Оптические спектры делятся на спектры испуска-ния, спектры поглощения (абсорбционные спектры), спектры рассеяния и спектры отражения.

Оптические спектры получают от источников света при разложении их излучения по длинам волн λ (либо частотам v = c / λ , либо волновым числам 1/ λ =v / c , которые также обозначаются как v ) при помощи спектральных приборов. Чтоб охарактеризовать распределение излучения по частотам, вводится спектральная плотность излучения I (v) , которая равна интенсивности излучения I , которая приходится на единичный интервал частот (интенсивность излучения I является плотностью потока электромаг-нитного излучения, приходящегося на все частоты). Интенсивность излучения, которая приходится на маленький спектральный интервал Δv , равна I (v)Δv . Просуммировав подобные выражения по всем частотам спектра, получаем плотность потока излучения I .

Виды спектров.

Спектральный состав излучения веществ очень разнообразен, но не-смотря на это, каждый спектр делится на 3 типа:

  • непрерыв-ные спектры ,
  • линейчатые спектры,
  • полосатые спектры .

Непрерывные спектры , либо сплошные спектры , как видно из опытов, дают тела, которые находятся в твердом либо жидком состоянии, или очень сжатые газы. Что бы получить непрерывный спектр, тело необходимо нагреть до большой температуры.

Непрерывные спектры определяются не только излучательной способностью самих атомов, но в большой степени зависят от взаимодействия атомов друг с другом.

На рисунке вы видите кривую зависимости спектральной плот-ности интенсивности теплового излучения от частоты (спектр) тела с сильно черной поверхностью. У кривой есть максимум при частоте v m a x , которая зависит от температуры тела. С увеличением температуры максимум энергии излучения сдвигается к боль-шим частотам. Энергия излучения, которая приходится на очень маленькие (v 0 ) и очень большие (v → ∞ ) частоты, весьма мала. В сплошном спектре представлены каждая из длин волн.

Линейчатые спектры складываются из отдельных спектральных линий, это признак того, что вещество излучает свет конкретных длин волн в определенных, очень узких спектральных интервалах. Все линии имеют конечную длину.

Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В таком случае излучают атомы, которые не взаимодействуют друг с другом. Это фунда-ментальный, самый основной тип спектров.

Изолированные атомы излучают строго определенные длины волн, характерные для данного типа атомов. Классическим примером линейчатого спектра является спектр атома водорода .

Спектральные закономерности в спектре атома водорода.

В этой формуле v — не частота, которая измеряется в с -1 , а вол-новое число, которое равно обратному значению длины волны 1/ λ и которое измеряется в м - 1 .

Что бы определить частоты излучения других серий атома водорода вместо двойки в знаменате-ле первой дроби в формуле необходимо подставить числа 1, 3, 4, 5.

Номера нижних энергетических уровней, при переходе на которые с верхних уровней излучаются соответствующие серии:

Полосатые спектры состоят из отдельных полос, которые разделены темными промежутками. При по-мощи весьма хорошего спектрального аппарата можно увидеть, что все полосы состоят из большого числа близко лежащих линий. Полосатые спектры излучают молекулы, которые не связаны либо слабо связаны друг с другом.

Для наблюдения молекулярных спектров, как и для наблюдения линейчатых спектров, применяют свечение паров в пламени либо свечение газового разряда.

Спектры поглощения тоже делятся на 3 типа (сплошные, линейчатые и полосатые), что и спектры испускания. Поглощение света тоже зависит от длины волны. Так, красное стекло пропускает волны, которые соответствуют красному свету (λ ≈ 8 · 10 - 5 см), и поглощает остальные.

Газ интенсивнее всех поглощает свет тех длин волн, которые он испускает в сильно нагретом состоянии.

Таким образом, если пропускать белый свет через холодный неизлучающий газ, то на фоне непрерыв-ного спектра излучения появятся темные линии. Это линии поглощения, которые образуют в совокуп-ности спектр поглощения .

Спектральный анализ подразделяют на несколько самостоятельных методов. Среди них выделяют: инфракрасную и ультрафиолетовую спектроскопию, атомно-абсорбционный, люминесцентный и флуоресцентный анализ, спектроскопию отражения и комбинационного рассеяния, спектрофотометрию, рентгеновскую спектроскопию, а также ряд других методов.

Абсорбционный спектральный анализ основан на изучении спектров поглощения электромагнитного излучения. Эмиссионный спектральный анализ проводится по спектрам испускания атомов, молекул или ионов, возбужденных различными способами.

Атомно-эмиссионный спектральный анализ

Спектральным анализом часто называют только атомно-эмиссионный спектральный анализ, который основан на исследовании спектров испускания свободных атомов и ионов в газовой фазе. Его проводят в области длин волн 150-800 нм. В источник излучения вводят пробу исследуемого вещества, после чего в нем происходит испарение и диссоциация молекул, а также возбуждение образовавшихся ионов. Они испускают излучение, которое фиксируется регистрирующим устройством спектрального прибора.

Работа со спектрами

Спектры проб сравнивают со спектрами известных элементов, которые можно найти в соответствующих таблицах спектральных линий. Так узнают состав анализируемого вещества. Количественный анализ подразумевает концентрации данного элемента в анализируемого веществе. Ее узнают по величине сигнала, например, по степени почернения или оптической плотности линий на фотопластинке, по интенсивности светового потока на фотоэлектрическом приемнике.

Виды спектров

Непрерывный спектр излучения дают вещества, находящиеся в твердом или жидком состоянии, а также плотные газы. В таком спектре нет разрывов, в нем представлены волны всех длин. Его характер зависит не только от свойств отдельных атомов, но и от их взаимодействия друг с другом.

Линейчатый спектр излучения характерен для веществ в газообразном состоянии, при этом атомы почти не взаимодействуют друг с другом. Дело в том, что изолированные атомы одного химического элемента излучают волны строго определенной длины волны.

При увеличении плотности газа спектральные линии начинают расширяться. Для наблюдения такого спектра используют свечение газового разряда в трубке или паров вещества в пламени. Если пропускать белый свет через неизлучающий газ, на фоне непрерывного спектра источника появятся темные линии спектра поглощения. Газ интенсивнее всего поглощает свет тех длин волн, которые он испускает в нагретом состоянии.

Спектр в физике - распределение значений физической величины (обычно энергии, частоты или массы). Графическое представление такого распределения называется спектральной диаграммой. Обычно под спектром подразумевается электромагнитный спектр - спектр частот (или, что то же самое, энергий квантов) электромагнитного излучения.

В научный обиход термин спектр ввёл Ньютон в 1671-1672 годах для обозначения многоцветной полосы, похожей на радугу, которая получается при прохождении солнечного луча через треугольную стеклянную призму

Непрерывные (или сплошные) спектры , как показывает

опыт, дают тела, находящиеся в твердом или жидком

состоянии, а также сильно сжатые газы. Для получения

непрерывного спектра нужно нагреть тело до высокой температуры.

Характер непрерывного спектра и сам факт его существования

определяются не только свойствами отдельных излучающих

атомов, но и в сильной степени зависят от взаимодействия

атомов друг с другом.

Непрерывный спектр дает также высокотемпературная

плазма. Электромагнитные волны излучаются плазмой в

основном при столкновении электронов с ионами.

Линейчатые спектры. Внесем в бледное пламя газовой

горелки кусочек асбеста, смоченного раствором

обыкновенной поваренной соли.

При наблюдении пламени в спектроскоп на фоне едва

различимого непрерывного спектра пламени вспыхнет

яркая желтая линия. Эту желтую линию дают пары натрия,

которые образуются при расщеплении молекул поваренной

соли в пламени. Каждый из них - это частокол цветных

линий различной яркости, разделенных широкими темными

полосами. Такие спектры называются линейчатыми. Наличие

линейчатого спектра означает, что вещество излучает свет только

вполне определенных длин волн (точнее, в определенных очень

узких спектральных интервалах). Каждая линия имеет конечную

ширину. Линейчатые спектры дают все вещества в газообразном

атомарном (но не молекулярном) состоянии. В этом случае свет

излучают атомы, которые практически не взаимодействуют друг

с другом. Это самый фундаментальный, основной тип спектров.

Изолированные атомы излучают строго определенные длины волн.

Обычно для наблюдения линейчатых спектров используют

свечение паров вещества в пламени или свечение газового

разряда в трубке, наполненной исследуемым газом.

При увеличении плотности атомарного газа отдельные

спектральные линии расширяются, и, наконец, при очень

большом сжатии газа, когда взаимодействие атомов становится

существенным, эти линии перекрывают друг друга, образуя

непрерывный спектр.

Главное свойство линейчатых спектров состоит в том, что

длины волн (или частоты) линейчатого спектра какого-либо

вещества зависят только от свойств атомов этого вещества,

но совершенно не зависят от способа возбуждения свечения

Полосатые спектры . Полосатый спектр состоит из отдельных

полос, разделенных темными промежутками. С помощью очень

хорошего спектрального аппарата можно обнаружить, что каждая

полоса представляет собой совокупность большого числа очень

тесно расположенных линий. В отличие от линейчатых спектров