Спиновое число. Ядерные реакции

© Мученик Науки.

Приняты следующие обозначения:
- Векторы – жирными буквами чуть большего размера чем остальной текст. W , g , A .
- пояснения к обозначениям в таблицах – курсивом.
- целочисленные индексы – жирным шрифтом обычного размера.
m , i , j .
- не векторные переменные величины и формулы – курсивом чуть более крупного размера:
q , r , k , sin , cos .

Момент импульса. Школьный уровень.

Момент импульса характеризует количество вращательного движения. Это величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.
Момент импульса вращающейся вокруг оси Z гантельки из двух шариков массы m , каждый из которых расположен на расстоянии l от оси вращения, с линейной скоростью шариков V , равен:

M= 2·m·l·V ;

Ну понятно, в формуле стоит 2 потому что у гантельки два шарика.

Момент импульса. Университетский уровень.

Момент импульса L материальной точки (кинетический момент, угловой момент, орбитальный момент, момент количества движения ) относительно некоторого начала отсчёта определяется векторным произведением её радиус-вектора и импульса:

L = [ r х p ]

где r - радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчёта начала отсчёта, p - импульс частицы.
Для нескольких частиц момент импульса определяется как (векторная) сумма таких членов:

L = Σ i [ r i х p i ]

где r i , p i - радиус-вектор и импульс каждой частицы, входящей в систему, момент импульса которой определяется.
В пределе количество частиц может быть бесконечным, например, в случае твердого тела с непрерывно распределенной массой или вообще распределённой сиситемы
это может быть записано как

L = r xd p

где d p - импульс бесконечно малого точечного элемента системы.
Из определения момента импульса следует его аддитивность как для системы частиц в частности, так и для системы, состоящей из нескольких подсистем, выполняется:

L Σ = Σ i L i


Опыт Штерна и Герлаха.

В 1922 году физики проделали эксперимент, в котором оказалось, что атомы серебра имеют свой момент импульса. Причём проекция этого момента импульса на ось Z (см.рис) оказалась равной либо некоторой положительной величине, либо некоторой отрицательной величине, но не нулю. Это невозможно объяснить орбитальным моментом импульса электронов в атоме серебра. Потому что орбитальные моменты обязательно давали бы, в том числе, и нулевую проекцию. А здесь строго плюс и минус, и в нуле ничего. Впоследствии, в 1927 г. это было интерпретировано как доказательство существования спина у электронов.
В опыте Штерна и Герлаха (1922) путем испарения в вакуумной печи атомов серебра или другого металла с помощью тонких щелей формируется узкий атомный пучок (рис).

Этот пучок пропускается через неоднородное магнитное поле с существенным градиентом магнитной индукции. Индукция магнитного поля B в опыте велика и направлена вдоль оси Z . На пролетающие в зазоре магнита атомы вдоль направления магнитного поля действует сила F z , обусловленная градиентом индукции неоднородного магнитного поля и зависящая от величины проекции магнитного момента атома на направление поля. Эта сила отклоняет движущийся атом в направлении оси Z , причем за время пролета магнита движущийся атом отклоняется тем больше, чем больше величина силы. При этом одни атомы отклоняются вверх, а другие вниз.
С позиций классической физики, пролетевшие через магнит атомы серебра должны были образовать сплошную широкую зеркальную полосу на стеклянной пластинке.
Если же, как предсказывает квантовая теория, имеет место пространственное квантование, и проекция магнитного момента
p Z M атома принимает только определенные дискретные значения, то под действием силы F Z атомный пучок должен расщепиться на дискретное число пучков, которые, оседая на стеклянной пластинке, дают серию узких дискретных зеркальных полосок из напыленных атомов. Именно этот результат наблюдался в эксперименте. С одним лишь но: не было полоски по самому центру пластинки.
Но это ещё не было открытием спина у электронов. Ну дискретный ряд моментов импульса у атомов серебра, ну и что? Однако учёные продолжали думать, почему нет полоски по центру пластины?
Пучок невозбужденных атомов серебра расщепился на два пучка, которые напылили на стеклянной пластинке две узкие зеркальные полоски, сдвинутые симметрично вверх и вниз. Измерение этих сдвигов позволило определить магнитный момент невозбужденного атома серебра. Его проекция на направление магнитного поля оказалась равной
+ μ Б или -μ Б . То есть магнитный момент невозбуждённого атома серебра оказался строго не равным нулю. Это не имело объяснения.
Однако, из химии было известно, что валентность серебра равна +1 . То есть на внешней электронной оболочке находится один активный электрон. А общее число электронов в атоме нечётно.

Гипотеза о спине электрона

Это противоречие теории и опыта стало не единственным, обнаруженным в различных экспериментах. Такое же отличие наблюдалось при изучении тонкой структуры оптических спектров щелочных металлов (они, кстати, тоже одновалентны). В опытах с ферромагнетиками было обнаружено аномальное значение гиромагнитного отношения, отличающегося от ожидаемого значения в два раза.
В 1924 г. Вольфганг Паули ввёл двухкомпонентную внутреннюю степень свободы для описания эмиссионных спектров валентного электрона в щелочных металлах.
В который раз обращает на себя внимание, как западные учёные с лёгкостью придумывают новые частицы, феномены, реальности для объяснения старых. Точно так же введён и бозон Хиггса для объяснения массы. Далее будет бозон Шмиггса для объяснения бозона Хиггса.
В 1927 году Паули модифицирует недавно открытое уравнение Шрёдингера для учёта спиновой переменной. Модифицированное таким образом уравнение носит сейчас название уравнение Паули. При таком описании у электрона появляется новая спиновая часть волновой функции, которая описывается спинором — «вектором» в абстрактном двумерном спиновом пространстве.
Это позволило ему сформулировать принцип Паули, согласно которому в некоторой системе взаимодействующих частиц у каждого электрона должен быть свой собственный неповторяющийся набор квантовых чисел (все электроны в каждый момент времени находятся в разных состояниях). Поскольку физическая интерпретация спина у электрона была неясна с самого начала (и это имеет место до сих пор), в 1925 г. Ральф Крониг (ассистент известного физика Альфреда Ланде) высказал предположение о спине как результате собственного вращения электрона.
Все эти трудности квантовой теории были преодолены, когда осенью 1925 г. Дж. Уленбек и С. Гаудсмит постулировали, что электрон является носителем "собственных" механического и магнитного моментов, не связанных с движением электрона в пространстве. То есть обладает спином S = ½ ћ в единицах постоянной Дирака ћ , и спиновым магнитным моментом, равным магнетону Бора. Это предположение и было принято научным сообществом, поскольку удовлетворительно объясняло известные факты.
Эта гипотеза получила название гипотезы о спине электрона. Такое название связано с английским словом
spin , которое переводится как "кружение", "верчение".
В 1928 г. П.Дирак ещё сильнее обобщил квантовую теорию на случай релятивистского движения частицы и вводит уже четырёхкомпонентную величину — биспинор.
В основе релятивистской квантовой механики лежит уравнение Дирака, записанное первоначально для релятивистского электрона. Это уравнение значительно сложнее уравнения Шредингера по своей структуре и математическому аппарату, используемому при его записи. Мы не станем обсуждать это уравнение. Скажем лишь, что из уравнения Дирака четвертое, спиновое квантовое число получается так же «естественно», как и три квантовых числа при решении уравнения Шредингера.
В квантовой механике квантовые числа для спина не совпадают с квантовыми числами для орбитального момента частиц, что приводит к неклассической трактовке спина. Кроме этого, у спина и орбитального момента частиц возникает различная связь с соответствующими магнитными дипольными моментами, сопровождающими любое вращение заряженных частиц. В частности, в формуле для спина и его магнитного момента гиромагнитное отношение не равно 1 .
Концепция спина у электрона привлекается для объяснения многих явлений, таких как расположение атомов в периодической системе химических элементов, тонкая структура атомных спектров, эффект Зеемана, ферромагнетизм, а также для обоснования принципа Паули. Недавно возникшая область исследований, называемая «спинтроника», занимается манипуляциями спинов зарядов в полупроводниковых устройствах. В ядерном магнитном резонансе используется взаимодействие радиоволн со спинами ядер, позволяющее осуществлять спектроскопию химических элементов и получать изображения внутренних органов в медицинской практике. Для фотонов как частиц света спин связывается с поляризацией света.

Механическая модель спина.

В 20-30-х годах прошлого столетия было проведено множество экспериментов, которые доказали наличие спина у элементарных частиц. Эксперименты доказали реальность спина как именно момента вращения. Но откуда берётся это вращение в электроне или протоне?

Предположим простейшее, что электрон - это малюсенький твердый шарик. Предполагаем, что этот шарик имеет некую среднюю плотность и некие физические параметры, близкие к известным экспериментальным и теоретическим величинам реального электрона. Имеем экспериментальные величины:
Масса покоя электрона: m e
Спин электрона S e = ½ ћ
В качестве линейного размера объекта берем его комптоновскую длину волны, подтвержденную как экспериментально, так и теоретически. Комптоновскую длина волны электрона:

Очевидно, это диаметр объекта. Радиус в 2 раза меньше:

Имеем теоретические величины, получаемые из механики и квантовой физики.
1) Вычисляем момент инерции объекта I e . Поскольку мы не знаем достоверно его формы, то вводим поправочный коэффициенты k e , который, в зависимости от формы, теоретически может иметь величину от почти 0,0 (иголка, вращающаяся вокруг длинной оси) до 1,0 (при точной форме длинной гантельки как на рисунке в начале статьи или широкого, но тонкого бублика). К примеру, значение 0,4 достигается при точной форме шара. Итак:


2) Из формулы S = I · ω , находим угловую скорость вращения объектов:

3) Этой угловой скорости соответствует линейная скорость V "поверхности" электрона:


Или

V = 0,4 c ;

Если брать как на рисунке в начале статьи электрон имеющим вид гантельки, то получается

V = 0,16 c ;

4) Совершенно аналогично проделываем выкладки для протона или нейтрона. Линейная скорость "поверхности" протона или нейтрона для шариковой модели получается точно такая же, 0,4 c :

5) Делаем выводы. Результат зависит от формы объекта (коэффициент k при вычислении момента инерции) и от коэффициентов в формулах для спинов электрона или протона (½). Но, как ни крути, а в среднем получается около, близко к скорости света . Как у электрона, так и у протона. Не больше скорости света! Результат, который трудно назвать случайным. Мы делали "бессмысленные" выкладки, но получили абсолютно осмысленный, выделенный результат!

Все не так, ребята! - говорил Владимир Высоцкий. Это не сигнал, это дилемма: либо - либо! Либо что-то пополам, либо что-то вдребезги. Эйнштейн и Шрёдингер лишают смысла эти рассуждения, так как по Эйнштейну при скоростях порядка скорости света масса растет до бесконечности, а по Шрёдингеру они не имеют ни формы, ни размеров. Однако все на свете "относительно" и неизвестно, что чего и кто кого лишает смысла. Теория Гукуума имеет ответ, по которому волновые вихри – электроны, в Гукууме как раз и крутятся со световой линейной скоростью! Собственно масса - она всегда движется и всегда исключительно со световой скоростью. Электрон и протон, каждый элемент в них, каждая точка движется по своей замкнутой траектории и не иначе как со скоростью света. Именно в этом и состоит настоящий и простой смысл формулы:

Это практически удвоенная формула кинетической энергии волны. Почему удвоенная? – Потому что в упругой волне половина энергии кинетическая, а вторая половина энергии – скрытая, потенциальная, в виде деформации среды, в которой происходит распространение волны.

Фразы, объясняющие спин электрона.

Какова же таки физическая природа наличия у электрона спина, если она не объяснима с механической точки зрения? Ответа на этот вопрос нет не только к классической физике, но и рамках нерелятивистской квантовой механики, в основе которой лежит уравнение Шредингера. Спин вносится в виде некой дополнительной гипотезы, необходимой для согласования эксперимента и теории.

Рассуждения о форме или внутреннем устройстве элементарных частиц, например электрона, в современной физике легко относятся к "не имеющим смысла". Раз их глазами не видно, значит нечего и спрашивать! Микробы появились на свет с изобретением микроскопа (Михаил Генин). Попытки таких рассуждений всегда заканчиваются словами, что,

Фраза №1.
Законы и понятия классической физики перестают действовать в микромире.
Если само местонахождение объекта неизвестно, это Ψ -функция, то что говорить об его устройстве? Размазан - и всё тут. Нет никакого устройства.
То же самое говорится и о физическом смысле момента импульса - спина электрона (протона). Вращение как бы есть, спин тоже есть, но

Фраза №2.
Спрашивать как выглядит это вращение - "не имеет смысла".
Есть аналогии и в макро - мире. Допустим, мы хотим спросить олигарха: а как вы заработали свои миллиарды? Или, где вы храните наворованное? - А вам отвечают: ваш вопрос не имеет смысла! Тайна за семью печатями.

Фраза №3.
Спин электрона не имеет классического аналога.
То есть спин как бы имеет какой-то аналог, но вот классического аналога он не имеет. Он как бы характеризует внутреннее свойство квантовой частицы, связанное с наличием у нее дополнительной степени свободы. Количественная характеристика этой степени свободы - спин S = ½ ћ является для электрона такой же величиной как, например, его масса m 0 и заряд - e . Однако спин – это реально вращение, это момент вращения и проявляется в экспериментах.

Фраза №4.
Спин вносится в виде дополнительной гипотезы, не вытекающей из основных положений теории, но необходимой для согласования эксперимента и теории .

Фраза №5.
Спин является некоторым внутренним свойством, наподобие массы или заряда, требующим особого, пока ещё не известного обоснования
.
Другими словами. Спин (от англ. spin — вертеться, вращение) — собственный момент импульса элементарных частиц, имеющий «квантовую природу» и не связанный с движением частицы как целого. В отличие от орбитального углового момента, который порождается движением частицы в пространстве, спин не связан с любым движением в пространстве. Спин — это якобы внутренняя, исключительно квантовая характеристика, которую нельзя объяснить в рамках механики.

Фраза №6.
Однако, несмотря на всю свою загадочность происхождения, спин является объективно существующей и вполне измеряемой физической величиной.

В то же время, оказывается, что спин (и его проекции на какую-либо ось) могут принимать только целые или полуцелые значения в единицах постоянной Дирака
ħ = h /2π . Где h – постоянная Планка. Для тех частиц, которые имеют полуцелые спины, проекция спина не бывает равной нулю.

Фраза №7.
Существует пространство состояний, никак не связанных с перемещением частицы в обычном пространстве. Обобщение этой идеи в ядерной физике привело к понятию изотопического спина, который действует в «особом изоспиновом пространстве».
Как говорится, уж молоть так молоть!
В дальнейшем, при описании сильных взаимодействий были введены внутреннее цветовое пространство и квантовое число «цвет» — более сложный аналог спина.
То есть, количество загадок нарастало, но все они решались гипотезой, что существует некое пространство состояний, не связанных с перемещением частицы в обычном пространстве.

Фраза №8.
Итак, в самых общих словах можно сказать, что собственные механический и магнитный моменты у электрона появляются как следствие релятивистских эффектов в квантовой теории.

Фраза №9.
Спин (от англ. spin — вертеть[-ся], вращение) — собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого.

Фраза №10.
Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантовомеханического явления, не имеющего аналогии в классической механике: обменного взаимодействия.

Фраза 11.
Будучи одним из проявлений углового момента, спин в квантовой механике описывается векторным оператором спина ŝ , алгебра компонент которого полностью совпадает с алгеброй операторов орбитального углового момента
l . Однако, в отличие от орбитального углового момента, оператор спина не выражается через классические переменные, иными словами, это только квантовая величина.
Следствием этого является тот факт, что спин (и его проекции на какую-либо ось) может принимать не только целые, но и полуцелые значения.

Фраза 12.
В квантовой механике квантовые числа для спина не совпадают с квантовыми числами для орбитального момента частиц, что приводит к неклассической трактовке спина.
Как говорится, если часто что-то повторять, то этому начинаешь верить. Вот сейчас далдонят, демократия, демократия, власть закона. И люди привыкают, начинают верить.
Также неявно используется перевод с английского слова «спин» – от англ. вращаться. Дескать англичане–то смысл спина знают, просто переводчики никак не могут толково перевести.

Структура электрона.

Как показывает попытка погуглить размер электрона, это тоже для всех физиков такая же загадка как и природа спина электрона. Попробуйте, и вы не найдёте нигде, ни в Википедии, ни в Физической энциклопедии. Выдвигаются самые разные цифры. От долей процента размера протона, до тысяч размеров протона. А без знания размера электрона, а ещё лучше структуры электрона, невозможно понять происхождение его спина.
А вот теперь подойдём к объяснению спина с позиции структурного электрона. С позиции теории упругой вселенной. Вот так выглядит электрон.

Здесь изображены не твёрденькие колечки, не бублики, а волновые кольца. То есть бегающие по кругу волны, такое решение даёт математика. Вертящиеся по кругу со скоростью света , причём (!) соседние кольца движутся в противоположных направлениях. Собственно, этот рисунок есть иллюстрация формулы распределения энергии внутри электрона:

Желающие могут легко проверить эту формулу.
Здесь q – радиальная координата.
Именно это вращение составляющих колец создаёт суммарный ненулевой внутренний момент импульса - спин электрона. В этом - разгадка появления спина, который до сих пор остаётся загадкой в общепринятой науке. Правда, эту загадку на деле никто и не стремится разгадать, но это отдельный вопрос.
Именно это вращение соседних колец в противоположные стороны, во-первых даёт сходимость интеграла по моменту вращения, а во-вторых, создаёт несоответствие между магнитным моментом и спином.
На этом (приблизительном) рисунке показаны только основные, ближайшие кольца, всего их бесконечно много. Весь объект является единым целым, очень устойчивым, никакая часть его не может быть удалена. И это целое - есть элементарная частица, электрон. Это не выдумка, не фантазия, не подгонка. Это, еще раз, строгая математика!
Пусть не пугаются от неожиданности те, кто считает, что в атоме водорода (простейший случай) электрон вращается вокруг ядра. Нет, он не вращается как целое вокруг ядра. Просто электрон – это облако, реальное волновое облако, и таковым он является даже когда одиночный и свободный. Просто ядро атома водорода находится внутри электрона.

Объяснение феномена спина.

А дальше остаётся только вычислить момент импульса данной сложной структуры из волновых бубликов.
Момент импульса электрона определяется следующим образом.
- Есть распределения энергии в электроне. При переходе из слоя в слой направление движения энергии изменяется на противоположное.
Таким образом, правдоподобная общая формула для проекции момента импульса всех частиц
M z , имеет вид:

R - ранее определённая величина.

Под знаком интеграла четыре элемента, которые для наглядности выделены в квадратные скобки. Первая квадратная скобка содержит в себе элементы плотности массы электрона (отличие от энергии - c 2 в знаменателе), с учетом "наслоения" бегущей волны саму на себя (r 2 в знаменателе) и также с учетом знака, с которым эта масса войдет в формулу момента импульса (функция sign ). То есть, в зависимости от направления вращения данного элемента. Вторая квадратная скобка - расстояние от оси вращения - оси Z . Третья квадратная скобка - скорость движения элемента массы, скорость света. Четвертая - элемент объема. То есть это момент импульса в классическом его понимании.

Данное уравнение для момента импульса не объявляется точным количественно, хотя и это не исключено. Но корреляционную картину распределения момента импульса оно дает. А как станет видно из окончательных результатов, такое определение момента импульса дает и хорошее количественное значение момента импульса (с точностью до знака).
Полный момент импульса электрона после численного интегрирования:

Где L 1 и L 2 - коэффициенты Ламэ Гукуума (характеристики упругости). Они приводятся на указанном сайте.
Как показывает анализ, данная формула прекрасно вписывается в известные физические результаты. Но анализ её слишком объёмен чтобы выкладывать здесь.

Сравнение теоретических и экспериментальных размеров частиц.

Данная процедура делается вот для чего. В найденные теоретические формулы для связи размеров частиц, их масс и спинов, подставляются их известные экспериментальные спины и массы. После чего вычисляются (полу)теоретические размеры частиц и сравниваются с известными экспериментальными. Так оказалось удобнее.
Вводятся обозначения: локи (0,0), (1,0) и (1,1) – это, соответственно, электрон, нейтрон и протон.

Теоретические величины.





Какое отношение имеют величины, λ 0,0 , λ 1,0 , λ 1,1 к реальным размерам частиц? Если посмотреть на теоретические распределения плотности частиц (или на рисунок электрона), то видно, что они распределены волнообразно, с убыванием. Эффективный радиус каждой частицы, до радиуса, охватывающего основную часть массы (это 3-4 волны плотности) примерно равен:

R 0,0 ≈ 2,5 π единиц q ;

R 1,0 ≈ 2 π единиц q ;

R 1,1 ≈ 2 π единиц q .

Где h - обычная, не перечеркнутая постоянная Планка.
Имеющий глаза да увидит: эффективные теоретические радиусы локов (0,0), (1,0) и (1,1) равны почти в точности половине комптоновской длине волны электрона, нейтрона и протона. То есть, комптоновская длина волны частицы выступает как их диаметр.

Комптоновская длина волны есть линейный размер, а масса частицы характеризует объём частицы, то есть линейный размер в кубе. Как видно, в формуле масса стоит в знаменателе. По этой причине относиться к этой формуле слишком доверительно не стоит. Было бы, на наш взгляд, правильнее за размер частицы брать величину, пропорциональную следующей:

Где K – некоторый коэффициент пропорциональности.
Изначально протон в 12 раз (по размеру) меньше электрона и легко влезает в центральную дырку электрона. А затем при взаимодействии электрона с протоном электрон меняет своё состояние (в поле протона) и раздувается ещё в 40 раз, что не удивительно.

Так устроен атом водорода (жёлтенький протон внутри серого электрона).
Как известно из официальной физики, комптоновский размер электрона (R компт =1,21▪10 -10 см .) примерно в 40 раз меньше чем размер атома водорода (первый боровский радиус равен: R бор =0,53▪10 -8 см .). Это кажущееся противоречие с нашей теорией, которое нуждается в устранении и уточнении. Либо при образовании водорода электрон (как волновое облако) меняет свою форму и растягивается. При этом он обволакивает протон. Либо надо пересмотреть, что же такое боровский радиус и каков его физический смысл. Физику в части размеров частиц надо капитально пересмотреть.

(англ. spin веретено) – фундаментальная характеристика микроскопической частицы (например атомного ядра или элементарной частицы), которая в некотором отношении аналогична «собственном момента импульса частицы». Спин является квантовой свойством частиц и не имеет аналогов в классической физике. Тогда как классический момент импульса возникает вследствие вращения массивного тела со конечными размерами, спин присущ даже частицам, которые на сегодня считаются точечными и не связан ни с одним вращением масс внутри такой частицы. (Спин неточкових частиц, например атомных ядер или адронов, является векторной суммой спинов и орбитального момента импульса ее составляющих, т.е. и в этом случае спин частично связан с вращательным движением внутри частицы.)
Спин может принимать только определенные (квантованные) значения:

Цели: 0,1,2,3 …
полуцелым: 1 / 2, 3 / 2, …

Спин является важной характеристокю элементарных частиц.
История открытия
Спин электрона открыли в 1925 Уленбек и Гоулдсмит, проводя эксперименты по расщеплению пучка электронов в неоднородном магнитном поле. Ученые надеялись увидеть, как пучок электронов расщепится на несколько, в залежнотсти от квантованного орбитального момента. Если бы угловой момент электронов равен нулю, то пучок не расщеплялся, если бы угловой момент равен , То пучок расщепился бы на три, и т.д., на 2L +1 пучки при угловом моменте . Результат превзошел все ожидания: пучок расщепился на два. Объяснить это можно было лишь приписав электрону собственный момент . Этот собственный момент электрона получил название спина. Сначала думали, что спин соответствует какому-то внутреннему вращению электрона, но вскоре Поль Дирак вывел релятивистский аналог уравнения Шредингера (так называемое уравнение Дирака), которое автоматически объясняло существование спина совсем из других принципов.
Понятие спина позволило построить теорию периодической системы, выяснить структуру атомных спектров, объяснить природу ковалентных связей, т.
Оператор спина
Математически спин описывают Спинор – столбиком с 2S +1 волновых функций, где S – это значение спина. Так частицы с нулевым спином описывают одной волновой функцией или скалярным полем, частицы со спином 1 / 2 (например электроны) – двумя волнового функциями или спинорно полем, частицы со спином 1 – тремя волновыми функциями или векторным полем.
Операторами спина являются матрицы размерности (2S +1) x (2S +1). В случае частиц со спином 1 / 2 оператор спина пропорционален матрицам Паули

Поскольку матрицы Паулу не коммутируют, то одновременно можно определить только собственные значения одной из них. Обычно выбирают? z. Следовательно, проекция спина на ось z для электрона может иметь следующие значения.

О состоянии с часто говорят, как о состоянии со спином направленным вверх, о состоянии с говорят, как о состоянии со спином, направленным вниз, хотя эти названия вполне условны, и не соответствуют никаким направлениям в пространстве.
Значения других компонент спина являются неопределенными.

Сфера торговли идет рука об руку с различными техниками продаж. Один из самых эффективных способов заключить крупную сделку – СПИН-продажи. Эта техника вывела на свет новый подход к продаже: теперь основа влияния продавца должна быть внутри мыслей покупателя, а не внутри товара. Главным инструментом стали вопросы, ответами на которые клиент сам себя убеждает. Как, когда и какие вопросы задавать, чтобы СПИН-продажи работали, узнайте в нашем материале.

Что такое СПИН

SPIN-selling – результат масштабного исследования, которое проанализировали на десятках тысяч деловых встреч в 23 странах мира. Вывод таков: для заключения крупной сделки продавцу нужно знать 4 типа вопросов (ситуационные, проблемные, извлекающие, направляющие) и задавать их в подходящее время. СПИН-продажи – это, говоря простым языком, превращение любой сделки в воронку вопросов, которые из интереса делают потребность, развивают ее в необходимость и заставляют человека самому прийти к выводу заключить сделку.

СПИН-продажи – это превращение любой сделки в воронку вопросов, которые из интереса делают потребность, развивают ее в необходимость и заставляют человека самому прийти к выводу заключить сделку.

Недостаточно описать преимущества продукта – вы должны создать его картину, основываясь на удовлетворяемых им потребностях и решаемых проблемах. Не просто «наши автомобили качественные и надежные», а «закупка наших автомобилей снизит затраты на ремонт на 60%».

С помощью нужных вопросов клиент убеждается в том, что изменения необходимы, и ваше предложение – способ изменить ситуацию к лучшему, ценное дополнение для успешного бизнеса.

Главная особенность и большой плюс техники СПИН-продаж – ориентация на клиента, а не на продукт или предложение. Рассматривая человека, вы увидите его скрытые , так ваше поле для убеждения расширится. Основной метод этой техники – вопрос – позволяет не довольствоваться общей характеристикой всех покупателей, а выявлять индивидуальные черты.

Техника воздействия

Начните с того, чтобы не думать о том, как продать. Думайте о том, как и почему клиенты выбирают, покупают продукт и что вызывает сомнения. Нужно понимать, через какие этапы проходит клиент, принимая решение. Сначала он сомневается, чувствует неудовлетворенность, наконец, видит проблему. В этом система СПИН-продаж: нащупать скрытые потребности клиента (это та неудовлетворенность, которую он не осознает и не признает как проблему) и превратить их в явные, четко ощущаемые покупателем. На этом этапе вам пригодятся лучшие способы выявления потребностей и ценностей – ситуационные и проблемные вопросы.

Технология СПИН регулирует 3 стадии сделки:

  • Оценка вариантов.

Осознав, что пришла пора изменений, клиент оценивает доступные варианты по определенным им критериям (цена, скорость, качество). Вам нужно повлиять на те критерии, в которых сильно ваше предложение, и избегать сильных сторон конкурентов или ослаблять их. Будет неловко, если компания, славящаяся демократичными ценами, но не оперативностью, извлекающим вопросом «Насколько зависит прибыль от своевременных поставок?» наведет клиента на мысль о компании-конкуренте.

Когда покупатель, наконец, признает ваше предложение лучшим, он попадает в замкнутый круг сомнений, из-за которых так часто застывают сделки. Вы помогаете клиенту преодолеть страхи и прийти к окончательному решению.

Вопросы СПИН-продаж

Вместе с клиентом с помощью вопросов вы формируете логическую цепочку: чем она длиннее, чем сложнее покупателю было ее составлять, тем убедительнее она для него выглядит. Каждый из типов вопросов должен соответствовать этапу, на котором находится клиент. Не стоит забегать вперед: не рекламируйте свой товар, пока покупатель не осознал потребность в нем. Правило работает и по-другому: если клиент считает ваш продукт слишком дорогим, он просто еще не объяснил сам себе (с помощью вопросов), что он нужен покупателю очень сильно, и эта потребность стоит таких денег. Типы и примеры вопросов перед вами.

Ситуационные вопросы

С них начинается логическая цепочка – вы узнаете нужную информацию и выявляете скрытые потребности. Правда, этот тип вопросов неуместен на последних стадиях переговоров, а также в большом количестве раздражают собеседника, создавая ощущение допроса.

Например:

  • Из каких должностей состоит ваш штат сотрудников?
  • Помещение какого размера вы арендуете?
  • Оборудование какой марки вы используете?
  • Каковы цели покупки автомобиля?

Проблемные вопросы

Задавая их, вы заставляете клиента задуматься о том, устраивает ли его текущая ситуация. Будьте аккуратны с этим типом вопросов, чтобы клиент не задумался, нужен ли вообще ему ваш продукт. Сохраняйте готовность в любой момент предложить решение.

Например:

  • Возникают ли у вас трудности с неквалифицированными работниками?
  • Доставляет ли неудобство помещение таких размеров?
  • Является ли для вас проблемой быстрый износ оборудования?

Извлекающие вопросы

С их помощью вы предлагаете клиенту расширить проблему, задуматься о ее последствиях для бизнеса и жизни. С извлекающими вопросами нельзя спешить: если покупатель еще не понял, что у него есть серьезная проблема, он будет раздражен вопросами о ее последствиях. Не меньше раздражения вызывает шаблонность как проблемных, так и извлекающих вопросов. Чем разнообразнее и естественнее они прозвучат, тем эффективнее окажутся.

Например:

  • Приводят ли к крупным затратам частые поломки некачественного оборудования?
  • Увеличивается ли простой линии из-за перебоев в поставке материалов?
  • Какую часть прибыли вы теряете каждый месяц, когда линия простаивает?

Направляющие вопросы

Развеивают сомнения, клиент убеждает себя в том, что ваше предложение оптимально для наиболее эффективного решения своей проблемы.

  • Более надежное оборудование сократит расходы на его обслуживание?
  • Как вы думаете, просторный офис позволит нанять больше персонала и расширить возможности бизнеса?
  • Если ваш бизнес будет использовать автомобили с большим багажником, вы будете терять меньше клиентов?

Чтобы разбавить однотипные вопросы и не превращать переговоры в допрос, используйте привязки. Перед вопросом оставьте место небольшому предисловию, содержащему, например, факты или небольшую историю.

Существует три типа привязок – к высказываниям покупателя, к вашим личным наблюдениям, к ситуациям третьей стороны. Так вы разбавите ряд вопросов и объедините их в сбалансированный разговор. Предлагаем просмотреть скрипты , в том числе и видео , чтобы понять, как правильно использовать вопросы.

Подводные камни СПИН-продаж

Любую технику продаж ждут как похвалы, так и критика. Тенденция не обошла и СПИН-продажи. Свои недостатки они проявляют со стороны продавцов: он задает в основном закрытые вопросы, такая игра в «данетки» увеличивает количество вопросов и быстро надоедает. Больше вопросов становится и из-за нехватки информации о клиенте – к каждому из них предстоит найти свой подход.

Покупатели, на которых уже десятки лет отрабатывают сотни способов манипуляций, стали к ним чувствительными. СПИН-продажи также манипулируют клиентом, заставляя думать, что это он выбирает путь изменений. Нужно быть аккуратным в выборе вопросов и держать ситуацию под таким контролем, чтобы покупателю и в голову не пришло, что решает не он. Кроме того, технология СПИН-продаж обходит стороной презентацию товара, этап завершения сделки, а также мелкие розничные продажи, ориентируясь на крупные сделки.

Нужно быть аккуратным в выборе вопросов и держать ситуацию под таким контролем, чтобы покупателю и в голову не пришло, что решает не он.

СПИН – многообещающая техника продаж. В процессе вы узнаете все нужные сведения, хотя предварительная подготовка тоже важна: узнайте предложения конкурентов, решите, на каких преимуществах своего продукта будете делать акцент. Регулярные тренировки с записями бесед и наращивание мышц в реальных переговорах приведут вас к совершению желанных сделок.

    Я не фанатик и довольно трезво и критично смотрю на вещи. Странно, что как только появляется новая оригинальная методика (в любых сферах) — тут же наряду с явными почитателями появляются яростные критики. Так было с отличной и оригинальной методикой натурального тренинга мышц Мак Роберта Стюарта, описанного им в книге «Думай». Так было с методикой успешного знакомства с женщинами созданного Эриком фон Марковиком (Мистери) и описанного им в своей книге «Метож Мистери»…Герострат сжёг библиотеку в Афинах в попытке прославитсья, и ему удалось и то, и другое)) Реакция человечества не изменилась за последние столетия. Разве что стала чуть мягче и безопасней для новатора) Думаю, что Джордано Бруно, Коперник и Галилей подвергались боле опасной для их жизни критике и последствиям) Если читатель не скован узостью мышления и обладает хотя бы задатками «за деревьями увидеть лес» — он подчерпнёт в методе СПИН много интересных и успешных идей. И использует эту методику на пользу себе в своей работе и обыденной жизни.

) и равен где J - характерное для каждого сорта частиц целое (в том числе нулевое) или полуцелое положительное число - так называемое спиновое квантовое число , которое обычно называют просто спином (одно из квантовых чисел).

В связи с этим говорят о целом или полуцелом спине частицы.

Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантовомеханического явления, не имеющего аналогии в классической механике: обменного взаимодействия .

Свойства спина

Любая частица может обладать двумя видами углового момента : орбитальным угловым моментом и спином.

В отличие от орбитального углового момента, который порождается движением частицы в пространстве, спин не связан с движением в пространстве. Спин - это внутренняя, исключительно квантовая характеристика, которую нельзя объяснить в рамках релятивистской механики . Если представлять частицу (например, электрон) как вращающийся шарик, а спин как момент, связанный с этим вращением, то оказывается, что поперечная скорость движения оболочки частицы должна быть выше скорости света, что недопустимо с позиции релятивизма.

Будучи одним из проявлений углового момента, спин в квантовой механике описывается векторным оператором спина алгебра компонент которого полностью совпадает с алгеброй операторов орбитального углового момента Однако, в отличие от орбитального углового момента, оператор спина не выражается через классические переменные, иными словами, это только квантовая величина. Следствием этого является тот факт, что спин (и его проекции на какую-либо ось) может принимать не только целые, но и полуцелые значения (в единицах постоянной Дирака ħ ).

Примеры

Ниже указаны спины некоторых микрочастиц.

спин общее название частиц примеры
0 скалярные частицы π -мезоны , K-мезоны, хиггсовский бозон , атомы и ядра 4 He , чётно-чётные ядра, парапозитроний
1/2 спинорные частицы электрон , кварки , мюон , тау-лептон , нейтрино , протон , нейтрон , атомы и ядра 3 He
1 векторные частицы фотон , глюон , W- и Z-бозоны , векторные мезоны , ортопозитроний
3/2 спин-векторные частицы Δ-изобары
2 тензорные частицы гравитон , тензорные мезоны

На июль 2004 года, максимальным спином среди известных элементарных частиц обладает барионный резонанс Δ(2950) со спином 15/2. Спин ядер может превышать 20

История

Математически теория спина оказалась очень прозрачной, и в дальнейшем по аналогии с ней была построена теория изоспина .

Спин и магнитный момент

Несмотря на то, что спин не связан с реальным вращением частицы, он тем не менее порождает определённый магнитный момент , а значит, приводит к дополнительному (по сравнению с классической электродинамикой) взаимодействию с магнитным полем . Отношение величины магнитного момента к величине спина называется гиромагнитным отношением , и, в отличие от орбитального углового момента, оно не равно магнетону ():

Введённый здесь множитель g называется g -фактором частицы; значения этого g -фактора для различных элементарных частиц активно исследуются в физике элементарных частиц .

Спин и статистика

Вследствие того, что все элементарные частицы одного и того же сорта тождественны , волновая функция системы из нескольких одинаковых частиц должна быть либо симметричной (то есть не изменяется), либо антисимметричной (домножается на −1) относительно перестановки местами двух любых частиц. В первом случае говорят, что частицы подчиняются статистике Бозе - Эйнштейна и называются бозонами . Во втором случае частицы описываются статистикой Ферми - Дирака и называются фермионами .

Оказывается, именно значение спина частицы говорит о том, каковы будут эти симметрийные свойства. Сформулированная Вольфгангом Паули в 1940 году теорема о связи спина со статистикой утверждает, что частицы с целым спином (s = 0, 1, 2, …) являются бозонами, а частицы с полуцелым спином (s = 1/2, 3/2, …) - фермионами.

Обобщение спина

Введение спина явилось удачным применением новой физической идеи: постулирование того, что существует пространство состояний, никак не связанных с перемещением частицы в обычном пространстве. Обобщение этой идеи в ядерной физике привело к понятию изотопического спина , который действует в особом изоспиновом пространстве. В дальнейшем, при описании сильных взаимодействий были введены внутреннее цветовое пространство и квантовое число «цвет » - более сложный аналог спина.

Спин классических систем

Понятие спина было введено в квантовой теории. Тем не менее, в релятивистской механике можно определить спин классической (не квантовой) системы как собственный момент импульса . Классический спин является 4-вектором и определяется следующим образом:

В силу антисимметрии тензора Леви-Чивиты, 4-вектор спина всегда ортогонален к 4-скорости В системе отсчёта, в которой суммарный импульс системы равен нулю, пространственные компоненты спина совпадают с вектором момента импульса, а временная компонента равна нулю.

Именно поэтому спин называют собственным моментом импульса.

В квантовой теории поля это определение спина сохраняется. В качестве момента импульса и суммарного импульса выступают интегралы движения соответствующего поля. В результате процедуры вторичного квантования 4-вектор спина становится оператором с дискретными собственными значениями.

См. также

  • Преобразование Гольштейна - Примакова

Примечания

Литература

  • Физическая энциклопедия. Под ред. А. М. Прохорова. - М.: «Большая российская энциклопедия», 1994. - ISBN 5-85270-087-8 .

Статьи

  • Физики разделили электроны на две квазичастицы. Группа ученых из Кембриджского и Бирмингемского университетов зафиксировала явление разделения спина (спинон) и заряда (холон) в сверхтонких проводниках.
  • Физики разделили электроны на спинон и орбитон. Группа ученых из немецкого Института конденсированного состояния и материалов (IFW) добилась разделения электрона на орбитон и спинон.

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Спин" в других словарях:

    СПИН - собственный момент импульса элементарной частицы или системы, образованной из этих частиц, напр. атомного ядра. Спин частицы не связан с её движением в пространстве и не может быть объяснён с позиций классической физики он обусловлен квантовой… … Большая политехническая энциклопедия

    А; м. [англ. spin вращение] Физ. Собственный момент количества движения элементарной частицы, атомного ядра, присущий им и определяющий их квантовые свойства. * * * спин (англ. spin, буквально вращение), собственный момент количества движения… … Энциклопедический словарь

    Спин - Спин. Спиновый момент, присущий, например, протону, можно наглядно представить, связав его с вращательным движением частицы. СПИН (английское spin, буквально вращение), собственный момент количества движения микрочастицы, имеющий квантовую… … Иллюстрированный энциклопедический словарь

    - (обозначение s), в КВАНТОВОЙ МЕХАНИКЕ собственный угловой момент, присущий некоторым ЭЛЕМЕНТАРНЫМ ЧАСТИЦАМ, атомам и ядрам. Спин может рассматриваться как вращение частицы вокруг своей оси. Спин является одним из квантовых чисел, посредством… … Научно-технический энциклопедический словарь

1/2, для фотона 1, для p - и К-мезонов 0.

Спином наз. также собств. момент кол-ва движения , мол. системы; в этом случае спин системы определяется как векторная сумма спинов отдельных частиц: S s = S. Так, спин ядра равен целому или полуцелому числу (обозначается обычно I) в зависимости от того, включает ли ядро четное или нечетное число и . Напр., для 1 Н I = 1/2, для 10 В I = 3, для 11 В I = 3/2, для 17 О I = 5/2, для 16 О I = 0. Для Не в основном состоя нии полный электронный спин S = 0, в первом S = 1. В совр. теоретич. физике, гл. обр. в теории , спином часто называют полный момент кол-ва движения частицы, равный сумме орбитального и собств. моментов.

Концепция спина введена в 1925 Дж. Уленбеком и С. Гаудсмитом, к-рые для интерпретации эксперим. данных о расщеплении пучка в магн. поле предположили, что можно рассматривать Как вращающийся вокруг своей оси волчок с проекцией на направление поля, равной В том же году В. Паули ввел понятие спина в математич. аппарат нерелятивистской и сформулировал принцип запрета, утверждающий, что две тождеств. частицы с полуцелым спином не могут одновременно находиться в системе в одном и том же (см. ). Согласно подходу В. Паули, существуют s 2 и s z , к-рые обладают собств. значениями ђ 2 s(s + 1) и ђs z соотв. и действуют нат. наз. спиновые части волновой ф-ции a и b (спин-функции) так же, как орбитального момента кол-ва движения I 2 и I z действуют на пространств. часть волновой ф-ции Y (r), где r-радиус-вектор частицы. s 2 и s z подчиняются тем же правилам коммутации, что и I 2 и I z .

Спиновый . В Брейта-Паули Н ВР входят два члена, линейно зависящие от компонент векторного потенциала А, определяющего внеш. магн. поле:


Для однородного поля А = 1/2 В x r , знак x означает векторное произведение, и


Где -магнетон . Векторная величина наз. магн. моментом частицы с зарядом е и массой т (в данном случае-электрона), векторная же величина получила назв. спинового магн. момента. Отношение коэффициентов перед s и l наз. g-фактор ом частицы. Для 1 Н (спин I = 1/2) g-фактор равен 5,5854, для ядра 13 С с тем же спином I = 1/2 g-фактор равен 1,4042; возможны и отрицат. g-факторы, напр.: для ядра 29 Si g-фактор равен - 1,1094 (спин равен 1/2). Экспериментально определяемая величина g-фактора составляет 2,002319.

Как для одного , так и для системы или др. частиц спином S ориентируется относительно направления однородного поля. Проекция спина S z на направление поля принимает 2S + 1 значение: - S, - S + 1, ... , S. Число разл. проекций спина наз. системы со спином S.

Магн. поле, действующее на или ядро в , м.б. не только внешним, оно может создаваться и др. либо возникать при вращении системы заряженных частиц как целого. Так, взаимод. магн. поля, создаваемого i, с ядром v приводит к появлению в гамильтониане члена вида:

где n v - единичный в направлении радиуса-вектора ядра R v , Z v и М v -заряд и масса ядра. Члены вида I v ·I i отвечают , члены вида I v ·s i - . Для атомных и мол. систем наряду с указанными возникают и члены, пропорциональные (s i ·s j), (I v ·I m ) и т.п. Эти члены обусловливают расщепление вырожденных энергетич. уровней, а также приводят к разл. сдвигам уровней, что определяет тонкую структуру и сверхтонкую структуру (см. , ).

Экспериментальные проявления спина. Наличие отличного от нуля спина электронной подсистемы приводит к тому, что у в однородном магн. поле наблюдается расщеп-ление уровней энергии, причем на величину этого расщепления влияет хим. (см. ). Наличие ненулевых спинов также приводит к расщеплению уровней, причем это расщепление зависит от экранирования внеш. поля ближайшим к данному ядру окружением (см. ). Спин-орбитальное взаимод. приводит к сильным расщеплениям уровней электронных состояний, достигающим величин порядка неск. десятых эВ и даже неск. единиц эВ. Особенно сильно оно проявляется у тяжелых элементов, когда становится невозможным говорить о том или ином спине или , а можно говорить лишь о полном моменте импульса системы. Более слабыми, но тем не менее отчетливо устанавливаемыми при исследовании спектров являются спин-вращательные и .

Для конденсир. сред наличие спинов частиц проявляется в магн. св-вах этих сред. При определенной т-ре возможно возникновение упорядоченного состояния спинов частиц ( , ), находящихся, напр., в узлах кристаллич. решетки, а следовательно, и связанных со спинами магн. моментов, что ведет к появлению у системы сильного парамагнетизма (ферромагнетизма, антиферромагнетизма). Нарушение упорядоченности спинов частиц проявляется в виде спиновых волн (см. ). Взаимод. собственных магн. моментов с упругими колебаниями среды наз. спин-фонон-ным взаимод. (см. ); оно определяет спин-решеточную и спин-фононное поглощение звука.