Закон архимеда определение. Закон Архимеда: история открытия и суть явления для чайников. Смотреть что такое "Закон Архимеда" в других словарях

И статики газов.

Энциклопедичный YouTube

  • 1 / 5

    Закон Архимеда формулируется следующим образом : на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу жидкости (или газа) в объёме погруженной части тела . Сила называется силой Архимеда :

    F A = ρ g V , {\displaystyle {F}_{A}=\rho {g}V,}

    где ρ {\displaystyle \rho } - плотность жидкости (газа), g {\displaystyle {g}} - ускорение свободного падения , а V {\displaystyle V} - объём погружённой части тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плавает на поверхности (равномерно движется вверх или вниз), то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжести этого объёма.

    Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.

    Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

    Закон Архимеда можно объяснить при помощи разности гидростатических давлений на примере прямоугольного тела.

    P B − P A = ρ g h {\displaystyle P_{B}-P_{A}=\rho gh} F B − F A = ρ g h S = ρ g V , {\displaystyle F_{B}-F_{A}=\rho ghS=\rho gV,}

    где P A , P B - давления в точках A и B , ρ - плотность жидкости, h - разница уровней между точками A и B , S - площадь горизонтального поперечного сечения тела, V - объём погружённой части тела.

    В теоретической физике также применяют закон Архимеда в интегральной форме:

    F A = ∬ S p d S {\displaystyle {F}_{A}=\iint \limits _{S}{p{dS}}} ,

    где S {\displaystyle S} - площадь поверхности, p {\displaystyle p} - давление в произвольной точке, интегрирование производится по всей поверхности тела.

    В отсутствие гравитационного поля, то есть в состоянии невесомости , закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление (естественной) конвекции , поэтому, например, воздушное охлаждение и вентиляция жилых отсеков космических аппаратов производятся принудительно, вентиляторами .

    Обобщения

    Некий аналог закона Архимеда справедлив также в любом поле сил, которое по-разному действуют на тело и на жидкость (газ), либо в неоднородном поле. Например, это относится к полю сил инерции (например, центробежной силы) - на этом основано центрифугирование . Пример для поля немеханической природы: диамагнетик в вакууме вытесняется из области магнитного поля большей интенсивности в область с меньшей.

    Вывод закона Архимеда для тела произвольной формы

    Гидростатическое давление жидкости на глубине h {\displaystyle h} есть p = ρ g h {\displaystyle p=\rho gh} . При этом считаем ρ {\displaystyle \rho } жидкости и напряжённость гравитационного поля постоянными величинами, а h {\displaystyle h} - параметром. Возьмём тело произвольной формы, имеющее ненулевой объём. Введём правую ортонормированную систему координат O x y z {\displaystyle Oxyz} , причём выберем направление оси z совпадающим с направлением вектора g → {\displaystyle {\vec {g}}} . Ноль по оси z установим на поверхности жидкости. Выделим на поверхности тела элементарную площадку d S {\displaystyle dS} . На неё будет действовать сила давления жидкости направленная внутрь тела, d F → A = − p d S → {\displaystyle d{\vec {F}}_{A}=-pd{\vec {S}}} . Чтобы получить силу, которая будет действовать на тело, возьмём интеграл по поверхности:

    F → A = − ∫ S p d S → = − ∫ S ρ g h d S → = − ρ g ∫ S h d S → = ∗ − ρ g ∫ V g r a d (h) d V = ∗ ∗ − ρ g ∫ V e → z d V = − ρ g e → z ∫ V d V = (ρ g V) (− e → z) {\displaystyle {\vec {F}}_{A}=-\int \limits _{S}{p\,d{\vec {S}}}=-\int \limits _{S}{\rho gh\,d{\vec {S}}}=-\rho g\int \limits _{S}{h\,d{\vec {S}}}=^{*}-\rho g\int \limits _{V}{grad(h)\,dV}=^{**}-\rho g\int \limits _{V}{{\vec {e}}_{z}dV}=-\rho g{\vec {e}}_{z}\int \limits _{V}{dV}=(\rho gV)(-{\vec {e}}_{z})}

    При переходе от интеграла по поверхности к интегралу по объёму пользуемся обобщённой теоремой Остроградского-Гаусса .

    ∗ h (x , y , z) = z ; ∗ ∗ g r a d (h) = ∇ h = e → z {\displaystyle {}^{*}h(x,y,z)=z;\quad ^{**}grad(h)=\nabla h={\vec {e}}_{z}}

    Получаем, что модуль силы Архимеда равен ρ g V {\displaystyle \rho gV} , а направлена она в сторону, противоположную направлению вектора напряжённости гравитационного поля.

    Другая формулировка (где ρ t {\displaystyle \rho _{t}} - плотность тела, ρ s {\displaystyle \rho _{s}} - плотность среды, в которую оно погружено).

    Чивилев В.И. Закон Архимеда //Квант. - 1987. - № 1. - С. 29-30.

    По специальной договоренности с редколлегией и редакцией журнала "Квант"

    «...Удар сжатого воздуха хлопнул в трубах, вода в цистерне зажурчала, и глубомер пополз вверх. Лодка всплыла на ровном киле, и глубомер показал, что рубка уже вышла из воды»,- так описывается всплытие подводной лодки в книге Л. Соболева «Морская душа».

    Причина всплытия - сила Архимеда, называемая еще выталкивающей силой, которая после продувки цистерн с водой сжатым воздухом превысила по модулю силу тяжести лодки. Когда же и в каком случае возникает сила Архимеда? Со стороны чего она действует? Куда приложена, как направлена и чему равна?

    Выталкивающая сила - это сумма всех сил давления, действующих со стороны жидкости или газа на поверхность погруженного в нее тела (рис. 1). Истинная причина появления выталкивающей силы - наличие различного гидростатического давления на разных уровнях жидкости.

    Для нахождения силы Архимеда мысленно заменим погруженное тело жидкостью в объеме этого тела (рис. 2).

    На нее со стороны окружающей жидкости будет действовать такая же выталкивающая сила, как и на погруженное тело. По третьему закону Ньютона выделенная в объеме тела жидкость (вытесненная жидкость) будет действовать на окружающую жидкость с той же самой по модулю, но противоположно направленной силой. Это - вес вытесненного объема жидкости. Вспомним, что весом тела, неподвижного в некоторой системе отсчета (необязательно инерциальной), называется сила, с которой тело вследствие его притяжения к Земле действует на подставку или подвес. В нашем случае роль подставки для выделенного объема жидкости играет окружающая жидкость.

    Итак, выталкивающая сила, действующая на погруженное в жидкость тело, равна по модулю и противоположна по направлению весу вытесненной жидкости. Это и есть закон Архимеда. Заметим, что в формулировке закона говорится именно о весе вытесненной жидкости, а не о силе тяжести. И это весьма существенно, так как вес тела (по модулю) не всегда совпадает с силой тяжести. Например, ящик массой m в кабине поднимающегося с ускорением а лифта давит на пол с силой m (g + a ). Это значит, что вес ящика равен Р = m (g + a ), в то время как сила тяжести, действующая на ящик, равна mg . Когда же кабина лифта опускается с тем же ускорением, вес ящика оказывается равным Р = m (g - a ).

    Из последнего выражения ясно, что выталкивающая сила появляется тогда, когда нет состояния невесомости, то есть любое тело (в том числе и жидкость) имеет вес. Если сосуд с жидкостью свободно падает, то жидкость находится в состоянии невесомости и на погруженное в нее тело сила Архимеда не действует. Не действует эта сила и в космическом корабле, движущемся с выключенными двигателями.

    При доказательстве закона Архимеда мы считали, что тело полностью погружено в жидкость и вся его поверхность соприкасается с жидкостью. Если же часть поверхности тела плотно прилегает к стенке или дну сосуда, так, что между ними нет прослойки жидкости, то закон Архимеда неприменим. Яркой иллюстрацией сказанного служит опыт, когда ровную нижнюю поверхность деревянного кубика натирают парафином и плотно приставляют ко дну сосуда. Затем осторожно наливают воду. Брусок не всплывает, так как со стороны воды на него действует сила, не выталкивающая его вверх, а прижимающая ко дну (рис. 3).

    Приведенная формулировка закона Архимеда остается справедливой и в случае, когда тело лишь частично опущено в жидкость, но не соприкасается со стенками сосуда. (Доказательство аналогично случаю полностью погруженного в жидкость тела.)

    Нам осталось научиться находить вес вытесненной жидкости и линию действия выталкивающей силы. В общем случае (например, когда тело погружено в жидкость, вращающуюся вместе с сосудом) это не так легко сделать.

    Рассмотрим наиболее простой и часто встречающийся на практике случай. Пусть сосуд с жидкостью неподвижен в некоторой инерциальной системе отсчета. Тогда, как известно, вес любого неподвижного тела равен силе тяжести, действующей на тело. Поэтому и выталкивающая сила равна по модулю силе тяжести, действующей на вытесненную жидкость, и противоположно ей направлена. Линия действия выталкивающей силы будет проходить через центр тяжести вытесненного объема жидкости. Покажем это.

    На вытесненный объем жидкости массой m (рис. 4) действуют две силы - сила тяжести \(~m \vec g\), приложенная в центре тяжести этого объема, и выталкивающая сила \(~\vec F_B\). Так как жидкость находится в равновесии, то по правилу рычага (см. § 62 «Физики 6-7» или § 47 «Физики 8») действующие на нее силы обратно пропорциональны плечам этих сил. Плечо силы тяжести относительно оси, проходящей через центр тяжести, равно нулю. Значит, и плечо выталкивающей силы тоже равно нулю, т. е. линия действия выталкивающей силы проходит через центр тяжести «вытесненного» объема жидкости.

    Поскольку точку приложения силы можно переносить вдоль линии ее действия, обычно выталкивающую силу помещают в центр тяжести вытесненной жидкости и называют эту точку также центром давлений.

    Закон Архимеда формулируется следующим образом: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу вытесненной этим телом жидкости (или газа) . Сила называется силой Архимеда :

    где - плотностьжидкости (газа), - ускорение свободного падения, а - объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плаваетна поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена кцентру тяжестиэтого объёма.

    Тело плавает, если сила Архимеда уравновешивает силу тяжести тела.

    Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.

    Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

    Закон Архимеда можно объяснить при помощи разности гидростатических давленийна примере прямоугольного тела.

    где P A , P B - давления в точках A и B , ρ - плотность жидкости, h - разница уровней между точками A и B , S - площадь горизонтального поперечного сечения тела, V - объём погружённой части тела.

    18. Равновесие тела в покоящейся жидкости

    Тело, погруженное (полностью или частично) в жидкость, испытывает со стороны жидкости суммарное давление, направленное снизу вверх и равное весу жидкости в объеме погруженной части тела. P выт = ρ ж gV погр

    Для однородного тела плавающего на поверхности справедливо соотношение

    где: V - объем плавающего тела; ρ m - плотность тела.

    Существующая теория плавающего тела довольно обширна, поэтому мы ограничимся рассмотрением лишь гидравлической сущности этой теории.

    Способность плавающего тела, выведенного из состояния равновесия, вновь возвращаться в это состояние называется остойчивостью . Вес жидкости, взятой в объеме погруженной части судна называют водоизмещением , а точку приложения равнодействующей давления (т.е. центр давления) - центром водоизмещения . При нормальном положении судна центр тяжести С и центр водоизмещения d лежат на одной вертикальной прямой O"-O" , представляющей ось симметрии судна и называемой осью плавания (рис.2.5).

    Пусть под влиянием внешних сил судно наклонилось на некоторый угол α, часть судна KLM вышла из жидкости, а часть K"L"M" , наоборот, погрузилось в нее. При этом получили новое положении центра водоизмещения d" . Приложим к точке d" подъемную силу R и линию ее действия продолжим до пересечения с осью симметрии O"-O" . Полученная точка m называется метацентром , а отрезок mC = h называется метацентрической высотой . Будем считать h положительным, если точка m лежит выше точки C , и отрицательным - в противном случае.

    Рис. 2.5. Поперечный профиль судна

    Теперь рассмотрим условия равновесия судна:

    1)если h > 0, то судно возвращается в первоначальное положение; 2)если h = 0, то это случай безразличного равновесия; 3) если h <0, то это случай неостойчивого равновесия, при котором продолжается дальнейшее опрокидывание судна.

    Следовательно, чем ниже расположен центр тяжести и, чем больше метацентрическая высота, тем больше будет остойчивость судна.



    Добавить свою цену в базу

    Комментарий

    Закон Архимеда – закон статики жидкостей и газов, согласно которому на погруженное в жидкость (или газ) тело действует выталкивающая сила, равная весу жидкости в объеме тела.

    История вопроса

    «Эврика!» («Нашел!») – именно этот возглас, согласно легенде, издал древнегреческий ученый и философ Архимед, открыв принцип вытеснения. Легенда гласит, что сиракузский царь Герон II попросил мыслителя определить, из чистого ли золота сделана его корона, не причиняя вреда самому царскому венцу. Взвесить корону Архимеду труда не составило, но этого было мало – нужно было определить объем короны, чтобы рассчитать плотность металла, из которого она отлита, и определить, чистое ли это золото. Дальше, согласно легенде, Архимед, озабоченный мыслями о том, как определить объем короны, погрузился в ванну – и вдруг заметил, что уровень воды в ванне поднялся. И тут ученый осознал, что объем его тела вытеснил равный ему объем воды, следовательно, и корона, если ее опустить в заполненный до краев таз, вытеснит из него объем воды, равный ее объему. Решение задачи было найдено и, согласно самой расхожей версии легенды, ученый побежал докладывать о своей победе в царский дворец, даже не потрудившись одеться.

    Однако, что правда – то правда: именно Архимед открыл принцип плавучести. Если твердое тело погрузить в жидкость, оно вытеснит объем жидкости, равный объему погруженной в жидкость части тела. Давление, которое ранее действовало на вытесненную жидкость, теперь будет действовать на твердое тело, вытеснившее ее. И, если действующая вертикально вверх выталкивающая сила окажется больше силы тяжести, тянущей тело вертикально вниз, тело будет всплывать; в противном случае оно пойдет ко дну (утонет). Говоря современным языком, тело плавает, если его средняя плотность меньше плотности жидкости, в которую оно погружено.

    Закон Архимеда и молекулярно-кинетическая теория

    В покоящейся жидкости давление производится посредством ударов движущихся молекул. Когда некий объем жидкости вымещается твердым телом, направленный вверх импульс ударов молекул будет приходиться не на вытесненные телом молекулы жидкости, а на само тело, чем и объясняется давление, оказываемое на него снизу и выталкивающее его в направлении поверхности жидкости. Если же тело погружено в жидкость полностью, выталкивающая сила будет по-прежнему действовать на него, поскольку давление нарастает с увеличением глубины, и нижняя часть тела подвергается большему давлению, чем верхняя, откуда и возникает выталкивающая сила. Таково объяснение выталкивающей силы на молекулярном уровне.

    Такая картина выталкивания объясняет, почему судно, сделанное из стали, которая значительно плотнее воды, остается на плаву. Дело в том, что объем вытесненной судном воды равен объему погруженной в воду стали плюс объему воздуха, содержащегося внутри корпуса судна ниже ватерлинии. Если усреднить плотность оболочки корпуса и воздуха внутри нее, получится, что плотность судна (как физического тела) меньше плотности воды, поэтому выталкивающая сила, действующая на него в результате направленных вверх импульсов удара молекул воды, оказывается выше гравитационной силы притяжения Земли, тянущей судно ко дну, – и корабль плывет.

    Формулировка и пояснения

    Тот факт, что на погруженное в воду тело действует некая сила, всем хорошо известен: тяжелые тела как бы становятся более легкими – например, наше собственное тело при погружении в ванну. Купаясь в речке или в море, можно легко поднимать и передвигать по дну очень тяжелые камни – такие, которые не удается поднять на суше. В то же время легкие тела сопротивляются погружению в воду: чтобы утопить мяч размером с небольшой арбуз требуется и сила, и ловкость; погрузить мяч диаметром полметра скорее всего не удастся. Интуитивно ясно, что ответ на вопрос – почему тело плавает (а другое – тонет), тесно связан с действием жидкости на погруженное в нее тело; нельзя удовлетвориться ответом, что легкие тела плавают, а тяжелые – тонут: стальная пластинка, конечно, утонет в воде, но если из нее сделать коробочку, то она может плавать; при этом ее вес не изменился.

    Существование гидростатического давления приводит к тому, что на любое тело, находящееся в жидкости или газе, действует выталкивающая сила. Впервые значение этой силы в жидкостях определил на опыте Архимед. Закон Архимеда формулируется так: на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу того количества жидкости или газа, которое вытеснено погруженной частью тела.

    Формула

    Сила Архимеда, действующая на погруженное в жидкость тело, может быть рассчитана по формуле: F А = ρ ж gV пт,

    где ρж – плотность жидкости,

    g – ускорение свободного падения,

    Vпт – объем погруженной в жидкость части тела.

    Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести Fт и архимедовой силы FA, которые действуют на это тело. Возможны следующие три случая:

    1) Fт > FA – тело тонет;

    2) Fт = FA – тело плавает в жидкости или газе;

    3) Fт < FA – тело всплывает до тех пор, пока не начнет плавать.

    Тема 8. ЭЛЕМЕНТЫ МЕХАНИКИ СПЛОШНЫХ СРЕД

    Сплошной считается среда, для которой характерно равномерное распределение вещества – т.е. среда с одинаковой плотностью. Таковыми являются жидкости и газы.

    Поэтому в этом разделе мы рассмотрим основные законы, которые выполняются в этих средах.

    СТАТИКА ЖИДКОСТЕЙ

    ЗАКОН АРХИМЕДА

    Рассмотрим рисунок 1, на котором изображен сосуд с водой, в который погружено некое тело произвольной формы. В процессе погружения очевидно, что

    Рис. 1 уровень воды поднимается, т.е. тело

    вымещает определенное количество

    Воды. Понятно также, что это количество

    Vт воды равно объему погруженного тела.

    С На это тело действует в данных

    А условиях действует 2 силы:

    1). Сила тяжести F т, которая направлена

    вертикально вниз и приложена к

    Точке С, которая называется центром

    тяжести тела.

    2). Некая сила, которая направлена вертикально вверх и приложена к точке А, которая называется центром плавучести тела. Эта сила была обнаружена и рассчитана древнегреческим математиком Архимедом, поэтому названа в его честь архимедовой силой. Архимедова сила имеет формулу:

    F Α = ρ ж gV т,

    где F Α – сила Архимеда, ρ ж - плотность жидкости, в которую погружено тело, g=9,8 м/с 2 V т – объем тела.

    Если погруженный объем меняется, то будет меняться и выталкивающая сила, действующая на тело. Тогда последняя формула примет дифференциальный вид:

    dF Α = ρ ж gdV т ,

    Но что же такое центр плавучести? Это точка, которая является центром тяжести вытесненной жидкости. Т.е. если бы на месте тела была жидкость, то у этого объема жидкости был бы свой центр тяжести – в этом месте находится центр плавучести тела. Центр плавучести находится в геометрическом центре погруженного объема тела, тогда как центр тяжести не всегда находится в геометрическом центре тела, т.к. плотность внутри твердого тела может быть распределена неравномерно.

    Итак, закон Архимеда формулируется следующим образом: На тело, погруженное в жидкость, действует сила, равная весу вытесненной жидкости и приложенная к центру плавучести тела.

    Из соотношения сил, действующих на тело, погруженное в жидкость, легко получить условие плавания тел :

    Если F т > F А , то тело тонет;

    Если F т < F А , то тело всплывает;

    Если F т = F А , то тело плавает на том уровне, где эти силы уравнялись.

    Рис. 2 Возможные направления

    Из рис. 1 видно, что Архимедова сила направлена вертикально вверх. И если тело со всех сторон омывается жидкостью, то F А имеет именно такое направление. Но, в случае, когда между телом и дном нет водной прослойки( т.е. тело плотно лежит на дне– см. рис.2), то Архимедова сила направлена перпендикулярно поверхности дна .


    На рис.3 изображен опыт, подтверждающий выше

    Рис. 3 упомянутое утверждение. Дно стеклянного сосуда

    покрыто тонким слоем парафина. На него кладут

    кусок парафина с гладким основанием и осторожно

    наливают в сосуд воду. Кусок парафина не

    всплывает на поверхность воды, хотя плотность

    его меньше плотности воды. Слегка наклоняя сосуд,

    можно заставить кусок парафина передвигаться по

    дну, но он не всплывает. Но если наклонить кусок парафина так, чтобы вода проникла под его нижнюю поверхность, то выталкивающая сила заставит парафин всплывать вертикально вверх. Известно, что подводная лодка, легшая на мягкий грунт, иногда не может оторваться от него, даже полностью высвободив свои балластные отсеки от воды. Это также объясняется тем, что вода не может проникнуть под корпус лодки, плотно прилегшему к грунту.