Газ считается идеальным. Что такое идеальный газ. Уравнение состояния идеального газа

Идеальный газ - математическая модель газа, в которой предполагается, что потенциальной энергией молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

2. Что такое степени свободы молекул? Как число степеней свободы связано с коэффициентом Пуассона γ?

Числом степеней свободы тела называется число независимых координат, которые необходимо задать для того, чтобы полностью определить положение тела в пространстве. Так, например, материальная точка, произвольно движущаяся в пространстве, обладает тремя степенями свободы (координаты x, y, z).

Молекулы одноатомного газа можно рассматривать как материальные точки на том основании, что масса такой частицы (атома) сосредоточена в ядре, размеры которого очень малы (10 -13 см). Поэтому молекула одноатомного газа может иметь лишь три степени свободы поступательного движения.

Молекулы, состоящие из двух, трех и большего числа атомов, не могут быть уподоблены материальным точкам. Молекула двухатомного газа в первом приближении представляет собой два жестко связанных атома, находящихся на некотором расстоянии друг от друга

3. Чему равна теплоемкость идеального газа при адиабатическом процессе?

Теплоемкостью называется величина, равная количеству теплоты, которое нужно сообщить веществу, чтобы повысить его температуру на один кельвин.

4. В каких единицах измеряются в системе си давление, объем, температура, молярные теплоемкости?

Давление – кПа, объем – дм 3 , температура – в Кельвинах, молярные теплоемкости – Дж/(мольК)

5. Что такое молярные теплоемкости Ср и Сv?

У газа различают теплоемкость при постоянном объеме С v и теплоемкость при постоянном давлении С р.

При постоянном объеме работа внешних сил равна нулю, и все сообщаемое газу извне количество теплоты идет целиком на увеличение его внутренней энергии U. Отсюда молярная теплоемкость газа при постоянном объеме С v численно равна изменению внутренней энергии одного моля газа ∆Uпри повышении его температуры на 1К:

∆U=i/2*R(T+1)-i/2RT=i/2R

Таким образом, молярная теплоемкость газа при постоянном объеме

С v =i/2R

удельная теплоемкость при постоянном объеме

С v =i/2*R/µ

При нагревании газа при постоянном давлении газ расширяется, сообщаемое ему извне количество теплоты идет не только на увеличение его внутренней энергии U, но и на совершение работыAпротив внешних сил. Следовательно, теплоемкость газа при постоянном давлении больше теплоемкости при постоянном объеме на величину работыA, которую совершает один моль газа при расширении, происходящем в результате повышения его температуры на 1Kпри постоянном давленииP:

С р = С v +A

Можно показать, что для моля газа работа A=R, тогда

С р = С v +R=(i+2)/2*R

Пользуясь соотношением между удельными в молярными теплоемкостями, находим для удельной теплоемкости:

С р = (i+2)/2*R

Непосредственное измерение удельных и молярных теплоемкостей затруднительно, так как теплоемкость газа составит ничтожную долю теплоемкости сосуда, в котором находится газ, и поэтому измерение будет чрезвычайно неточно.

Проще измерить отношение величии С р / С v

γ=С р / С v =(i+2)/i.

Это отношение зависит только от числа степеней свободы молекул, из которых состоит газ.

ОПРЕДЕЛЕНИЕ: Идеальным газом называется газ, при рассмотрении свойств которого соблюдаются следующие условия:
а) соударения молекул такого газа происходят как соударения упругих шаров, размеры которых пренебрежимо малы;
б) от столкновения до столкновения молекулы движутся равномерно и прямолинейно;
в) пренебрегают силами взаимодействия между молекулами.

Реальные газы при комнатной температуре и нормальном давлении ведут себя как идеальные газы. Идеальными газами можно считать такие газы как гелий, водород, свойства которых уже при обычных условиях отвечают закономерностям идеального газа.

Состояние некоторой массы идеального газа будет определяться значениями трех параметров: P, V, T. Эти величины, характеризующие состояние газа, называются параметрами состояния . Эти параметры закономерно связаны друг с другом, так что изменение одного из них влечет за собой изменение другого. Эта связь аналитически может быть задана в виде функции:

Соотношение, дающее связь между параметрами какого-либо тела, называется уравнением состояния . Следовательно, данное соотношение является уравнением состояния идеального газа.

Рассмотрим некоторые из параметров состояния, характеризующих состояние газа:

1) Давление (P). В газе давление возникает в результате хаотического движения молекул, в результате которого молекулы сталкиваются друг с другом и со стенками сосуда. В результате удара молекул о стенку сосуда со стороны молекул на стенку будет действовать некоторая средняя сила dF . Предположим, что площадь поверхности dS , тогда . Следовательно:

ОПРЕДЕЛЕНИЕ (механистическое): Давление – это физическая величина, численно равная силе, действующей на единицу площади поверхности, нормальную к ней.

Если сила равномерно распределена по поверхности, то . В системе СИ давление измеряется в 1Па=1Н/м 2 .

2) Температура (Т).

ОПРЕДЕЛЕНИЕ (предварительное): Температура тела – это термодинамическая величина, характеризующая состояние термодинамического равновесия макроскопической системы.

Температура одинакова для всех частей изолированной системы, находящейся в состоянии термодинамического равновесия. Т.е., если соприкасающиеся тела находятся в состоянии теплового равновесия, т.е. не обмениваются энергией путем теплопередачи, то этим телам приписывается одинаковая температура. Если при установлении теплового контакта между телами одно из них передает энергию другому посредством теплопередачи, то первому телу приписывается большая температура, чем второму.

Любое из свойств тела (температурный признак), зависящее от температуры может быть использовано для количественного определения (измерения) температуры.


Например : если в качестве температурного признака выбрать объем и считать, что с температурой объем изменяется линейно, то выбрав за “0” температуру таяния льда, а за 100° – температуру кипения воды, получим температурную шкалу, называемую шкалой Цельсия. Согласно которой состоянию, в котором термодинамическое тело имеет объем V, следует приписывать температуру:

Для однозначного определения температурной шкалы необходимо условиться, кроме способа градуировки, также о выборе термометрического тела (т.е. тела, которое выбирается для измерения) и температурного признака.

Известны две температурные шкалы:

1) t – эмпирическая или практическая шкала температур (°C). (О выборе термометрического тела и температурного признака для этой шкалы скажем позже).

2) T – термодинамическая или абсолютная шкала (°K). Эта шкала не зависит от свойств термодинамического тела (но об этом речь пойдет позже).

Температура T, отсчитанная по абсолютной шкале, связана с температурой t по практической шкале соотношением

T = t + 273,15.

Единицу абсолютной температуры называют Кельвином. Температуру по практической шкале измеряют в град. Цельсия (°C). Значения град. Кельвина и град. Цельсия одинаковы. Температура равная 0°K называется абсолютным нулем, ему соответствует t=-273,15°C

Масса и размеры молекул.

Средний диаметр молекулы ≈ 3 · 10 -10 м.

Средний объём пространства, занимаемого молекулой ≈ 2,7 · 10 -29 м 3 .

Средняя масса молекулы ≈ 2,4 · 10 -26 кг.

Идеальный газ.

Идеальным называют газ, молекулы которого можно считать материальными точками и взаимодействие которых друг с другом осуществляется только путём столкновений.

Теплообмен.

Теплообмен - процесс обмена внутренней энергией соприкасающихся тел, имеющих разные температуры. Энергия, переданная телом или системой тел в процессе теплообмена, есть количество теплоты Q

Нагревание и охлаждение.

Нагревание и охлаждение возникают благодаря получению одним телом количества теплоты Q нагр и потери другим количества теплоты Q охл. В замкнутой системе

Количество теплоты:

m - масса тела, Δt - измение температуры при нагревании (охлаждении), c - удельная теплоёмкость - энергия, необходимая для нагревания тела массой в 1 кг на 1° C.

Единица удельной теплоёмкости - 1 Дж/кг.

Плавление и кристаллизация

λ - удельная теплота плавления, измеряется в Дж/кг.

Парообразование и конденсация:

r - удельная теплота парообразования, измеряется в Дж/кг.

Сгорание

k - удельная теплота сгорания (теплоотводная способность), измеряется в Дж/кг.

Внутренняя энергия и работа.

Внутренняя энергия тела может измениться не только за счёт теплопередачи, но и за счёт совершения работы:

Работа, совершаемая самой системой, положительна, внешними силами - отрицательна.

Основы молекулярно-кинетической теории идеального газа

Основное уравнение молекулярно-кинетической теории идеального газа:

p - давление, n - концентрация молекул, m 0 - масса молекулы.

Температура.

Температурой называется скалярная физическая величина, характеризующая интенсивность теплового движения молекул изолированной системы при тепловом равновесии и пропорциональная средней кинетической энергии поступательного движения молекул.

Температурные шкалы.

ВНИМАНИЕ!!! В молекулярной физике температура берётся в градусах по Кельвину. При любой температуре t по Цельсию, значение температуры T по Кельвину выше на 273 градуса:

Связь температуры газа с кинетической энергией движения его молекул:

k - постоянная Больцмана; k = 1,38 · 10 -23 Дж/К.

Давление газа:

Уравнение состояния идеального газа:

N = n · V - общее число молекул.

Уравнение Менделеева-Клайперона:

m - масса газа, M - масса 1 моля газа, R - универсальная газовая постоянная:

Идеальный газ является теоретическим обобщением, которое используется физиками для анализа теории вероятностей. Идеальный газ состоит из молекул, которые отталкиваются друг от друга и не взаимодействуют со стенками сосуда. Внутри идеального газа не существует силы притяжения или отталкивания между молекулами, и энергия не теряется во время столкновений. Идеальный газ можно полностью описать при помощи нескольких параметров: объема, плотности и температуры.

Уравнение состояния для идеального газа, широко известное как Закон об идеальном газе, имеет вид:

В уравнении N – это число молекул, k – постоянная Больцмана, которая равна примерно 14000 Джоулей на Кельвин. Наиболее важным является то, что давление и объем обратно пропорционально друг другу, и прямо пропорционально температуре. Это означает, что если давление возрастет в два раза, а температура не изменится, то объем газа также увеличится вдвое. Если же объем газа увеличится в два раза, а давление останется постоянным, то температура увеличится вдвое. В большинстве случаев, число молекул в газе считается постоянным.

Столкновения между молекулами газа не являются идеально упругими и часть энергии теряется. Также между молекулами газа существуют электростатические силы взаимодействия. Но для большинства ситуаций закон идеального газа максимально приближен к реальному поведению газов. Формула соотношения между давлением, объемом и температурой может помочь ученому интуитивно понять поведение газа.

Практическое применение

Закон идеального газа является первым уравнением, с которым учащиеся знакомятся при изучении газов на уроках физики или . Уравнение Ван-дер-Ваальса, которое включает несколько незначительных исправлений в основных предположениях закона об идеальном газе также является составной частью многих вводных курсов. На практике эти различия настолько малы, что если закон идеального газа неприменим для этого конкретного случая, то и уравнение Ван-дер-Ваальса не будет удовлетворять условиям точности.

Как и в большинстве разделов термодинамики, идеальный газ так же изначально находится в состоянии равновесия. Это предположение не является верным, если давление, объем или температура меняются. Когда эти переменные меняются постепенно, состояние, называется квазистатическим равновесием и ошибка в расчетах может быть небольшой. В случае когда параметры системы меняются хаотическим образом, то модель идеального газа неприменима.

ОПРЕДЕЛЕНИЕ

Идеальный газ - это наиболее простая модель системы, состоящей из большого количества частиц.

Это газ, который состоит из материальных точек, имеющих конечную массу, но не имеющих объема. Данные частицы не могут взаимодействовать на расстоянии. Столкновения частиц идеального газа описываются при помощи законов абсолютно упругого соударения шаров. Следует отметить, что имеются в виду законы столкновения именно шаров, так как точечные частицы испытывают только лобовые столкновения, которые не могут изменять направления скоростей на разные углы.

Идеальный газ существует только в теории. В реальной жизни он не может существовать в принципе, так как точечные молекулы и отсутствие их взаимодействия на расстоянии аналогично их существованию вне пространства, то есть их не существованию. Ближе всех по своим свойствам к модели идеального газа приближаются газы при малом давлении (разреженные газы) и (или) высокой температуре. Модель идеального газа подходит для изучения методов исследования систем многих частиц, знакомства с соответствующими понятиями.

В промежутках между столкновениями молекулы идеального газа движется по прямым. Законы столкновений и соударений о стенки сосудов, в которых находится газ, известны. Следовательно, если знать положения и скорости всех частиц идеального газа в какой-то момент времени, то можно найти их координаты и скорости в любой другой момент времени. Эта информация наиболее полно описывает состояние системы частиц. Однако количество частиц столь велико, что динамическое описание системы многих частиц непригодно для теории и бесполезно для практики. Это означает, что для изучения систем многих частиц информация должна быть обобщена, и ее относят не к отдельным частицам, а к их большим совокупностям.

Давление идеального газа

При помощи модели идеального газа удалось качественно и количественно объяснить давление газа на стенки сосуда, в котором он находится. Газ оказывает давление на стенки сосуда потому, что его молекулы взаимодействуют со стенками как упругие тела по законам классической механики. Количественно давление (p) идеального газа получили равным:

где — средняя кинетическая энергия поступательного движения молекул газа; — концентрация молекул газа (N - число молекул газа в сосуде; V - объем сосуда).

Законы идеальных газов

Идеальным называют газы, которые строго подчиняются законам Бойля - Мариотта и Гей - Люссака.

Закон Бойля - Мариотта. Для постоянной массы (m) идеального газа при постоянной температуре (T) произведение давления (p) газа на его объем (V) является постоянной величиной для любых состояний рассматриваемого вещества:

Закон Гей-Люссака. Для постоянной массы газа при неизменном давлении выполняется соотношение:

В поведении реальных газов наблюдают отступления от законов Бойля — Мариотта и Гей-Люссака, и эти отступления различны для разных газов.

Для идеального газа выполняется закон Шарля. Который говорит о том, что для постоянной массы газа, при постоянном объеме, отношение давления газа к температуре, не изменяется:

Для связи параметров идеального газа, часто используют уравнение состояния, которое носит имена двух ученых Клапейрона и Менделеева:

где — молярная масса газа; - универсальная газовая постоянная.

Закон Дальтона. Давление смеси идеальных газов (p) равно сумме парциальных давлений () рассматриваемых газов:

При этом уравнение состояния смеси идеальных газов имеет вид (2), как будто газ является химически однородным.

Примеры решения задач

ПРИМЕР 1

Задание Какие процессы в неизменной массе идеального газа представляют графики (рис.1)?

Решение Рассмотрим процесс изображенный графиком под номером 1. Мы видим, что произведение , по условию газ идеальный, масса газа постоянная, следовательно, это изотермический процесс.

Перейдем ко второму графику. Из графика мы можем сделать вывод о том, что:

где С - некоторая постоянна величина. Разделим правую и левую части выражения (1.1) имеем:

Мы получили, что давление постоянно. Так как , имеем изобарный процесс.

Ответ 1- изотермический процесс. 2- изобарный процесс.

ПРИМЕР 2

Задание Как будет изменяться давление идеального газа в процессе при котором масса газа постоянна, объем газа увеличивают, а температуру уменьшают?
Решение За основу решения задачи примем уравнение Клапейрона - Менделеева: