Какая фигура называется многогранным углом. Презентация на тему "многогранные углы"

МНОГОГРАННЫЕ УГЛЫ

Многогранный угол является пространственным аналогом многоугольника. Напомним, что многоугольником на плоскости называется фигура, образованная простой замкнутой ломаной и ограниченной ею внутренней областью. Будем считать аналогом точки на плоскости луч в пространстве и аналогом отрезка на плоскости плоский угол в пространстве. Тогда аналогом простой замкнутой ломаной на плоскости является поверхность, образованная конечным набором плоских углов A 1 SA 2 , A 2 SA 3 , …, A n -1 SA n , A n SA 1 с общей вершиной S (рис. 1), в которых соседние углы не имеют общий точек, кроме точек общего луча, а несоседние углы не имеют общих точек, кроме общей вершины. Фигура, образованная указанной поверхностью и одной из двух частей пространства, ею ограниченных, называется многогранным углом . Общая вершина S называется вершиной многогранного угла. Лучи SA 1 , …, SA n называются ребрами многогранного угла, а сами плоские углы A 1 SA 2 , A 2 SA 3 , …, A n -1 SA n , A n SA 1 гранями многогранного угла. Многогранный угол обозначается буквами SA 1 … A n , указывающими вершину и точки на его ребрах. В зависимости от числа граней многогранные углы называются трехгранными, четырехгранными, пятигранными (рис. 2) и т. д.

Многогранный угол называется выпуклым , если он является выпуклой фигурой, т.е. вместе с любыми двумя своими точками содержит и соединяющий их отрезок. На рисунке 2 трехгранный и четырехгранный углы выпуклые, а пятигранный угол – нет.
Рассмотрим некоторые свойства треугольников и аналогичные им свойства трехгранных углов.
Свойство 1 (Неравенство треугольника). Каждая сторона треугольника меньше суммы двух других его сторон.
Аналогичным свойством для трехгранных углов является следующее свойство.
Свойство 1 ". Каждый плоский угол трехгранного угла меньше суммы двух других его плоских углов.
Доказательство. Рассмотрим трехгранный угол SABC . Пусть наибольший из его плоских углов есть угол ASC . Тогда выполняются неравенства

ASB ASC < ASC + BSC ;BSC ASC < ASC + ASB .

Таким образом, остается доказать неравенство ASС < ASB + BSC .
Отложим на грани ASC угол ASD , равный ASB , и точку B выберем так, чтобы SB = SD (рис. 3). Тогда треугольники ASB и ASD равны (по двум сторонам и углу между ними) и, следовательно, AB = AD . Воспользуемся неравенством треугольника AC < AB + BC . Вычитая из обеих его частей AD = AB , получим неравенство DC < BC. В треугольниках DSC и BSC одна сторона общая (SC ), SD = SB и DC < BC. В этом случае против большей стороны лежит больший угол и, следовательно, DSC < BSC . Прибавляя к обеим частям этого неравенства угол ASD , равный ASB , получим требуемое неравенство ASС < ASB + BSC .

Следствие 1. Сумма плоских углов трехгранного угла меньше 360 ° .
Доказательство. Пусть SABC – данный трехгранный угол. Рассмотрим трехгранный угол с вершиной A , образованный гранями ABS, ACS и углом BAC . В силу доказанного свойства, имеет место неравенство BAС < BAS + CAS . Аналогично, для трехгранных углов с вершинами B и С имеют место неравенства: ABС < ABS + CBS , ACB < ACS + BCS . Складывая эти неравенства и учитывая, что сумма углов треугольника ABC равна 180 ° , получаем 180 ° < BAS +CAS + ABS + CBS +BCS + ACS = 180 ° - ASB + 180 ° - BSC + 180 ° - ASC . Следовательно, ASB + BSC + ASC < 360 ° .
Следствие 2. Сумма плоских углов выпуклого многогранного угла меньше 360.
Доказательство аналогично предыдущему.
Следствие 3. Сумма двугранных углов трехгранного угла больше 180 ° .
Доказательство. Пусть SABC – трехгранный угол. Выберем какую-нибудь точку P внутри него и опустим из нее перпендикуляры PA 1 , PB 1 , PC 1 на грани (рис. 4).

Плоские углы B 1 PC 1 , A 1 PC 1 , A 1 PB 1 дополняют соответствующие двугранные углы с ребрами SA, SB, SC до 180 ° . Следовательно, сумма этих двугранных углов равна 540 ° - (B 1 PC 1 +A 1 PC 1 + A 1 PB 1 ). Учитывая, что сумма плоских углов трехгранного с вершиной P угла меньше 360 ° , получаем, что сумма двугранных углов исходного трехгранного угла больше 180 ° .
Свойство 2. Биссектрисы треугольника пересекаются в одной точке.
Свойство 2". Биссектральные плоскости двугранных углов трехгранного угла пересекаются по одной прямой.
Доказательство аналогично плоскому случаю. А именно, пусть SABC – трехгранный угол. Биссектральная плоскость двугранного угла SA является ГМТ угла, равноудаленных от его граней ASC и ASB . Аналогично, биссектральная плоскость двугранного угла SB является ГМТ угла, равноудаленных от его граней BSA и BSC . Линия их пересечения SO будет равноудалена от всех граней трехгранного угла и, следовательно, через нее будет проходить биссектральная плоскость двугранного угла SC .
Свойство 3. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.
Свойство 3". Плоскости, проходящие через биссектрисы граней трехгранного угла и перпендикулярные этим граням, пересекаются по одной прямой.
Доказательство аналогично доказательству предыдущего свойства.
Свойство 4. Медианы треугольника пересекаются в одной точке.
Свойство 4". Плоскости, проходящие через ребра трехгранного угла и биссектрисы противоположных граней пересекаются по одной прямой.
Доказательство. Рассмотрим трехгранный угол SABC, SA = SB = SC (рис. 5). Тогда биссектрисы SA 1 , SB 1 , SC 1 углов BSC, ASC, ASB являются медианами соответствующих треугольников. Поэтому AA 1 , BB 1 , CC 1 – медианы треугольника ABC . Пусть O – точка их пересечения. Прямая SO содержится во всех трех рассматриваемых плоскостях и, следовательно, является линией их пересечения.

Свойство 5. Высоты треугольника пересекаются в одной точке.
Свойство 5 ". Плоскости, проходящие через ребра трехгранного угла и перпендикулярные противоположным граням, пересекаются по одной прямой.
Доказательство. Рассмотрим трехгранный угол с вершиной S и ребрами a, b, c. Обозначим a 1 , b 1 , c 1 – линии пересечения граней с плоскостями, проходящими через соответствующие ребра и перпендикулярные этим граням (рис. 6). Зафиксируем точку C на ребре c и опустим из нее перпендикуляры CA 1 и CB 1 на прямые a 1 и b 1 . Обозначим A и B пересечения прямых CA 1 и CB 1 с прямыми a и b . Тогда SA 1 является проекцией AA 1 на грань BSC . Так как BC перпендикулярна SA 1 , то она перпендикулярна и AA 1 . Аналогично, AC перпендикулярна BB 1 . Таким образом, AA 1 и BB 1 являются высотами треугольника ABC . Пусть O – точка их пересечения. Плоскости, проходящие через прямые a и a 1 , b и b 1 перпендикулярны плоскости ABC и, следовательно, линия их пересечения SO перпендикулярна ABC . Значит, SO перпендикулярна AB . С другой стороны, CO перпендикулярна AB . Поэтому плоскость, проходящая через ребро c и SO будет перпендикулярна противоположной грани.
Свойство 6 (теорема синусов). В треугольнике ABC со сторонами a, b, c соответственно, имеют место равенства a : sin A = b : sin B = c : sin C.
Свойство 6". Пусть a , b , g - плоские углы трехгранного угла, a, b, c – противолежащие им двугранные углы. Тогда sin a : sin a = sin b : sin b = sin g : sin c .
Доказательство. Пусть SABC – трехгранный угол. Опустим из точки C перпендикуляр CC 1 на плоскость ASB и перпендикуляр CA 1 на ребро SA (рис. 7). Тогда угол CA 1 C 1 будет линейным углом двугранного угла a . Поэтому CC 1 = CA 1 sin a = SC sin b sin a. Аналогично показывается, что CC 1 = CB 1 sin b = SC sin a sin b. Следовательно, имеет место равенство sin b sin a = sin a sin b и, значит, равенство sin a : sin a = sin b : sin b . Аналогичным образом доказывается, что имеет место равенство sin b : sin b = sin g : sin c .

Свойство 7. Если в выпуклый четырехугольник можно вписать окружность, то суммы противоположных сторон равны.
Свойство 7". Если в выпуклый четырехгранный угол можно вписать сферу, то суммы противоположных плоских углов равны.

Литература
1. Адамар Ж. Элементарная геометрия. Часть II. Стереометрия. – М.: Учпедгиз, 1938.
2. Перепелкин Д.И. Курс элементарной геометрии. Часть II. Геометрия в пространстве. – М.-Л.: Гостехиздат, 1949.
3. Энциклопедия элементарной математики. Книга IV. Геометрия. - М.; 1963.
4. Смирнова И.М. В мире многогранников. – М.: Просвещение, 1995.

МАОУ «Лицей инновационных технологий»

Многогранные углы. Выпуклые многогранники

Подготовил ученик 10Б класса: Бурыкин Алексей

Проверил: Дубинская И.А.

Хабаровск


Многогранный угол

Многогранным углом называется фигура, образованная плоскими углами так, что выполняются условия:

1)никакие два угла не имеют общих точек, кроме их общей вершины или целой стороны;

2) у каждого из этих углов каждая его сторона является общей с одним и только одним другим таким углом;

3) от каждого угла к каждому можно перейти по углам, имеющим общую сторону;

4) никакие два угла с общей стороной не лежат в одной плоскости.


  • Углы ASB, BSC,... называются плоскими углами или гранями , стороны их SA, SB, ... называются рeбрами , а общая вершина S- вершиной многогранного угла.

Теорема1.

В трёхгранном угле каждый плоский угол меньше суммы двух других плоских углов.


Следствие

  • / ASC - / ASB / CSB; / ASC - / CSB / ASB.

В трёхгранном угле каждый плоский угол больше разности двух других углов .


Теорема2.

  • Сумма величин всех трех плоских углов трехгранного угла меньше 360° .

180°, откуда и следует, что α + β + γ " width="640"

Доказательство

Обозначим,

тогда из треугольников ASC, ASB, BSC имеем

Теперь неравенство принимает вид

180° - α + 180° - β + 180° - γ 180°,

откуда и следует, что

α + β + γ

Простейшие случаи равенства трёхгранных углов

  • 1) по равному двугранному углу, заключённому между двумя соответственно равными и одинаково расположенными плоскими углами , или 2) по равному плоскому углу, заключённому между двумя соответственно равными и одинаково расположенными двугранными углами .

Выпуклый многогранный угол

  • Многогранный угол называется выпуклым, если он весь расположен по одну сторону от плоскости каждой из его граней, неограниченно продолженной.

Многогранник.

Многогранник , в трехмерном пространстве- совокупность конечного числа плоских многоугольников, такая, что каждая сторона любого из многоугольников есть одновременно сторона другого, называемого смежным с первым.


Выпуклые многогранники

Многогранник называется выпуклым , если он весь лежит по одну сторону от плоскости любой его грани; тогда грани его тоже выпуклы.

Выпуклый многогранник разрезает пространство на две части – внешнюю и внутреннюю. Внутренняя его часть есть выпуклое тело. Обратно, если поверхность выпуклого тела многогранна, то соответствующий многогранник –выпуклый.


Теорема. Сумма всех плоских углов выпуклого многогранного угла меньше 360 градусов.


Свойство 1. В выпуклом многограннике все грани являются выпуклыми многоугольниками.

Свойство2. Всякий выпуклый многогранник может быть составлен из пирамид с общей вершиной, основание которых образует поверхность многогранника.


Двугранным углом называется фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой. Полуплоскости называются гранями, а ограничивающая их прямая - ребром двугранного угла.

На рисунке 142 изображен двугранный угол с ребром а и гранями а и (3.

Плоскость, перпендикулярная ребру двугранного угла, пересекает его грани по двум полупрямым. Угол, образованный этими полупрямыми, называется линейным углом двугранного угла. За меру двугранного угла принимается мера соответствующего ему линейного угла. Если через точку А ребра а двугранного угла провести плоскость у, перпендикулярную этому ребру, то она пересечет плоскости а и (3 по полупрямым (рис. 142); линейный угол данного двугранного угла. Градусная мера этого линейного угла является градусной мерой двугранного угла. Мера двугранного угла не зависит от выбора линейного угла.

Трехгранным углом называется фигура, составленная из трех плоских углов (рис. 143). Эти углы называются гранями трехгранного угла, а их стороны - ребрами. Общая вершина плоских углов называется вершиной трехгранного угла. Двугранные углы, образуемые гранями и их продолжениями, называются двугранными углами трехгранного угла.

Аналогично определяется понятие многогранного угла как фигуры, составленной из плоских углов (рис. 144). Для многогранного угла определяются понятия граней, ребер и двугранных углов так же, как и для трехгранного угла.

Многогранником называют тело, поверхность которого состоит из конечного числа плоских многоугольников (рис. 145).

Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого многоугольника на его поверхности (рис. 145, а, б). Общая часть такой плоскости и поверхности выпуклого многогранника называется гранью. Грани выпуклого многогранника - выпуклые многоугольники. Стороны граней называются ребрами многогранника, а вершины - вершинами многогранника.

Многогранный угол

часть пространства, ограниченная одной полостью многогранной конической поверхности, направляющая которой - плоский многоугольник без самопересечений. Грани этой поверхности называются гранями М. у., вершину - вершиной М. у. М. у. называют правильным, если равны все его линейные углы и все его двугранные углы. Мерой М. у. является площадь, ограниченная сферическим многоугольником полученным пересечением граней М. у., сферой с радиусом, равным единице, и с центром в вершине М. у. См. также Телесный угол .


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Многогранный угол" в других словарях:

    См. Телесный угол … Большой Энциклопедический словарь

    См. Телесный угол. * * * МНОГОГРАННЫЙ УГОЛ МНОГОГРАННЫЙ УГОЛ, см. Телесный угол (см. ТЕЛЕСНЫЙ УГОЛ) … Энциклопедический словарь

    Часть пространства, ограниченная одной полостью многогранной конич. поверхности, направляющая к рой плоский многоугольник без самопересечений. Грани этой поверхности наз. гранями М. у., вершина верши н о й М. у. Многогранный угол наз. правильным … Математическая энциклопедия

    См Телесный угол … Естествознание. Энциклопедический словарь

    многогранный угол - матем. Часть пространства, ограниченная несколькими плоскостями, проходящими через одну точку (вершину угла) … Словарь многих выражений

    МНОГОГРАННЫЙ, многогранная, многогранное (книжн.). 1. Имеющий несколько граней или сторон. Многогранный камень. Многогранный угол (часть пространства, ограниченная несколькими плоскостями, пересекающимися в одной точке; мат.). 2. перен.… … Толковый словарь Ушакова

    - (мат.). Если из точки О на данной плоскости проведем прямые ОА и 0В, то получим угол АОВ (черт. 1). Черт. 1. Точка 0 наз. вершиною угла, а прямые ОА и 0В сторонами угла. Предположим, что даны два угла ΒΟΑ и Β 1 Ο 1 Α 1. Наложим их так, чтобы… …

    - (мат.). Если из точки О на данной плоскости проведем прямые ОА и 0В, то получим угол АОВ (черт. 1). Черт. 1. Точка 0 наз. вершиною угла, а прямые ОА и 0В сторонами угла. Предположим, что даны два угла ΒΟΑ и Β1Ο1Α1. Наложим их так, чтобы вершины О … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    У этого термина существуют и другие значения, см. Угол (значения). Угол ∠ Размерность ° Единицы измерения СИ Радиан … Википедия

    Плоский, геометрическая фигура, образованная двумя лучами (сторонами У.), выходящими из одной точки (вершины У.). Всякий У., имеющий вершину в центре О некоторой окружности (центральный У.), определяет на окружности дугу AB, ограниченную… … Большая советская энциклопедия