Классификация числовых последовательностей и действия над ними. Понятие числовой последовательности. Что такое окрестность

Пусть X {\displaystyle X} - это либо множество вещественных чисел R {\displaystyle \mathbb {R} } , либо множество комплексных чисел C {\displaystyle \mathbb {C} } . Тогда последовательность { x n } n = 1 ∞ {\displaystyle \{x_{n}\}_{n=1}^{\infty }} элементов множества X {\displaystyle X} называется числовой последовательностью .

Примеры

Операции над последовательностями

Подпоследовательности

Подпоследовательность последовательности (x n) {\displaystyle (x_{n})} - это последовательность (x n k) {\displaystyle (x_{n_{k}})} , где (n k) {\displaystyle (n_{k})} - возрастающая последовательность элементов множества натуральных чисел.

Иными словами, подпоследовательность получается из последовательности удалением конечного или счётного числа элементов.

Примеры

  • Последовательность простых чисел является подпоследовательностью последовательности натуральных чисел.
  • Последовательность натуральных чисел, кратных , является подпоследовательностью последовательности чётных натуральных чисел.

Свойства

Предельная точка последовательности - это точка, в любой окрестности которой содержится бесконечно много элементов этой последовательности. Для сходящихся числовых последовательностей предельная точка совпадает с пределом .

Предел последовательности

Предел последовательности - это объект, к которому члены последовательности приближаются с ростом номера. Так в произвольном топологическом пространстве пределом последовательности называется элемент, в любой окрестности которого лежат все члены последовательности, начиная с некоторого. В частности, для числовых последовательностей предел - это число, в любой окрестности которого лежат все члены последовательности начиная с некоторого.

Фундаментальные последовательности

Фундаментальная последовательность (сходящаяся в себе последовательность , последовательность Коши ) - это последовательность элементов метрического пространства , в которой для любого наперёд заданного расстояния найдётся такой элемент, расстояние от которого до любого из следующих за ним элементов не превышает заданного. Для числовых последовательностей понятия фундаментальной и сходящейся последовательностей эквивалентны, однако в общем случае это не так.

Если каждому натуральному числу n поставлено в соответствие некоторое действительное число x n , то говорят, что задана числовая последовательность

x 1 , x 2 , … x n , …

Число x 1 называют членом последовательности с номером 1 или первым членом последовательности , число x 2 - членом последовательности с номером 2 или вторым членом последовательности, и т.д. Число x n называют членом последовательности с номером n .

Существуют два способа задания числовых последовательностей – с помощью и с помощью рекуррентной формулы .

Задание последовательности с помощью формулы общего члена последовательности – это задание последовательности

x 1 , x 2 , … x n , …

с помощью формулы, выражающей зависимость члена x n от его номера n .

Пример 1 . Числовая последовательность

1, 4, 9, … n 2 , …

задана с помощью формулы общего члена

x n = n 2 , n = 1, 2, 3, …

Задание последовательности с помощью формулы, выражающей член последовательности x n через члены последовательности с предшествующими номерами, называют заданием последовательности с помощью рекуррентной формулы .

x 1 , x 2 , … x n , …

называют возрастающей последовательностью, больше предшествующего члена.

Другими словами, для всех n

x n + 1 > x n

Пример 3 . Последовательность натуральных чисел

1, 2, 3, … n , …

является возрастающей последовательностью .

Определение 2. Числовую последовательность

x 1 , x 2 , … x n , …

называют убывающей последовательностью, если каждый член этой последовательности меньше предшествующего члена.

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

x n + 1 < x n

Пример 4 . Последовательность

заданная формулой

является убывающей последовательностью .

Пример 5 . Числовая последовательность

1, - 1, 1, - 1, …

заданная формулой

x n = (- 1) n , n = 1, 2, 3, …

не является ни возрастающей, ни убывающей последовательностью.

Определение 3. Возрастающие и убывающие числовые последовательности называют монотонными последовательностями .

Ограниченные и неограниченные последовательности

Определение 4. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной сверху, если существует такое число M, что каждый член этой последовательности меньше числа M .

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

Определение 5. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной снизу, если существует такое число m, что каждый член этой последовательности больше числа m .

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

Определение 6. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной, если она ограничена и сверху, и снизу.

Другими словами, существуют такие числа M и m, что для всех n = 1, 2, 3, … выполнено неравенство

m < x n < M

Определение 7. Числовые последовательности, которые не являются ограниченными , называют неограниченными последовательностями .

Пример 6 . Числовая последовательность

1, 4, 9, … n 2 , …

заданная формулой

x n = n 2 , n = 1, 2, 3, … ,

ограничена снизу , например, числом 0. Однако эта последовательность неограничена сверху .

Пример 7 . Последовательность

.

Лекция 8. Числовые последовательности.

Определение 8.1. Если каждому значению ставится в соответствие по определённому закону некоторое вещественное число x n , то множество занумерованных вещественных чисел

сокращённая запись
,
(8.1)

будем называть числовой последовательностью или просто последовательностью.

Отдельные числа x n элементы или члены последовательности (8.1).

Последовательность может быть задана формулой общего члена, например так:
или
. Последовательность может задаваться неоднозначно, например последовательность –1, 1, –1, 1, … можно задать формулой
или
. Иногда используют рекуррентный способ задания последовательности: задаются первые несколько членов последовательности и формула для вычисления следующих элементов. Например, последовательность, определяемая первым элементом и рекуррентным соотношением
(арифметическая прогрессия). Рассмотрим последовательность, называемую рядом Фибоначчи : задаются первые два элемента x 1 =1, x 2 =1 и рекуррентное соотношение
при любом
. Получаем последовательность чисел 1, 1, 2, 3, 5, 8, 13, 21, 34, …. Для такого ряда найти формулу общего члена довольно трудно.

8.1. Арифметические действия с последовательностями.

Рассмотрим две последовательности:

(8.1)

Определение 8.2. Назовём произведением последовательности
на число m последовательность
. Запишем так:
.

Назовём последовательность суммой последовательностей (8.1) и (8.2), запишем так: ; аналогично
назовем разностью последовательностей (8.1) и (8.2);
произведением последовательностей (8.1) и (8.2); частным последовательностей (8.1) и (8.2) (все элементы
).

8.2. Ограниченные и неограниченные последовательности.

Совокупность всех элементов произвольной последовательности
образует некоторое числовое множество, которое может быть ограничено сверху (снизу) и для которого справедливы определения, аналогичные введённым для вещественных чисел.

Определение 8.3. Последовательность
называется
ограниченной сверху , если ; М верхняя грань.

Определение 8.4. Последовательность
называется
ограниченной снизу , если ; m нижняя грань.

Определение 8.5. Последовательность
называется
ограниченной , если она ограничена и сверху, и снизу, то есть если существуют два вещественных числа М и m такие, что каждый элемент последовательности
удовлетворяет неравенствам:

, (8.3)

m и M – нижняя и верхняя грани
.

Неравенства (8.3) называют условием ограниченности последовательности
.

Например, последовательность
ограниченная, а
неограниченная.

Утверждение 8.1.
является ограниченной
.

Доказательство. Выберем
. Согласно определению 8.5 последовательность
будет ограниченной. ■

Определение 8.6 . Последовательность
называется
неограниченной , если для любого положительного (сколь угодно большого) вещественного числа А найдётся хотя бы один элемент последовательности x n , удовлетворяющий неравенству:
.

Например, последовательность 1, 2, 1, 4, …, 1, 2n , … неограниченная, т.к. ограничена только снизу.

8.3. Бесконечно большие и бесконечно малые последовательности.

Определение 8.7. Последовательность
называется
бесконечно большой , если для любого (сколь угодно большого) вещественного числа А найдётся номер
такой, что при всех
элементы
x n
.

Замечание 8.1. Если последовательность бесконечно большая, то она неограниченная. Но не следует думать, что любая неограниченная последовательность является бесконечно большой. Например, последовательность
не ограничена, но не является бесконечно большой, т.к. условие
не выполняется при всех чётных n .

Пример 8.1.
является бесконечно большой. Возьмем любое число А >0. Из неравенства
получаем n >A . Если взять
, то для всех n >N будет выполняться неравенство
, то есть согласно определению 8.7, последовательность
бесконечно большая.

Определение 8.8. Последовательность
называется
бесконечно малой , если для
(сколь угодно малого ) найдётся номер

такой, что при всех
элементы этой последовательности удовлетворяют неравенству
.

Пример 8.2. Докажем, что последовательность бесконечно малая.

Возьмём любое число
. Из неравенства
получаем . Если взять
, то для всех n >N будет выполняться неравенство
.

Утверждение 8.2. Последовательность
является бесконечно большой при
и бесконечно малой при

.

Доказательство.

1) Пусть сначала
:
, где
. По формуле Бернулли (пример 6.3, п. 6.1.)
. Фиксируем произвольное положительное число А и выберем по нему номер N такой, чтобы было справедливо неравенство:

,
,
,
.

Так как
, то по свойству произведения вещественных чисел при всех

.

Таким образом, для
найдется такой номер
, что при всех


– бесконечно большая при
.

2) Рассмотрим случай
,
(при q =0 имеем тривиальный случай).

Пусть
, где
, по формуле Бернулли
или
.

Фиксируем
,
и выберем
такой, чтобы

,
,
.

Для

. Укажем такой номер N , что при всех

, то есть при
последовательность
бесконечно малая. ■

8.4. Основные свойства бесконечно малых последовательностей.

Теорема 8.1. Сумма

и

Доказательство. Фиксируем ;
– бесконечно малая

,

– бесконечно малая

. Выберем
. Тогда при

,
,
. ■

Теорема 8.2 . Разность
двух бесконечно малых последовательностей
и
есть бесконечно малая последовательность.

Для доказательства теоремы достаточно использовать неравенство . ■

Следствие. Алгебраическая сумма любого конечного числа бесконечно малых последовательностей представляет собой бесконечно малую последовательность.

Теорема 8.3. Произведение ограниченной последовательности на бесконечно малую последовательность есть бесконечно малая последовательность.

Доказательство.
– ограниченная,
– бесконечно малая последовательность. Фиксируем ;
,
;
: при
справедливо
. Тогда
. ■

Теорема 8.4. Всякая бесконечно малая последовательность является ограниченной.

Доказательство. Фиксируем Пусть некоторое число . Тогда
для всех номеров n , что и означает ограниченность последовательности. ■

Следствие. Произведение двух (и любого конечного числа) бесконечно малых последовательностей есть бесконечно малая последовательность.

Теорема 8.5.

Если все элементы бесконечно малой последовательности
равны одному и тому же числу
c , то с= 0.

Доказательство теоремы проводится методом от противного, если обозначить
. ■

Теорема 8.6. 1) Если
– бесконечно большая последовательность, то, начиная с некоторого номера
n , определено частное двух последовательностей
и
, которое представляет собой бесконечно малую последовательность.

2) Если все элементы бесконечно малой последовательности
отличны от нуля, то частное двух последовательностей
и
представляет собой бесконечно большую последовательность.

Доказательство.

1) Пусть
– бесконечно большая последовательность. Фиксируем ;
или
при
. Таким образом, по определению 8.8 последовательность – бесконечно малая.

2) Пусть
– бесконечно малая последовательность. Предположим, что все элементы
отличны от нуля. Фиксируем А ;
или
при
. По определению 8.7 последовательность бесконечно большая. ■

Вида y = f (x ), x О N , где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f (n ) или y 1 , y 2 ,…, y n ,…. Значения y 1 , y 2 , y 3 ,… называют соответственно первым, вторым, третьим, … членами последовательности.

Например, для функции y = n 2 можно записать:

y 1 = 1 2 = 1;

y 2 = 2 2 = 4;

y 3 = 3 2 = 9;…y n = n 2 ;…

Способы задания последовательностей. Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.

1. Последовательность задана аналитически, если задана формула ее n -го члена:

y n = f (n ).

Пример. y n = 2n – 1 последовательность нечетных чисел: 1, 3, 5, 7, 9, …

2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n -й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n -й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример 1. y 1 = 3; y n = y n –1 + 4, если n = 2, 3, 4,….

Здесь y 1 = 3; y 2 = 3 + 4 = 7; y 3 = 7 + 4 = 11; ….

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: y n = 4n – 1.

Пример 2. y 1 = 1; y 2 = 1; y n = y n –2 + y n –1 , если n = 3, 4,….

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n -е число Фибоначчи выражается через его порядковый номер следующей формулой .

На первый взгляд, формула для n -го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n .

Свойства числовых последовательностей.

Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

Определение. Последовательность {y n } называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y 1 y 2 y 3 y n y n +1

Определение.Последовательность {y n } называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y 1 > y 2 > y 3 > … > y n > y n +1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Пример 1. y 1 = 1; y n = n 2 – возрастающая последовательность.

Таким образом, верна следующая теорема (характеристическое свойство арифметической прогрессии). Числовая последовательность является арифметической тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной последовательности), равен среднему арифметическому предшествующего и последующего членов.

Пример. При каком значении x числа 3x + 2, 5x – 4 и 11x + 12 образуют конечную арифметическую прогрессию?

Согласно характеристическому свойству, заданные выражения должны удовлетворять соотношению

5x – 4 = ((3x + 2) + (11x + 12))/2.

Решение этого уравнения дает x = –5,5. При этом значении x заданные выражения 3x + 2, 5x – 4 и 11x + 12 принимают, соответственно, значения –14,5, –31,5, –48,5. Это – арифметическая прогрессия, ее разность равна –17.

Геометрическая прогрессия.

Числовую последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q , называют геометрической прогрессией, а число q – знаменателем геометрической прогрессии.

Таким образом, геометрическая прогрессия – это числовая последовательность {b n }, заданная рекуррентно соотношениями

b 1 = b , b n = b n –1 q (n = 2, 3, 4…).

(b и q – заданные числа, b ≠ 0, q ≠ 0).

Пример 1. 2, 6, 18, 54, … – возрастающая геометрическая прогрессия b = 2, q = 3.

Пример 2. 2, –2, 2, –2, … геометрическая прогрессия b = 2, q = –1.

Пример 3. 8, 8, 8, 8, … геометрическая прогрессия b = 8, q = 1.

Геометрическая прогрессия является возрастающей последовательностью, если b 1 > 0, q > 1, и убывающей, если b 1 > 0, 0 q

Одно из очевидных свойств геометрической прогрессии состоит в том, что если последовательность является геометрической прогрессией, то и последовательность квадратов, т.е.

b 1 2 , b 2 2 , b 3 2 , …, b n 2,… является геометрической прогрессией, первый член которой равен b 1 2 , а знаменатель – q 2 .

Формула n- го члена геометрической прогрессии имеет вид

b n = b 1 q n– 1 .

Можно получить формулу суммы членов конечной геометрической прогрессии.

Пусть дана конечная геометрическая прогрессия

b 1 , b 2 , b 3 , …, b n

пусть S n – сумма ее членов, т.е.

S n = b 1 + b 2 + b 3 + … + b n .

Принимается, что q № 1. Для определения S n применяется искусственный прием: выполняются некоторые геометрические преобразования выражения S n q .

S n q = (b 1 + b 2 + b 3 + … + b n –1 + b n )q = b 2 + b 3 + b 4 + …+ b n + b n q = S n + b n q b 1 .

Таким образом, S n q = S n + b n q – b 1 и, следовательно,

Это формула суммы n членов геометрической прогрессии для случая, когда q ≠ 1.

При q = 1 формулу можно не выводить отдельно, очевидно, что в этом случае S n = a 1 n .

Геометрической прогрессия названа потому, что в ней каждый член кроме первого, равен среднему геометрическому предыдущего и последующего членов. Действительно, так как

b n = b n- 1 q;

b n = b n+ 1 /q,

следовательно, b n 2= b n– 1 b n+ 1 и верна следующаятеорема(характеристическое свойство геометрической прогрессии):

числовая последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого (и последнего в случае конечной последовательности), равен произведению предыдущего и последующего членов.

Предел последовательности.

Пусть есть последовательность {c n } = {1/n }. Эту последовательность называют гармонической, поскольку каждый ее член, начиная со второго, есть среднее гармоническое между предыдущим и последующим членами. Среднее геометрическое чисел a и b есть число

В противном случае последовательность называется расходящейся.

Опираясь на это определение, можно, например, доказать наличие предела A = 0 у гармонической последовательности {c n } = {1/n }. Пусть ε – сколь угодно малое положительное число. Рассматривается разность

Существует ли такое N , что для всех n ≥ N выполняется неравенство 1/N ? Если взять в качестве N любое натуральное число, превышающее 1, то для всех n ≥ N выполняется неравенство 1/n ≤ 1/N ε , что и требовалось доказать.

Доказать наличие предела у той или иной последовательности иногда бывает очень сложно. Наиболее часто встречающиеся последовательности хорошо изучены и приводятся в справочниках. Имеются важные теоремы, позволяющие сделать вывод о наличии предела у данной последовательности (и даже вычислить его), опираясь на уже изученные последовательности.

Теорема 1. Если последовательность имеет предел, то она ограничена.

Теорема 2. Если последовательность монотонна и ограничена, то она имеет предел.

Теорема 3. Если последовательность {a n } имеет предел A , то последовательности {ca n }, {a n + с} и {| a n |} имеют пределы cA , A + c , |A | соответственно (здесь c – произвольное число).

Теорема 4. Если последовательности {a n } и {b n } имеют пределы, равные A и B pa n + qb n } имеет предел pA + qB .

Теорема 5. Если последовательности {a n } и {b n }имеют пределы, равные A и B соответственно, то последовательность {a n b n } имеет предел AB.

Теорема 6. Если последовательности {a n } и {b n } имеют пределы, равные A и B соответственно, и, кроме того, b n ≠ 0 и B ≠ 0, то последовательность {a n / b n } имеет предел A/B .

Анна Чугайнова