Мощный электромагнитный излучатель. ЭМП и нервная система. Влияние ЭМИ на детей и беременных женщин

Содержание статьи

ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ, электромагнитные волны, возбуждаемые различными излучающими объектами, – заряженными частицами, атомами, молекулами, антеннами и пр. В зависимости от длины волны различают гамма-излучение, рентгеновское, ультрафиолетовое излучение, видимый свет, инфракрасное излучение, радиоволны и низкочастотные электромагнитные колебания.

Может показаться удивительным, что внешне столь разные физические явления имеют общую основу. В самом деле, что общего между кусочком радиоактивного вещества, рентгеновской трубкой, ртутной газоразрядной лампой, лампочкой фонарика, теплой печкой, радиовещательной станцией и генератором переменного тока, подключенным к линии электропередачи? Как, впрочем, и между фотопленкой, глазом, термопарой, телевизионной антенной и радиоприемником. Тем не менее, первый список состоит из источников, а второй – из приемников электромагнитного излучения. Воздействия разных видов излучения на организм человека тоже различны: гамма- и рентгеновское излучения пронизывают его, вызывая повреждение тканей, видимый свет вызывает зрительное ощущение в глазу, инфракрасное излучение, падая на тело человека, нагревает его, а радиоволны и электромагнитные колебания низких частот человеческим организмом и вовсе не ощущаются. Несмотря на эти явные различия, все названные виды излучений – в сущности разные стороны одного явления.

Взаимодействие между источником и приемником формально состоит в том, что при всяком изменении в источнике, например при его включении, наблюдается некое изменение в приемнике. Это изменение происходит не сразу, а спустя некоторое время, и количественно согласуется с представлением о том, что нечто перемещается от источника к приемнику с очень большой скоростью. Сложная математическая теория и огромное число разнообразных экспериментальных данных показывают, что электромагнитное взаимодействие между источником и приемником, разделенными вакуумом или разреженным газом, может быть представлено в виде волн, распространяющихся от источника к приемнику со скоростью света с .

Скорость распространения в свободном пространстве одинакова для всех типов электромагнитных волн от гамма-лучей до волн низкочастотного диапазона. Но число колебаний в единицу времени (т.е. частота f ) меняется в очень широких пределах: от нескольких колебаний в секунду для электромагнитных волн низкочастотного диапазона до 10 20 колебаний в секунду в случае рентгеновского и гамма-излучений. Поскольку длина волны (т.е. расстояние между соседними горбами волны; рис. 1) дается выражением l = с /f , она тоже изменяется в широких пределах – от нескольких тысяч километров для низкочастотных колебаний до 10 –14 м для рентгеновского и гамма-излучений. Именно поэтому взаимодействие электромагнитных волн с веществом столь различно в разных частях их спектра. И все же все эти волны родственны между собой, как родственны водяная рябь, волны на поверхности пруда и штормовые океанские волны, тоже по-разному воздействующие на объекты, встречающиеся на их пути. Электромагнитные волны существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приемнику через вакуум или межзвездное пространство. Например, рентгеновские лучи, возникающие в вакуумной трубке, воздействуют на фотопленку, расположенную вдали от нее, тогда как звук колокольчика, находящегося под колпаком, услышать невозможно, если откачать воздух из-под колпака. Глаз воспринимает идущие от Солнца лучи видимого света, а расположенная на Земле антенна – радиосигналы удаленного на миллионы километров космического аппарата. Таким образом, никакой материальной среды, вроде воды или воздуха, для распространения электромагнитных волн не требуется.

Источники электромагнитного излучения.

Несмотря на физические различия, во всех источниках электромагнитного излучения, будь то радиоактивное вещество, лампа накаливания или телевизионный передатчик, это излучение возбуждается движущимися с ускорением электрическими зарядами. Различают два основных типа источников. В «микроскопических» источниках заряженные частицы скачками переходят с одного энергетического уровня на другой внутри атомов или молекул. Излучатели такого типа испускают гамма-, рентгеновское, ультрафиолетовое, видимое и инфракрасное, а в некоторых случаях и еще более длинноволновое излучение (примером последнего может служить линия в спектре водорода, соответствующая длине волны 21 см, играющая важную роль в радиоастрономии). Источники второго типа можно назвать макроскопическими. В них свободные электроны проводников совершают синхронные периодические колебания. Электрическая система может иметь самые разнообразные конфигурации и размеры. Системы такого типа генерируют излучение в диапазоне от миллиметровых до самых длинных волн (в линиях электропередачи).

Гамма-лучи испускаются самопроизвольно при распаде ядер атомов радиоактивных веществ, например радия. При этом происходят сложные процессы изменения структуры ядра, связанные с движением зарядов. Генерируемая частота f определяется разностью энергий E 1 и E 2 двух состояний ядра: f = (E 1 – E 2)/h , где h – постоянная Планка.

Рентгеновское излучение возникает при бомбардировке в вакууме поверхности металлического анода (антикатода) электронами, обладающими большими скоростями. Быстро замедляясь в материале анода, эти электроны испускают так называемое тормозное излучение, имеющее непрерывный спектр, а происходящая в результате электронной бомбардировки перестройка внутренней структуры атомов анода, в результате которой атомные электроны переходят в состояние с меньшей энергией, сопровождается испусканием так называемого характеристического излучения, частоты которого определяются материалом анода.

Такие же электронные переходы в атоме дают ультрафиолетовое и видимое световое излучение. Что же касается инфракрасного излучения, то оно обычно является результатом изменений, мало затрагивающих электронную структуру и связанных преимущественно с изменениями амплитуды колебаний и вращательного момента импульса молекулы.

В генераторах электрических колебаний имеется «колебательный контур» того или иного типа, в котором электроны совершают вынужденные колебания с частотой, зависящей от его конструкции и размеров. Наиболее высокие частоты, соответствующие миллиметровым и сантиметровым волнам, генерируются клистронами и магнетронами – электровакуумными приборами с металлическими объемными резонаторами, колебания в которых возбуждаются токами электронов. В генераторах более низких частот колебательный контур состоит из катушки индуктивности (индуктивность L ) и конденсатора (емкость C ) и возбуждается ламповой или транзисторной схемой. Собственная частота такого контура, которая при малом затухании близка к резонансной, дается выражением .

Переменные поля очень низких частот, используемые для передачи электрической энергии, создаются электромашинными генераторами тока, в которых роторы, несущие проволочные обмотки, вращаются между полюсами магнитов.

Теория Максвелла, эфир и электромагнитное взаимодействие.

Когда океанский лайнер в тихую погоду проходит на некотором расстоянии от рыбацкой лодки, то спустя какое-то время лодка начинает сильно раскачиваться на волнах. Причина этого всем понятна: от носа лайнера по поверхности воды бежит волна в виде последовательности горбов и впадин, которая и достигает рыбацкой лодки.

Когда при помощи специального генератора в установленной на искусственном спутнике Земли и направленной на Землю антенне возбуждаются колебания электрического заряда, в приемной антенне на Земле (также через некоторое время) возбуждается электрический ток. Как же передается взаимодействие от источника к приемнику, если между ними отсутствует материальная среда? И если сигнал, поступающий на приемник, можно представить в виде некоторой падающей волны, то что это за волна, которая способна распространяться в вакууме, и как могут возникать горбы и впадины там, где ничего нет?

Над этими вопросами в применении к видимому свету, распространяющемуся от Солнца к глазу наблюдателя, ученые задумывались уже давно. На протяжении большей части 19 в. такие физики, как О.Френель , И.Фраунгофер , Ф.Нейман, пытались найти ответ в том, что пространство на самом деле не пусто, а заполнено некой средой («светоносным эфиром»), наделенной свойствами упругого твердого тела. Хотя такая гипотеза и помогла объяснить некоторые явления в вакууме, она привела к непреодолимым трудностям в задаче о прохождении света через границу двух сред, например воздуха и стекла. Это побудило ирландского физика Дж.Мак-Куллага отбросить идею упругого эфира. В 1839 он предложил новую теорию, в которой постулировалось существование среды, по своим свойствам отличной от всех известных материалов. Такая среда не оказывает сопротивления сжатию и сдвигу, но сопротивляется вращению. Из-за этих странных свойств модель эфира Мак-Куллага вначале на вызвала особого интереса. Однако в 1847 Кельвин продемонстрировал наличие аналогии между электрическими явлениями и механической упругостью. Исходя из этого, а также из представлений М.Фарадея о силовых линиях электрического и магнитного полей, Дж.Максвелл предложил теорию электрических явлений, которая, по его словам, «отрицает действие на расстоянии и приписывает электрическое действие напряжениям и давлениям в некой всепроникающей среде, причем эти напряжения такие же, с какими имеют дело инженеры, а среда и есть именно та среда, в которой, как предполагают, распространяется свет». В 1864 Максвелл сформулировал систему уравнений, охватывающую все электромагнитные явления. Примечательно, что его теория во многом напоминала теорию, предложенную за четверть века до этого Мак-Куллагом. Уравнения Максвелла были столь всеохватывающими, что из них выводились законы Кулона , Ампера , электромагнитной индукции и следовал вывод о совпадении скорости распространения электромагнитных явлений со скоростью света.

После того как уравнениям Максвелла была придана более простая форма (заслуга в основном О.Хевисайда и Г.Герца), полевые уравнения стали ядром электромагнитной теории. Хотя эти уравнения сами по себе и не требовали максвелловской интерпретации на основе представлений о напряжениях и давлениях в эфире, такая интерпретация повсеместно была принята. Несомненный успех уравнений в предсказании и объяснении различных электромагнитных явлений был воспринят как подтверждение справедливости не только уравнений, но и механистической модели, на основе которой они были выведены и истолкованы, хотя эта модель была совершенно не существенна для математической теории. Фарадеевские силовые линии поля и трубки тока наряду с деформациями и смещениями стали существенными атрибутами эфира. Энергия рассматривалась как запасенная в напряженной среде, а ее поток Г.Пойнтинг в 1884 представил вектором, носящим теперь его имя. В 1887 Герц экспериментально продемонстрировал существование электромагнитных волн. В серии блестящих экспериментов он измерил скорость их распространения, а также показал, что они могут отражаться, преломляться и поляризоваться. В 1896 Г.Маркони получил патент на радиосвязь.

В континентальной Европе независимо от Максвелла развивалась теория дальнодействия – совершенно другой подход к проблеме электромагнитного взаимодействия. Максвелл писал по этому поводу: «Согласно теории электричества, которая делает большие успехи в Германии, две заряженные частицы непосредственно действуют друг на друга на расстоянии с силой, которая, по Веберу, зависит от их относительной скорости и действует, согласно теории, основанной на идеях Гаусса и развитой Риманом, Лоренцом и Нейманом, не мгновенно, а спустя некоторое время, зависящее от расстояния. По достоинству оценить мощь этой теории, которая столь выдающимся людям объясняет любой вид электрических явлений, можно, лишь изучив ее». Теорию, о которой говорил Максвелл, наиболее полно развил датский физик Л.Лоренц с помощью скалярного и векторного запаздывающих потенциалов, почти таких же, как и в современной теории. Максвелл отвергал идею запаздывающего действия на расстоянии, будь то потенциалы или силы. «Эти физические гипотезы совершенно чужды моим представлениям о природе вещей», – писал он. Тем не менее, теория Римана и Лоренца в математическом отношении была идентична его теории, и в конце концов он согласился, что в пользу теории дальнодействия свидетельствуют более убедительные доказательства. В своем Трактате об электричестве и магнетизме (Treatise on Electricity and Magnetism , 1873) он писал: «Не следует упускать из виду, что мы сделали всего лишь один шаг в теории действия среды. Мы высказали предположение, что она находится в состоянии напряжения, но совершенно не объяснили, что это за напряжение и как оно поддерживается».

В 1895 голландский физик Х.Лоренц объединил ранние ограниченные теории взаимодействия между неподвижными зарядами и токами, которые предвосхищали теорию запаздывающих потенциалов Л.Лоренца и были созданы в основном Вебером, с общей теорией Максвелла. Х.Лоренц рассматривал материю как содержащую электрические заряды, которые, различными способами взаимодействуя между собой, производят все известные электромагнитные явления. Вместо того чтобы принять концепцию запаздывающего действия на расстоянии, описываемого запаздывающими потенциалами Римана и Л.Лоренца, он исходил из предположения, что движение зарядов создает электромагнитное поле , способное распространяться сквозь эфир и переносить импульс и энергию от одной системы зарядов к другой. Но необходимо ли для распространения электромагнитного поля в виде электромагнитной волны существование такой среды, как эфир? Многочисленные эксперименты, призванные подтвердить существование эфира, в том числе и эксперимент по «увлечению эфира», дали отрицательный результат. Более того, гипотеза о существовании эфира оказалась в противоречии с теорией относительности и с положением о постоянстве скорости света. Вывод можно проиллюстрировать словами А.Эйнштейна: «Если эфиру не свойственно никакое конкретное состояние движения, то вряд ли имеет смысл вводить его как некую сущность особого рода наряду с пространством».

Излучение и распространение электромагнитных волн.

Движущиеся с ускорением электрические заряды и периодически изменяющиеся токи воздействуют друг на друга с некоторыми силами. Величина и направление этих сил зависят от таких факторов, как конфигурация и размеры области, содержащей заряды и токи, величина и относительное направление токов, электрические свойства данной среды и изменения в концентрации зарядов и распределении токов источника. Из-за сложности общей постановки задачи закон сил нельзя представить в виде одной формулы. Структура, именуемая электромагнитным полем, которую при желании можно рассматривать как чисто математический объект, определяется распределением токов и зарядов, создаваемым заданным источником с учетом граничных условий, определяемых формой области взаимодействия и свойствами материала. Когда речь идет о неограниченном пространстве, эти условия дополняются особым граничным условием – условием излучения . Последнее гарантирует «правильное» поведение поля на бесконечности.

Электромагнитное поле характеризуется вектором напряженности электрического поля E и вектором магнитной индукции B , каждый из которых в любой точке пространства имеет определенную величину и направление. На рис. 2 схематически изображена электромагнитная волна с векторами E и B , распространяющаяся в положительном направлении оси х . Электрическое и магнитное поля тесно взаимосвязаны: они представляют собой компоненты единого электромагнитного поля, поскольку переходят друг в друга при преобразованиях Лоренца. Говорят, что векторное поле линейно (плоско) поляризовано, если направление вектора остается всюду фиксированным, а его длина периодически изменяется. Если вектор вращается, но длина его не меняется, то говорят, что поле имеет круговую поляризацию; если же длина вектора периодически изменяется, а сам он вращается, то поле называется эллиптически поляризованным.

Соотношение между электромагнитным полем и колеблющимися токами и зарядами, поддерживающими это поле, можно проиллюстрировать на относительно простом, но очень наглядном примере антенны типа полуволнового симметричного вибратора (рис. 3). Если тонкую проволоку, длина которой составляет половину длины волны излучения, разрезать посередине и к разрезу подключить высокочастотный генератор, то приложенное переменное напряжение будет поддерживать примерно синусоидальное распределение тока в вибраторе. В момент времени t = 0, когда амплитуда тока достигает максимального значения, а вектор скорости положительных зарядов направлен вверх (отрицательных – вниз), в любой точке антенны заряд, приходящийся на единицу ее длины, равен нулю. По прошествии первой четверти периода (t = T /4) положительные заряды будут сосредоточены на верхней половине антенны, а отрицательные – на нижней. При этом ток равен нулю (рис. 3,б ). В момент t = T /2 заряд, приходящийся на единицу длины, равен нулю, а вектор скорости положительных зарядов направлен вниз (рис. 3,в ). Затем к концу третьей четверти заряды перераспределяются (рис. 3,г ), а по ее завершении заканчивается полный период колебаний (t = T ) и все снова выглядит так, как на рис. 3,а .

Чтобы сигнал (например, меняющийся во времени ток, приводящий в действие громкоговоритель радиоприемника) можно было передать на расстояние, излучение передатчика нужно промодулировать путем, например, изменения амплитуды тока в передающей антенне в соответствии с сигналом, что повлечет за собой модуляцию амплитуды колебаний электромагнитного поля (рис. 4).

Передающая антенна является той частью передатчика, где электрические заряды и токи совершают колебания, излучая в окружающее пространство электромагнитное поле. Антенна может иметь самые разнообразные конфигурации, в зависимости от того, какую форму электромагнитного поля необходимо получить. Она может быть одиночным симметричным вибратором или же системой симметричных вибраторов, расположенных на определенном расстоянии друг от друга и обеспечивающих необходимое соотношение между амплитудами и фазами токов. Антенна может представлять собой симметричный вибратор, расположенный перед сравнительно большой плоской или изогнутой металлической поверхностью, играющей роль отражателя. В диапазоне сантиметровых и миллиметровых волн особенно эффективна антенна в форме рупора, соединенного с металлической трубой-волноводом, который играет роль линии передачи. Токи в короткой антенне на входе волновода индуцируют переменные токи на его внутренней поверхности. Эти токи и связанное с ними электромагнитное поле распространяются по волноводу к рупору.

Меняя конструкцию антенны и ее геометрию, можно добиться такого соотношения амплитуд и фаз колебаний токов в различных ее частях, чтобы излучение усиливалось в одних направлениях и ослаблялось в других (антенны направленного действия).

На больших расстояниях от антенны любого типа электромагнитное поле имеет довольно простой вид: в любой данной точке векторы напряженности электрического поля Е и индукции магнитного поля В колеблются в фазе во взаимно перпендикулярных плоскостях, убывая обратно пропорционально расстоянию от источника. При этом волновой фронт имеет форму увеличивающейся в размерах сферы, а вектор потока энергии (вектор Пойнтинга) направлен вовне по ее радиусам. Интеграл от вектора Пойнтинга по всей сфере дает полную, усредненную по времени, излучаемую энергию. При этом волны, распространяющиеся в радиальном направлении со скоростью света, переносят от источника не только колебания векторов E и B , но также импульс поля и его энергию.

Прием электромагнитных волн и явление рассеяния.

Если в зоне электромагнитного поля, распространяющегося от удаленного источника, поместить проводящий цилиндр, то индуцированные в нем токи будут пропорциональны напряженности электромагнитного поля и, кроме того, будут зависеть от ориентации цилиндра относительно фронта падающей волны и от направления вектора напряженности электрического поля. Если цилиндр имеет вид проволоки, диаметр которой мал по сравнению с длиной волны, то индуцированный ток будет максимальным, когда проволока параллельна вектору Е падающей волны. Если проволоку разрезать посередине и к образовавшимся выводам присоединить нагрузку, то к ней будет подводиться энергия, как это и имеет место в случае радиоприемника. Токи в этой проволоке ведут себя так же, как и переменные токи в передающей антенне, а потому она тоже излучает поле в окружающее пространство (т.е. происходит рассеяние падающей волны).

Отражение и преломление электромагнитных волн.

Передающую антенну обычно устанавливают высоко над поверхностью земли. Если антенна находится в сухой песчаной или скалистой местности, то грунт ведет себя как изолятор (диэлектрик), и токи, индуцируемые в нем антенной, связаны с внутриатомными колебаниями, поскольку здесь нет свободных носителей заряда, как в проводниках и ионизованных газах. Эти микроскопические колебания создают над поверхностью земли поле отраженной от земной поверхности электромагнитной волны и, кроме того, изменяют направление распространения волны, входящей в грунт. Эта волна движется с меньшей скоростью и под меньшим углом к нормали, чем падающая. Такое явление называется преломлением. Если же волна падает на участок поверхности земли, имеющий, наряду с диэлектрическими, также и проводящие свойства, то общая картина для преломленной волны выглядит намного сложнее. Как и прежде, волна меняет направление движения у границы раздела, но теперь поле в грунте распространяется таким образом, что поверхности равных фаз уже не совпадают с поверхностями равных амплитуд, как это обычно имеет место в случае плоской волны. Кроме того, быстро затухает амплитуда волновых колебаний, поскольку электроны проводимости при столкновениях отдают свою энергию атомам. В результате энергия волновых колебаний переходит в энергию хаотического теплового движения и рассеивается. Поэтому там, где грунт проводит электричество, волны не могут проникнуть в него на большую глубину. То же самое относится и к морской воде, чем затрудняется радиосвязь с подводными лодками.

В верхних слоях земной атмосферы располагается слой ионизованного газа, который называется ионосферой. Он состоит из свободных электронов и положительно заряженных ионов. Под действием посылаемых с земли электромагнитных волн заряженные частицы ионосферы начинают колебаться и излучать собственное электромагнитное поле. Заряженные ионосферные частицы взаимодействуют с посланной волной примерно так же, как и частицы диэлектрика в рассмотренном выше случае. Однако электроны ионосферы не связаны с атомами, как в диэлектрике. Они реагируют на электрическое поле посланной волны не мгновенно, а с некоторым сдвигом по фазе. В результате волна в ионосфере распространяется не под меньшим, как в диэлектрике, а под бóльшим углом к нормали, чем посланная с земли падающая волна, причем фазовая скорость волны в ионосфере оказывается больше скорости света c . Когда волна падает под некоторым критическим углом, угол между преломленным лучом и нормалью становится близок к прямому, а при дальнейшем увеличении угла падения излучение отражается в сторону Земли. Очевидно, что в этом случае электроны ионосферы создают поле, которым компенсируется поле преломленной волны в вертикальном направлении, а ионосфера действует как зеркало.

Энергия и импульс излучения.

В современной физике выбор между теорией электромагнитного поля Максвелла и теорией запаздывающего дальнодействия делается в пользу теории Максвелла. До тех пор, пока нас интересует только взаимодействие источника и приемника, обе теории одинаково хороши. Однако теория дальнодействия не дает никакого ответа на вопрос, где находится энергия, которую уже излучил источник, но еще не принял приемник. Согласно теории Максвелла, источник передает энергию электромагнитной волне, в которой она и находится, пока не будет передана поглотившему волну приемнику. При этом на каждом этапе соблюдается закон сохранения энергии.

Таким образом, электромагнитные волны обладают энергией (а также импульсом), что заставляет считать их столь же реальными, как, например, атомы. Электроны и протоны, находящиеся на Солнце, передают энергию электромагнитному излучению, в основном в инфракрасной, видимой и ультрафиолетовой областях спектра; примерно через 500 с, достигнув Земли, оно эту энергию отдает: повышается температура, в зеленых листьях растений происходит фотосинтез, и т.д. В 1901 П.Н.Лебедев экспериментально измерил давление света, подтвердив, что свет имеет не только энергию, но и импульс (причем соотношение между ними согласуется с теорией Максвелла).

Фотоны и квантовая теория.

На рубеже 19 и 20 вв., когда казалось, что исчерпывающая теория электромагнитного излучения, наконец, построена, природа преподнесла очередной сюрприз: оказалось, что помимо волновых свойств, описываемых теорией Максвелла, излучение проявляет также свойства частиц, причем тем сильнее, чем короче длина волны. Особенно ярко эти свойства проявляются в явлении фотоэффекта (выбивания электронов из поверхности металла под действием света), открытого в 1887 Г.Герцем. Оказалось, что энергия каждого выбитого электрона зависит от частоты n падающего света, но не от его интенсивности. Это свидетельствует о том, что энергия, связанная со световой волной, передается дискретными порциями – квантами. Если увеличивать интенсивность падающего света, то растет число выбитых в единицу времени электронов, но не энергия каждого из них. Иными словами, излучение передает энергию определенными минимальными порциями – как бы частицами света, которые были названы фотонами. Фотон не имеет ни массы покоя, ни заряда, но обладает спином, а также импульсом, равным hn /c , и энергией, равной hn ; он перемещается в свободном пространстве с постоянной скоростью c .

Каким же образом электромагнитное излучение может иметь все свойства волн, проявляющиеся в интерференции и дифракции, но вести себя как поток частиц в случае фотоэффекта? В настоящее время наиболее удовлетворительное объяснение этой двойственности можно найти в сложном формализме квантовой электродинамики. Но и эта изощренная теория имеет свои трудности, а ее математическая непротиворечивость вызывает сомнения. ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ; ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ; КВАНТОВАЯ МЕХАНИКА; ВЕКТОР.

К счастью, в макроскопических задачах излучения и приема миллиметровых и более длинных электромагнитных волн квантовомеханические эффекты обычно не имеют существенного значения. Число фотонов, излучаемых, например, симметричной вибраторной антенной, столь велико, а энергия, переносимая каждым из них, столь мала, что можно забыть о дискретных квантах и считать, что испускание излучения – непрерывный процесс.

В последние годы вследствие развития технологий организм человека подвергается высокому уровню воздействия электромагнитного излучения (ЭМИ), что не могло не вызвать серьезного беспокойства во всем мире.

Каково же влияние на живые организмы? Их последствия зависят от того, к какой категории радиации - ионизирующей или нет - они относятся. Первый тип обладает высоким энергетическим потенциалом, который действует на атомы в клетках и приводит к изменению их естественного состояния. Это может быть смертельно опасным, так как вызывает раковые и другие заболевания. К неионизирующей радиации относят электромагнитное излучение в виде радиоволн, микроволнового излучения и электрических колебаний. Хотя структуру атома она изменить не может, но ее воздействие способно привести к необратимым последствиям.

Невидимая опасность

Публикации в научной литературе подняли вопрос о неблагоприятном воздействии на отдельных лиц и общество в целом неионизирующего излучения ЭМП, исходящего от силовых, электрических и беспроводных устройств в быту, на производстве, в учебных и общественных заведениях. Несмотря на многочисленные проблемы в установлении неопровержимых научных доказательств вреда и пробелы в выяснении точных механизмов его нанесения, эпидемиологический анализ все больше наводит на мысль о значительном потенциале травматического воздействия, производимого неионизирующим облучением. Защита от электромагнитного излучения становится все более актуальной.

В связи с тем, что медицинское образование не акцентирует внимание на состоянии окружающей среды, некоторые врачи не в полной мере осознают вероятные проблемы для здоровья, которые связаны с ЭМИ, и, как следствие этого, проявления неионизирующего излучения могут диагностироваться неверно и подвергаться неэффективному лечению.

Если возможность повреждения тканей и клеток, связанная с воздействием рентгеновского излучения, сомнений не вызывает, то влияние электромагнитных излучений на живые организмы, когда они исходят от ЛЭП, мобильных телефонов, электроприборов и некоторые машин, только недавно начало привлекать к себе внимание в качестве потенциальной угрозы здоровью.

Электромагнитный спектр

Относится к типу энергии, которая исходит или излучается далеко за пределы ее источника. Энергия электромагнитного излучения существует в различных формах, каждая из которых обладает различными физическими свойствами. Они могут быть измерены и выражены с помощью частоты или длины волны. Одни волны имеют высокую частоту, другие - среднюю и третьи - низкую. Диапазон электромагнитного излучения включает много различных форм энергии, исходящей из различных источников. Их название используется для классификации типов ЭМИ.

Короткая длина волны электромагнитного излучения, соответствующая высокой частоте, является характеристикой гамма-лучей, рентгеновского и ультрафиолетового излучения. Более спектра включают микроволновое излучение и радиоволны. Световое излучение относят к среднему участку спектра ЭМИ, оно обеспечивает нормальное зрение и является светом, который мы воспринимаем. Инфракрасная энергия ответственна за восприятие человеком тепла.

Большинство форм энергии, таких как рентгеновские лучи, ультрафиолет и радиоволны, невидимы и незаметны для человека. Для их обнаружения требуется измерение электромагнитного излучения с использованием специальных приборов, и, как следствие, люди не могут оценить степень воздействия энергетических полей в этих диапазонах.

Несмотря на отсутствие восприятия, действие высокочастотной энергии, включая рентгеновское излучение, называемое ионизирующим, потенциально опасно для клеток человека. Изменяя атомный состав клеточных структур, разбивая химические связи и индуцируя образование свободных радикалов, достаточное воздействие ионизирующей радиации может повредить генетический код в ДНК или спровоцировать мутации, тем самым увеличивая риск возникновения злокачественных новообразований или гибель клеток.

Антропогенное ЭМИ

Влияние электромагнитного излучения на организм, особенно неионизирующего, которым называют формы энергии с более низкими частотами, многими учеными недооценивалось. Считалось, что оно не производит неблагоприятного эффекта при нормальных уровнях воздействия. В последнее время, однако, появляется все больше данных, которые свидетельствуют о том, что некоторые частоты неионизирующего излучения могут потенциально приносить биологический вред. Большинство исследований их влияния на здоровье касалось следующих трех основных видов антропогенного ЭМИ:

  • нижняя шкала электромагнитных излучений от ЛЭП, электроприборов и электронного оборудования;
  • микроволновое и радиоизлучение беспроводных устройств связи, таких как сотовые телефоны, сотовые башни, антенны, а также телевизионные и радиовышки;
  • электрическое загрязнение вследствие работы некоторых видов техники (например, плазменных телевизоров, некоторых энергосберегающих приборов, двигателей с регулируемой частотой вращения и т. д.), производящих сигналы, частота электромагнитного излучения которых находится в диапазоне 3-150 кГц (распространяются и переизлучаются проводкой).

Токи в земле, которые иногда называют блуждающими, проводами не ограничены. Ток движется по пути наименьшего сопротивления и может проходить через любые доступные пути, в том числе по земле, проводам и различным объектам. Соответственно, электрическое напряжение также передается через землю и по строительным конструкциям посредством металлических водопроводных или канализационных труб, в результате чего неионизирующее излучение попадает в ближайшую окружающую среду.

ЭМИ и здоровье человека

В то время как исследования, изучавшие негативные свойства электромагнитных излучений, иногда давали противоречивые результаты, диагностика репродуктивной дисфункции и предрасположенности к раку, по всей видимости, подтверждает подозрения о том, что воздействие ЭМП может представлять угрозу здоровью человека. Неблагоприятный исход беременности, включая выкидыши, мертворождение, преждевременные роды, изменение соотношения полов и врожденные аномалии - все было связано с влиянием ЭМИ на мать.

В большом проспективном исследовании, опубликованном в журнале «Эпидемиология», например, сообщается о пиковом воздействии ЭМИ на 1063 беременных женщин в районе Сан-Франциско. Участники эксперимента носили детекторы магнитного поля, и ученые обнаружили значительный рост смертности плода при увеличении уровня максимального воздействия ЭМП.

ЭМИ и рак

Были изучены утверждения о том, что интенсивное воздействие некоторых частот ЭМИ может быть канцерогенным. Например, «Международный журнал рака» недавно опубликовал важное исследование по методу «случай-контроль» по связи между детской лейкемией и магнитными полями в Японии. Оценивая уровень электромагнитного излучения в спальнях, ученые подтвердили, что высокие уровни воздействия приводят к значительно большему риску заболевания детской лейкемией.

Физическое и психологическое воздействие

Люди с электромагнитной сверхчувствительностью часто страдают от истощения, которое может повлиять на любую часть организма, включая центральную нервную систему, опорно-двигательный аппарат, желудочно-кишечный тракт и эндокринную систему. Эти симптомы часто приводят к постоянному психологическому стрессу и страху попасть под действие ЭМИ. Многие пациенты становятся недееспособными от одной мысли о том, что невидимый сигнал беспроводной связи в любое время и в любом месте может спровоцировать болезненные ощущения в их организме. Постоянный страх и озабоченность проблемами со здоровьем влияют на самочувствие вплоть до развития фобии и боязни электричества, которые у некоторых вызывают желание покинуть цивилизацию.

Мобильные телефоны и телекоммуникация

Сотовые телефоны передают и принимают сигналы с помощью ЭМП, которые частично поглощаются их пользователями. Так как эти источники электромагнитного излучения обычно находятся в тесной близости с головой, эта особенность привела к появлению опасений о возможном неблагоприятном влиянии их использования на здоровье человека.

Одной из проблем экстраполяции результатов их применения в экспериментальных исследованиях на грызунах является то, что частота максимального поглощения РЧ-энергии зависит от размера тела, его формы, ориентации и положения.

Резонансное поглощение у крыс находится в диапазоне СВЧ и рабочих частот мобильных телефонов, используемых в опытах (от 0,5 до 3 ГГц), но в масштабе человеческого организма оно возникает при 100 МГц. Этот фактор может приниматься во внимание при расчетах мощности поглощенной дозы, но представляет проблему для тех исследований, в которых для определения уровня экспозиции используется лишь напряженность внешнего поля.

Относительная глубина проникновения у лабораторных животных по сравнению с размером головы человека больше, а параметры тканей и механизм перераспределения тепла различаются. Другим потенциальным источником неточностей в уровне экспозиции является воздействие радиочастотного излучения на клетку.

Действие высоковольтного излучения на людей и окружающую среду

Линии электропередач напряжением выше 100 кВ - это самые мощные источники электромагнитного излучения. Исследования радиационного воздействия на технический персонал стартовали с началом строительства первых 220-кВ ЛЭП, когда появились случаи ухудшения здоровья рабочих. Ввод в эксплуатацию линий электропередач напряжением 400 кВ привел к публикации многочисленных работ в этой области, которые впоследствии стали основой для принятия первых нормативных актов, ограничивающих действие 50-Гц электрического поля.

ЛЭП с напряжением более 500 кВ оказывают воздействие на окружающую среду в виде:

  • электрического поля частотой 50 Гц;
  • излучения ;
  • магнитного поля промышленной частоты.

ЭМП и нервная система

Гематоэнцефалический барьер млекопитающих состоит из эндотелиальных клеток, связанных с запирающими зонами, а также прилегающими перицитами и внеклеточным матриксом. Помогает поддерживать высокостабильную внеклеточную среду, необходимую для точной синаптической передачи, и защищает нервную ткань от повреждения. Увеличение его низкой проницаемости для гидрофильных и заряженных молекул может нанести вред здоровью.

Температура окружающей среды, превышающая пределы терморегуляции млекопитающих, повышает проницаемость гематоэнцефалического барьера для макромолекул. Нейрональное поглощение альбумина в различных областях мозга зависит от его температуры и проявляется при ее повышении на 1 °С и выше. Так как достаточно сильные радиочастотные поля могут привести к нагреванию тканей, логично предположить, что влияние на человека электромагнитного излучения имеет следствием повышенную проницаемость гематоэнцефалического барьера.

ЭМП и сон

Верхняя шкала электромагнитных излучений оказывает некоторое влияние на сон. Эта тема стала актуальной по нескольким причинам. Среди других симптомов жалобы на нарушения сна упоминались в анекдотических сообщениях о людях, считающих, что на них действует ЭМИ. Это привело к спекуляциям о том, что электромагнитные поля могут помешать нормальному течению сна с вытекающими отсюда последствиями для здоровья. Потенциальный риск нарушения сна следует рассматривать с учетом того, что он является очень сложным биологическим процессом, контролируемым центральной нервной системой. И хотя точные нейробиологические механизмы пока не установлены, регулярное чередование состояний бодрствования и покоя является необходимым требованием для обеспечения правильной работы мозга, метаболического гомеостаза и иммунной системы.

Кроме того, сон, как представляется, является именно той физиологической системой, изучение которой позволит выяснить влияние на человека электромагнитного излучения высокой частоты, так как в этом биологическом состоянии организм чутко реагирует на внешние раздражители. Есть данные о том, что слабые ЭМП, интенсивность которых значительно ниже той, при которой может возникнуть повышение температуры, также могут стать причиной биологического воздействия.

В настоящее время исследования влияния неионизирующего высокочастотного ЭМИ четко ориентированы на риск развития рака, что объясняется беспокойством по поводу канцерогенных свойств ионизирующего излучения.

Негативные проявления

Таким образом, влияние на человека электромагнитного излучения, даже неионизирующего, имеет место, особенно в случае высоковольтных ЛЭП и эффекта короны. СВЧ-излучение воздействует на нервную, сердечно-сосудистую, иммунную и репродуктивную системы, в том числе вызывая повреждение нервной системы, изменяя ее реакцию, электроэнцефалограмму, гематоэнцефалитический барьер, провоцируя нарушение (бодрствования - сна) путем вмешательства в работу шишковидной железы и создавая гормональный дисбаланс, изменения сердечного ритма и кровяного давления, ухудшая иммунитет по отношению к патогенам, вызывая слабость, истощение, проблемы роста, повреждения ДНК и рак.

Рекомендуется возводить здания вдали от источников ЭМИ, а защита от электромагнитного излучения высоковольтных ЛЭП должна быть обязательной. В городах кабели необходимо прокладывать под землей, а также использовать оборудование, нейтрализующее действие ЭМИ.

По результатам корреляционного анализа, основанного на экспериментальных данных, был сделан вывод о том, что значительно уменьшить влияние на человека электромагнитного излучения ЛЭП можно, сократив расстояние провеса проводов, что приведет к увеличению дистанции между токопроводящей линией и точкой измерения. Кроме того, на это расстояние оказывает влияние и рельеф местности под ЛЭП.

Меры предосторожности

Электричество является неотъемлемой частью жизни современного общества. Это означает, что ЭМИ всегда будет вокруг нас. И для того чтобы ЭМП делали нашу жизнь проще, а не короче, следует соблюдать некоторые меры предосторожности:

  • Не стоит позволять детям играть вблизи линий электропередач, трансформаторов, спутниковых передатчиков и источников микроволнового излучения.
  • Следует избегать мест, где плотность превышает 1 мГс. Следует замерить уровень ЭМП приборов в выключенном и работающем состоянии.
  • Необходимо провести перестановку в офисе или дома таким образом, чтобы не подвергаться действию поля электроприборов и компьютеров.
  • Нельзя слишком близко сидеть перед компьютером. Мониторы сильно различаются по силе их ЭМИ. Не следует стоять у работающей микроволновой печи.
  • Переместить электроприборы как минимум на 2 м от кровати. Нельзя допускать наличия проводки под кроватью. Демонтировать диммеры и 3-позиционные переключатели.
  • Следует соблюдать меры предосторожности при использовании беспроводных устройств, таких как электрические зубные щетки, бритвы.
  • Кроме того, рекомендуется носить как можно меньше ювелирных изделий и снимать их на ночь.
  • Также необходимо помнить о том, что ЭМИ проходит сквозь стены, и учитывать источники в соседней комнате или за стенами помещения.

Технический прогресс имеет и обратную сторону. Глобальное использование различной техники, работающей от электричества, стало причиной загрязнения, которому дали название – электромагнитный шум. В этой статье мы рассмотрим природу этого явления, степень его воздействия на организм человека и меры защиты.

Что это такое и источники излучения

Электромагнитное излучение – это электромагнитные волны, которые возникают при возмущении магнитного или электрического поля. Современная физика трактует этот процесс в рамках теории корпускулярно-волнового дуализма. То есть, минимальной порцией электромагнитного излучения является квант, но в тоже время оно имеет частотно-волновые свойства, определяющие его основные характеристики.

Спектр частот излучения электромагнитного поля, позволяет классифицировать его на следующие виды:

  • радиочастотное (к ним относятся радиоволны);
  • тепловое (инфракрасное);
  • оптическое (то есть, видимое глазом);
  • излучение в ультрафиолетовом спектре и жесткое (ионизированное).

Детальную иллюстрацию спектрального диапазона (шкала электромагнитных излучений), можно увидеть на представленном ниже рисунке.

Природа источников излучения

В зависимости от происхождения, источники излучения электромагнитных волн в мировой практике принято классифицировать на два вида, а именно:

  • возмущения электромагнитного поля искусственного происхождения;
  • излучение, исходящее от естественных источников.

Излучения, исходящие от магнитного поля поле вокруг Земли, электрических процессов в атмосфере нашей планеты, ядерного синтеза в недрах солнца – все они естественного происхождения.

Что касается искусственных источников, то они побочное явление, вызванное работой различных электрических механизмов и приборов.

Исходящее от них излучение, может быть низкоуровневым и высокоуровневым. От уровней мощности источников полностью зависит степень напряженности излучения электромагнитного поля.

В качестве примера источников с высоким уровнем ЭМИ можно привести:

  • ЛЭП, как правило, высоковольтные;
  • все виды электротранспорта, а также сопутствующая ему инфраструктура;
  • теле- и радиовышки, а также станции передвижной и мобильной связи;
  • установки для преобразования напряжения электрической сети (в частности, волны исходящие от трансформатора или распределяющей подстанции);
  • лифты и другие виды подъемного оборудования, где используется электромеханическая силовая установка.

К типичным источникам, излучающим низкоуровневые излучения можно отнести следующее электрооборудование:

  • практически все устройства с ЭЛТ дисплеем (например: платежный терминал или компьютер);
  • различные типы бытовой техники, начиная от утюгов и заканчивая климатическими системами;
  • инженерные системы, обеспечивающие подачу электричества к различным объектам (подразумеваются не только кабель электропередач, а сопутствующее оборудование, например розетки и электросчетчики).

Отдельно стоит выделить специальное оборудование, используемое в медицине, которое испускает жесткое излучение (рентгеновские аппараты, МРТ и т.д.).

Влияние на человека

В ходе многочисленных исследований радиобиологи пришли к неутешительному выводу – длительное излучение электромагнитных волн может стать причиной «взрыва» болезней, то есть оно вызывает бурное развитие паталогических процессов в организме человека. Причем многие из них вносят нарушения на генетическом уровне.

Видео: Как влияет электромагнитное излучение на людей.
https://www.youtube.com/watch?v=FYWgXyHW93Q

Это происходит из-за того, что у электромагнитного поля высокий уровень биологической активности, что негативно отражается живых организмах. Фактор влияния зависит от следующих составляющих:

  • характер производимого излучения;
  • как долго и с какой интенсивностью оно продолжается.

Влияние на здоровье человека излучения, у которого электромагнитная природа, напрямую зависит от локализации. Она может быть как местного, так и общего характера. В последнем случае происходит масштабное облучение, например излучение, производимое ЛЭП.

Соответственно, под местным облучением подразумевается воздействие на определенные участки тела. Исходящие от электронных часов или мобильного телефона электромагнитные волны, яркий пример локального воздействия.

Отдельно необходимо отметить термальное воздействие высокочастотного электромагнитного излучения на живую материю. Энергия поля преобразуется в тепловую энергию (за счет вибрации молекул), на этом эффекте основа работа промышленных СВЧ излучателей, используемых для нагрева различных веществ. В отличие от пользы в производственных процессах, термальное воздействие на организм человека может оказаться пагубным. С точки зрения радиобиологии находиться возле «теплого» электрооборудования не рекомендуется.

Необходимо принять во внимание, что в быту мы регулярно подвергаемся облучению, причем это происходит не только на производстве, а и дома или при перемещении по городу. Со временем биологический эффект накапливается и усиливается. С ростом электромагнитного зашумления возрастает количество характерных заболеваний мозга или нервной системы. Заметим, что радиобиология довольно молодая наука, поэтому вред наносимый живым организмам от электромагнитного излучения досконально не изучен.

На рисунке виден, уровень электромагнитных волн, производимых обычными, используемыми в быту приборами.


Обратите внимание, что уровень напряженности поля существенно снижается на расстоянии. То есть, чтобы уменьшит его действие, достаточно отдалиться от источника на определенное расстояние.

Формула для расчета нормы (нормирование) излучения электромагнитного поля указана в соответствующих ГОСТах и СанПиНах.

Защита от излучения

На производстве в качестве средств, защищающих от облучения, активно применяются поглощающие (защитные) экраны. К сожалению, защититься от излучения электромагнитного поля при помощи такого оборудования в домашних условиях не представляется возможным, поскольку оно на это не рассчитано.

  • чтобы свести воздействие излучения электромагнитного поля практически к нулю, следует отойти от ЛЭП, радио- и телевышек на расстояние не менее 25 метров (необходимо учитывать мощность источника);
  • для ЭЛТ монитора и телевизора это расстояние значительно меньше – около 30 см;
  • электронные часы не следует ставить близко подушке, оптимальное расстояние для них более 5 см;
  • что касается для радио и сотовых телефонов, подносить их ближе, чем на 2,5 сантиметра не рекомендуется.

Заметим, что многие знают, как опасно стоять рядом с высоковольтными линиями электропередач, но при этом большинство людей не придают значения, обычным бытовым электроприборам. Хотя достаточно поставить системный блок на пол или переместить подальше, и вы обезопасите себя и своих близких. Советуем проделать это, после чего замерять фон от компьютера используя детектор излучения электромагнитного поля, чтобы наглядно убедиться в его снижении.

Этот совет также касается и размещения холодильника, многие ставят его неподалеку от кухонного стола, практично, но небезопасно.

Никакая таблица не сможет указать точное безопасное расстояние от конкретного электрооборудования, поскольку излучения может варьироваться, как в зависимости от модели устройства, так и страны производителя. В настоящий момент нет единого международного стандарта, поэтому в разных странах нормы могут иметь существенные расхождения.

Точно определить интенсивность излучения можно при помощи специального прибора – флюксметра. Согласно принятым в России нормам, максимально допустимая доза не должна превышать 0,2мкТл. Рекомендуем произвести замер в квартире, используя указанный выше прибор для измерения степени излучения электромагнитного поля.

Флюксметр – прибор для измерения степени излучения электромагнитного поля

Старайтесь сократить время, когда вы подвергаетесь облучению, то есть, не находитесь долго рядом с работающими электротехническими приборами. Например, совсем не обязательно постоянно стоять у электроплиты или СВЧ-печки во время приготовления пищи. Касательно электрооборудования можно заметить, что теплое, не всегда означает безопасное.

Всегда выключайте неиспользуемые электроприборы. Люди зачастую оставляют включенными различные устройства, не учитывая, что в это время от электротехники исходит электромагнитное излучение. Выключите ноутбук, принтер или другое оборудование, ненужно лишний раз подвергаться облучению, помните про свою безопасность.

Электромагнитное излучение существует ровно столько, сколько живет наша Вселенная. Оно сыграло ключевую роль в процессе эволюции жизни на Земле. По факту, это возмущение состояние электромагнитное поля, распространяемого в пространстве.

Характеристики электромагнитного излучения

Любую электромагнитную волну описывают с помощью трех характеристик.

1. Частота.

2. Поляризация.

Поляризация – одна из основных волновых атрибутов. Описывает поперечную анизотропию электромагнитных волн. Излучение считается поляризованным тогда, когда все волновые колебания происходят в одной плоскости.

Это явление активно используют на практике. Например, в кино при показе 3D фильмов.

С помощью поляризации очки IMAX разделяют изображение, которое предназначено для разных глаз.

Частота – число гребней волны, которые проходят мимо наблюдателя (в данном случае – детектора) за одну секунду. Измеряется в герцах.

Длина волны – конкретное расстояние между ближайшими точками электромагнитного излучения, колебания которых происходят в одной фазе.

Электромагнитное излучение может распространяться практически в любой среде: от плотного вещества до вакуума.

Скорость распространения в вакууме равна 300 тыс. км за секунду.

Интересное видео о природе и свойствах ЭМ волн смотрите в видео ниже:

Виды электромагнитных волн

Все электромагнитное излучение делят по частоте.

1. Радиоволны. Бывают короткими, ультракороткими, сверхдлинными, длинными, средними.

Длина радиоволн колеблется от 10 км до 1 мм, а от 30 кГц до 300 ГГц.

Их источниками может быть как деятельность человека, так и различные естественные атмосферные явления.

2. . Длина волны лежит в пределах 1мм — 780нм, а может доходить до 429 ТГц. Инфракрасное излучение еще называют тепловым. Основа всей жизни на нашей планете.

3. Видимый свет. Длина 400 — 760/780нм. Соответственно колеблется в пределах 790-385 ТГц. Сюда относят весь спектр излучения, которое можно увидеть человеческим глазом.

4. . Длина волны меньше, чем в инфракрасного излучения.

Может доходить до 10 нм. таких волн очень большая – порядка 3х10^16 Гц.

5. Рентгеновские лучи . волны 6х10^19 Гц, а длина порядка 10нм — 5пм.

6. Гамма волны. Сюда относят любое излучение, которого больше, чем в рентгеновских лучах, а длина – меньше. Источником таких электромагнитных волн являются космические, ядерные процессы.

Сфера применения

Где-то начиная с конца XIX столетия, весь человеческий прогресс был связан с практическим применением электромагнитных волн.

Первое о чем стоит упомянуть – радиосвязь. Она дала возможность людям общаться, даже если они находились далеко друг от друга.

Спутниковое вещание, телекоммуникации – являются дальнейшим развитием примитивной радиосвязи.

Именно эти технологии сформировали информационный облик современного общества.

Источниками электромагнитного излучения следует рассматривать как крупные промышленные объекты, так и различные линии электропередач.

Электромагнитные волны активно используются в военном деле (радары, сложные электрические устройства). Также без их применения не обошлась и медицина. Для лечения многих болезней могут использовать инфракрасное излучение.

Рентгеновские снимки помогают определить повреждения внутренних тканей человека.

С помощью лазеров проводят ряд операций, требующих ювелирной точности.

Важность электромагнитного излучения в практической жизни человека сложно переоценить.

Советское видео о электромагнитном поле:

Возможное негативное влияние на человека

Несмотря на свою полезность, сильные источники электромагнитного излучения могут вызывать такие симптомы:

Усталость;

Головную боль;

Тошноту.

Чрезмерное воздействие некоторых видов волн вызывают повреждения внутренних органов, центральной нервной системы, мозга. Возможны изменения в психике человека.

Интересное виде о влиянии ЭМ волн на человека:

Чтобы избежать таких последствий практически во всех странах мира действуют стандарты, регулирующие электромагнитную безопасность. Для каждого типа излучений существуют свои регулирующие документы (гигиенические нормы, нормы радиационной безопасности). Влияние электромагнитных волн на человека до конца не изучено, поэтому ВОЗ рекомендует минимизировать их воздействие.

Как известно, экология, питание и стресс – это основные факторы, которые влияют на здоровье человека. Все, что попадает в наш организм извне, помогает или вредит нам.

Разрушают наше здоровье, накапливаясь в организме, токсичные вещества, нитраты, пестициды, тяжелые металлы, радиация и электромагнитное излучение.

Даже в наших домах мы не защищены от влияния внешних факторов. Мы живем в окружении химикатов.

Отделочные материалы, моющие и чистящие средства в своей основе состоят из синтетических материалов, которые оказывают на организм человека канцерогенное действие. Если сравнить с озоновыми дырами и кислотными дождями, то воздействие на организм человека синтетических материалов внутри наших домов намного больше и что самое страшное -это их постоянное воздействие на людей, хотя и малыми дозами.

Поэтому вряд ли стоит удивляться, что болезни, причиной которых является влияние внешних воздействий на организм, встречаются все чаще и чаще. Это не только обычные аллергии , но и онкозаболевания такие как рак.

на организм человека

Что можно сказать об электромагнитных полях? Электрические провода оплели наши дома, поймав нас в сети паутины, словно в ловушку. Воздействие радиации подвергают каждого человека риску различных заболеваний. И вряд ли большинство из нас смогут изменить что-то в этом плане. Сейчас это не в силах ни для кого.

Поэтому хочу подробнее остановиться на влиянии электромагнитных излучений на организм человека .

Согласитесь, сложно представить современную жизнь без бытовых приборов: компьютеры, телевизионные приемники, сотовая связь, излучения СВЧ печей, все это создает электромагнитное поле, которое может продолжать свое существование некоторое время даже после отключении всех приборов, подобно статическому электричеству.

Особенно чувствительны к влиянию электромагнитных излучений на организм человека иммунная, нервная, половая и эндокринная системы. У человека ухудшается память, снижается иммунитет, проявляется постоянное напряжение из-за увеличения адреналина в крови, снижается половая активность, у женщин усиливается негативное влияние на развитие плода во время беременности.

Те люди, которые постоянно вынуждены подвергаться контакту с электромагнитным излучением, чаще всего страдают радиоволновой болезнью. Ведь недаром врачи-рентгенологи идут на пенсию очень рано.

Что же делать, если мы постоянно вынуждены подвергаться электромагнитному воздействию?

Защита от электромагнитных излучений

На предприятиях для защиты работников от электромагнитных излучений используют различные поглощающие, отражающие материалы и отклоняющие устройства.

В быту наиболее эффективной является защита расстоянием. Также используют пластину из шунгита, которая называется магралит, которую устанавливают на сотовые телефоны. Тем самым намного снижается вредное влияние на мозг говорящего по сотовому телефону человека. Посмотрите видео о пластине из шунгита магралит:

Как защитить себя, если вы вынужденно подвергаетесь электромагнитному излучению? Прежде всего нужно знать степень опасности для здоровья человека каждого бытового прибора. Для этого посмотрите таблицу:

Правила защиты от электромагнитных излучений в быту

  1. Когда покупаете бытовую технику, нужно проверить соответствует ли она всем требованиям безопасности санитарных норм
  2. Чем меньше у бытового прибора мощность, тем более безопасен этот прибор для здоровья человека
  3. Лучше если бытовые приборы будут оснащены автоматическим управлением на расстоянии (пультами)
  4. Расстояние от постоянного местонахождения человека бытового прибора должно быть не меньше 1,5 метров
  5. Если вы решили установить в доме электрические полы, то выбирайте систему с низким уровнем электромагнитного поля.
  6. Если вы вынуждены включить несколько приборов излучающих радиацию, то постарайтесь поменьше находится в этом помещении.
  7. Электрические провода не должны храниться во время работы свернутыми в кольцах, расправляйте образовавшиеся петли.
  8. Читайте внимательно аннотации к приборам. Там должны быть указаны безопасные расстояния.
  9. Наиболее безопасное нахождение рядом с компьютером напротив монитора. Поменьше находитесь сбоку и сзади компьютера. Расстояние от монитора лучше сохранять в 50-70см
  10. Ночью обязательно выключайте компьютер из сети, особенно это касается комнат, где вы спите.
  11. Если вы выбираете место для кровати в комнате, обязательно проверьте, не стоит ли за стеной рядом компьютер или телевизор. Стены не защищают от магнитного поля.