Примеры органических веществ которые подвергаются гидролизу. Взаимное усиление гидролиза. Обратимый и необратимый гидролиз

Исследуем действие универсального индикатора на растворы некоторых солей

Как мы видим, среда первого раствора — нейтральная (рН=7), второго — кислая (рН < 7), третьего щелочная (рН > 7). Чем же объяснить столь интересный факт? 🙂

Для начала, давайте вспомним, что такое pH и от чего он зависит.

pH- водородный показатель, мера концентрации ионов водорода в растворе (по первым буквам латинских слов potentia hydrogeni - сила водорода).

pH вычисляется как отрицательный десятичный логарифм концентрации водородных ионов, выраженной в молях на один литр:

В чистой воде при 25 °C концентрации ионов водорода и гидроксид-ионов одинаковы и составляют 10 -7 моль/л (рН=7).

Когда концентрации обоих видов ионов в растворе одинаковы, раствор имеет нейтральную реакцию. Когда > раствор является кислым, а при > - щелочным.

За счет чего же в некоторых водных растворах солей происходит нарушение равенства концентраций ионов водорода и гидроксид-ионов?

Дело в том, что происходит смещение равновесия диссоциации воды вследствие связывания одного из ее ионов ( или ) с ионами соли с образованием малодиссоциированного, труднорастворимого или летучего продукта. Это и есть суть гидролиза.

— это химическое взаимодействие ионов соли с ионами воды, приводящее к образованию слабого электролита -кислоты (или кислой соли), или основания (или основной соли).

Слово «гидролиз» означает разложение водой («гидро»-вода, «лизис» — разложение).

В зависимости от того какой ион соли вступает во взаимодействие с водой, различают три типа гидролиза:

  1. žгидролиз по катиону (в реакцию с водой вступает только катион);
  2. žгидролиз по аниону (в реакцию с водой вступает только анион);
  3. žсовместный гидролиз — гидролиз по катиону и по аниону (в реакцию с водой вступает и катион, и анион).

Любую соль можно рассматривать как продукт, образованный взаимодействием основания и кислоты:


Гидролиз соли – взаимодействие ее ионов с водой, приводящее к появлению кислотной или щелочной среды, но не сопровождающееся образованием осадка или газа.

Процесс гидролиза протекает только с участием растворимых солей и состоит из двух этапов:
1) диссоциация соли в растворе – необратимая реакция (степень диссоциации, или 100%);
2) собственно , т.е. взаимодействие ионов соли с водой, — обратимая реакция (степень гидролиза ˂ 1, или 100%)
Уравнения 1-го и 2-го этапов – первый из них необратим, второй обратим – складывать нельзя!
Отметим, что соли, образованные катионами щелочей и анионами сильных кислот, гидролизу не подвергаются, они лишь диссоциируют при растворении в воде. В растворах солей KCl, NaNO 3 , NaSO 4 и BaI среда нейтральная .

Гидролиз по аниону

В случае взаимодействия анионов растворенной соли с водой процесс называется гидролизом соли по аниону .
1) KNO 2 = K + + NO 2 — (диссоциация)
2) NO 2 — + H 2 O ↔ HNO 2 + OH — (гидролиз)
Диссоциация соли KNO 2 протекает полностью, гидролиз аниона NO 2 – в очень малой степени (для 0,1 М раствора – на 0,0014%), но этого оказывается достаточно, чтобы раствор стал щелочным (среди продуктов гидролиза присутствует ион OH —), в нем p H = 8,14.
Гидролизу подвергаются анионы только слабых кислот (в данном примере – нитрит-ион NO 2 , отвечающий слабой азотистой кислоте HNO 2). Анион слабой кислоты притягивает к себе катион водорода, имеющийся в воде, и образует молекулу этой кислоты, а гидроксид-ион остается свободным:
NO 2 — + H 2 O (H +, OH —) ↔ HNO 2 + OH —
Примеры:
а) NaClO = Na + + ClO —
ClO — + H 2 O ↔ HClO + OH —
б) LiCN = Li + + CN —
CN — + H 2 O ↔ HCN + OH —
в) Na 2 CO 3 = 2Na + + CO 3 2-
CO 3 2- + H 2 O ↔ HCO 3 — + OH —
г) K 3 PO 4 = 3K + + PO 4 3-
PO 4 3- + H 2 O ↔ HPO 4 2- + OH —
д) BaS = Ba 2+ + S 2-
S 2- + H 2 O ↔ HS — + OH —
Обратите внимание, что в примерах (в- д) нельзя увеличить число молекул воды и вместо гидроанионов (HCO 3, HPO 4, HS) писать формулы соответствующих кислот (H 2 CO 3, H 3 PO 4, H 2 S). Гидролиз – обратимая реакция, и протекать «до конца» (до образования кислоты) он не может.
Если бы такая неустойчивая кислота, как H 2 CO 3 , образовывалась в растворе своей соли NaCO 3 , то наблюдалось бы выделение из раствора газа CO 2 (H 2 CO 3 = CO 2 + H 2 O). Однако, при растворении соды в воде образуется прозрачный раствор без газовыделения, что является свидетельством неполноты протекания гидролиза аниона с появлением в растворе только гидранионов угольной кислоты HCO 3 — .
Степень гидролиза соли по аниону зависит от степени диссоциации продукта гидролиза – кислоты. Чем слабее кислота, тем выше степень гидролиза. Например, ионы CO 3 2- , PO 4 3- и S 2- подвергаются гидролизу в большей степени, чем ион NO 2 , так как диссоциация H 2 CO 3 и H 2 S по 2-й ступени, а H 3 PO 4 по 3-тей ступени протекает значительно меньше, чем диссоциация кислоты HNO 2 . Поэтому растворы, например, Na 2 CO 3 , K 3 PO 4 и BaS будут сильнощелочными (в чем легко убедиться по мылкости соды на ощупь).

Избыток ионов ОН в растворе легко обнаружить индикатором или измерить специальными приборами (рН-метрами).
Если в концентрированный раствор сильно гидролизующейся по аниону соли,
например Na 2 CO 3 , внести алюминий, то последний (вследствие амфотерности) прореагирует со щелочью и будет наблюдаться выделение водорода. Это – дополнительное доказательство протекания гидролиза, ведь в раствор соды мы не добавляли щелочь NaOH!

Обратите особое внимание на соли кислот средней силы — ортофосфорной и сернистой. По первой ступени эти кислоты диссоциируют довольно хорошо, поэтому их кислые соли гидролизу не подвергаются, и среда раствора таких солей — кислая (из-за наличия катиона водорода в составе соли). А средние соли гидролизуются по аниону — среда щелочная. Итак, гидросульфиты, гидрофосфаты и дигидрофосфаты — не гидролизуются по аниону, среда кислая. Сульфиты и фосфаты — гидролизуются по аниону, среда щелочная.

Гидролиз по катиону

В случае взаимодействия катиона растворенной соли с водой процесс называется
гидролизом соли по катиону

1) Ni(NO 3) 2 = Ni 2+ + 2NO 3 − (диссоциация)
2) Ni 2+ + H 2 O ↔ NiOH + + H + (гидролиз)

Диссоциация соли Ni(NO 3) 2 протекает нацело, гидролиз катиона Ni 2+ − в очень малой степени (для 0,1М раствора − на 0,001%), но этого оказывается достаточно, чтобы среда стала кислотной (среди продуктов гидролиза присутствует ион H +).

Гидролизу подвергаются катионы только малорастворимых основных и амфотерных гидроксидов и катион аммония NH 4 + . Катион металла отщепляет от молекулы воды гидроксид-ион и освобождает катион водорода H + .

Катион аммония в результате гидролиза образует слабое основание − гидрат аммиака и катион водорода:

NH 4 + + H 2 O ↔ NH 3 · H 2 O + H +

Обратите внимание, что нельзя увеличивать число молекул воды и вместо гидроксокатионов (например, NiOH +) писать формулы гидроксидов (например, Ni(OH) 2). Если бы гидроксиды образовались, то из растворов солей выпали бы осадки, чего не наблюдается (эти соли образуют прозрачные растворы).
Избыток катионов водорода легко обнаружить индикатором или измерить специальными приборами. В концентрированный раствор сильно гидролизующейся по катиону соли, вносится магний или цинк, то последние реагируют с кислотой с выделением водорода.

Если соль нерастворимая — то гидролиза нет, т.к ионы не взаимодействуют с водой.

Гидролиз- обменная реакция соли с водой ( сольволизводой ).При этом исходное вещество разрушается водой, с образованием новых веществ.

Так как гидролиз является реакцией ионного обмена, то его движущей силой является образование слабого электролита (выпадение осадка или(и)выделение газа). Важно помнить, что реакция гидролиза является реакцией обратимой(в большинстве случаев), но также существует необратимый гидролиз(протекает до конца, исходного вещества в растворе не будет). Гидролиз- процесс эндотермический (при повышении температуры возрастает и скорость гидролиза, и выход продуктов гидролиза).

Как видно из определения, что гидролиз обменная реакция, то можно предположить, что к металлу идет OH - группа (+ возможный кислотный остаток, если образуется основная соль (при гидролизе соли, образованной сильной кислотой и слабым многокислотным основанием)), а к кислотному остатку идет протон водорода H + (+ возможный ион металла и ион водорода, с образованием кислой соли, если гидролизуется соль, образованная слабой многоосновной кислотой)).

Существует 4 типа гидролиза:

1. Соль, образованная сильным основанием и сильной кислотой. Так как уже было указанно выше гидролиз- реакция ионного обмена, и она протекает лишь в случае образования слабого электролита. Как описанной выше, к металлу идёт OH - группа, а к кислотному остатку идет протон водорода H + , но ни сильное основание, ни сильная кислота не являются слабыми электролитами, следовательно гидролиз в данном случае не идёт:

NaCl+HOH≠NaOH+HCl

Реакция среды близка к нейтральной: pH≈7

2. Соль образованна слабым основанием и сильной кислотой. Как указанно выше:к металлу идёт OH - группа, а к кислотному остатку идет протон водорода H +. Например:

NH 4 Cl+HOH↔NH 4 OH+HCl

NH 4 + +Cl - +HOH↔NH 4 OH+H + +Cl -

NH 4 + +HOH↔NH 4 OH+H +

Как видно из примера-гидролиз идёт по катиону, реакция среды –кислая pH< 7.При написании уравнений гидролиза для солей, образованных сильной кислотой и слабым многокислотным основанием, то в правой части следует писать основную соль, так как гидролиз идёт только по первой ступени:

FeCl 2 + HOH ↔ FeOHCl + HCl

Fe 2+ +2Cl - +HOH↔FeO + +H + +2Cl -

Fe 2+ + HOH ↔ FeOH + + H +

3. Соль образованна слабой кислотой и сильным основанием.Как указанно выше: к металлу идёт OH - группа, а к кислотному остатку идет протон водорода H + Например:

CH 3 COONa+HOH↔NaOH+CH 3 COOH

СH 3 COO - +Na + +HOH↔Na + +CH 3 COOH+OH -

СH 3 COO - +HOH↔+CH 3 COOH+OH -

Гидролиз идёт по аниону, реакция среды- щелочная, pH>7.При написании уравнений гидролиза соли, образованной слабой многоосновной кислотой и сильным основанием, в правой части следует писать образование кислой соли, гидролиз идёт по 1 ступени. Например:

Na 2 CO 3 +HOH↔NaOH+NaHCO 3

2Na + +CO 3 2- +HOH↔HCO 3 - +2Na + +OH -

CO 3 2- +HOH↔HCO 3 - +OH -

4. Соль образованна слабым основанием и слабой кислотой. Это единственный случай, когда гидролиз идёт до конца, является необратимым(до полного расходования исходной соли).Например:

СH 3 COONH 4 +HOH↔NH 4 OH+CH 3 COOH

Это единственный случай, когда гидролиз идёт до конца. Гидролиз идёт и по аниону, и по катиону, реакцию среды предугадать сложно, но она близка к нейтральной: pH≈7.

Также существует константа гидролиза, рассмотрим ее на примере ацетатного иона, обозначив его Ac - . Как видно из примеров выше уксусная(этановая) кислота является слабой кислотой, а, следовательно, ее соли гидролизуются по схеме:

Ac - +HOH↔HAc+OH -

Найдём константу равновесия для этой системы:

Зная ионное произведение воды, мы можем через него выразить концентрацию [ OH ] - ,

Подставляя это выражение в уравнение для константы гидролиза, мы получаем:

Подставляя константу ионизации воды в уравнение, мы получаем:

Но константа диссоциации кислоты(на примере хлороводородной кислоты) равна:

Где представляет собой гидратированный протон водорода: . Аналогично и для уксусной кислоты, как в примере. Подставляя значение для константы диссоциации кислоты в уравнение константы гидролиза, мы получаем:

Как следует из примера, если соль образованна слабым основанием, то в знаменателе будет стоять константа диссоциации основания, вычисляемая по тому же признаку что и константа диссоциации кислоты. Если соль образованна слабым основанием и слабой кислотой, то в знаменателе будет стоять произведение констант диссоциаций кислоты и основания.

Степень гидролиза.

Так же есть еще одна величина, характеризующая гидролиз- степень гидролиза- α.Которая равна отношение количества (концентрации) соли, подвергающейся гидролизу, к общему количеству (концентрации) растворенной соли Степень гидролиза зависит от концентрации соли, температуры раствора. Она увеличивается при разбавлении раствора соли и при увеличении температуры раствора. Напомним, что больше разбавлен раствор, тем меньше молярная концентрация исходной соли; а степень гидролиза возрастает при повышении температуры, так как гидролиз- процесс эндотермический, как было указанно выше.

Степень гидролиза соли тем выше, чем слабее кислота или основание, её образующие. Как следует из уравнения степени гидролиза и типов гидролиза: при необратимом гидролизе α≈1.

Степень гидролиза и константа гидролиза взаимосвязаны через уравнение Оствальда (Вильгельм Фридрих Оствальд-з акон разбавления Оствальда,выведен в 1888году ).Закон разбавления показывает, что степень диссоциации электролита зависит от его концентрации и константы диссоциации. Примем начальную концентрацию вещества за C 0 , а продиссоциировавшую часть вещества- за γ, напомним, схему диссоциации вещества в растворе:

AB↔A + +B -

Тогда закон Оствальда можно выразить следующим образом:

Напомним, что в уравнение стоят концентрации в момент равновесия. Но если вещество малодиссоциировавшее, то (1-γ)→1, что приводит уравнение Оствальда в вид: K д =γ 2 C 0 .

Аналогично связанна степень гидролиза с его константой:

В подавляющем большинстве случаев используется именно эта формула. Но при необходимости, можно выразить степень гидролиза через такую формулу:

Особые случаи гидролиза:

1) Гидролиз гидридов (соединений водорода с элементами (тут мы рассмотрим только металлы 1 и 2 групп и метам), где водород проявляетстепень окисления -1):

NaH+HOH→NaOH+H 2

CaH 2 +2HOH→ Ca(OH) 2 +2H 2

CH 4 +HOH→CO+3H 2

Реакция с метаном- один из промышленных способов получения водорода.

2) Гидролиз пероксидов. Пероксиды щелочных и щелочноземельных металлов разлагаются водой, с образованием соответствующего гидроксида и пероксида водорода (или кислорода):

Na 2 O 2 +2 H 2 O →2 NaOH + H 2 O 2

Na 2 O 2 +2H 2 O→2NaOH+O 2

3) Гидролиз нитридов.

Ca 3 N 2 +6HOH→3Ca(OH) 2 +2NH 3

4) Гидролиз фосфидов.

K 3 P+3HOH→3KOH+PH 3

Выделяющийся газ PH 3 -фосфин, очень ядовит, поражает нервную систему. Так же способен к самовозгоранию при контакте с кислородом. Гуляли когда-нибудь ночью по болоту или ходили мимо кладбищ? Видели редкие всплески огней- «блуждающие огни», появляются, так как горит фосфин.

5) Гидролиз карбидов. Здесь будут приведены две реакции имеющие практическое применение, так как с их помощью получаются 1 члены гомологического ряда алканов (реакция 1) и алкинов (реакция 2):

Al 4 C 3 +12 HOH →4 Al (OH) 3 +3CH 4 (реакция 1)

СaC 2 +2 HOH →Ca(OH) 2 +2C 2 H 2 (реакция 2, продукт – ацителен, по UPA С этин)

6) Гидролиз силицидов. В результате этой реакции образуется 1 представитель гомологического ряда силанов (всего их 8) SiH 4 - мономерный ковалентный гидрид.

Mg 2 Si+4HOH→2Mg(OH) 2 +SiH 4

7) Гидролиз галогенидов фосфора. Здесь будут рассмотрены хлориды фосфора 3 и 5, являющиеся хлорангидридами фосфористой и фосфорной кислот соответственно:

PCl 3 +3H 2 O=H 3 PO 3 +3HCl

PCl 5 +4H 2 O=H 3 PO 4 +5HCl

8) Гидролиз органических веществ.Жиры гидролизуются, с образованием глицерина (C 3 H 5 (OH) 3) и карбоновой кислоты(пример предельной карбоновой кислоты) (C n H (2n+1) COOH)

Сложные эфиры:

СH 3 COOCH 3 +H 2 O↔CH 3 COOH+CH 3 OH

Алкоголята:

C 2 H 5 ONa+H 2 O↔C 2 H 5 OH+NaOH

Живые организмы осуществляют гидролиз различных органических веществ в ходе реакций катаболизма при участии ферментов. Например, в ходе гидролиза при участии пищеварительных ферментов белки расщепляются на аминокислоты, жиры - на глицерин и жирные кислоты, полисахариды - на моносахариды (например, на глюкозу).

При гидролизе жиров в присутствии щелочей получают мыло; гидролиз жиров в присутствии катализаторов применяется для получения глицина и жирных кислот.

Задачи

1) Степень диссоциации а уксусной кислоты в 0,1 М растворе при 18 °С равна 1,4·10 –2 . Рассчитайте константу диссоциации кислоты К д.(подсказка- используйте уравнение Оствальда.)

2) Какую массу гидрида кальция нужно растворить в воде, чтобы выделившемся газом восстановить до железа 6,96г оксида железа(II , III )?

3) Напишите уравнение реакции Fe 2 (SO 4) 3 + Na 2 CO 3 + H 2 O

4) Рассчитайте степень, константу гидролиза соли Na 2 SO 3 для концентрации См = 0,03 М, учитывая только 1-ю ступень гидролиза. (Константу диссоциации сернистой кислоты принять равной 6,3∙10 -8)

Решения:

a) Подставим данные задачи в закон разбавления Оствальда:

b) K д = ·[C] = (1,4·10 –2)·0,1/(1 – 0,014) = 1,99·10 –5

Ответ. К д = 1,99·10 –5 .

c) Fe 3 O 4 +4H 2 →4H 2 O+3Fe

CaH 2 +HOH→Ca(OH) 2 +2H 2

Находим количество молей оксида железа(II,III), оно равно отношению массы данного вещества к его молярной массе, получаем 0,03(моль).По УХР находим, что моли гидрида кальция равны 0,06(моль).Значит масса гидрида кальция равна 2,52(грамма).

Ответ: 2,52(грамма).

d) Fe 2 (SO 4) 3 +3Na 2 CO 3 +3H 2 O→3СO2+2Fe(OH) 3 ↓+3Na 2 SO 4

e) Сульфит натрия подвергается гидролизу по аниону, реакция среды раствора соли щелочная (рН > 7):
SO 3 2- + H 2 O <--> OH - + HSO 3 -
Константа гидролиза (уравнение смотрите выше)равна: 10 -14 / 6,3*10 -8 = 1,58*10 -7
Степень гидролиза рассчитывается по формуле α 2 /(1 - α) = К h /С 0 .
Итак, α = (К h /С 0) 1/2 = (1,58*10 -7 / 0,03) 1/2 = 2,3*10 -3

Ответ: K h = 1,58*10 -7 ;α =2,3*10 -3

Редактор: Харламова Галина Николаевна

Гидролизом
называют
реакции
обменного
взаимодействия
вещества с водой, приводящие к их
разложению.

Особенности

Гидролиз органических
веществ
Живые организмы осуществляют
гидролиз различных органических
веществ в ходе реакций при
участии ФЕРМЕНТОВ.
Например, в ходе гидролиза при
участии пищеварительных
ферментов БЕЛКИ расщепляются
на АМИНОКИСЛОТЫ,
ЖИРЫ - на ГЛИЦЕРИН и
ЖИРНЫЕ КИСЛОТЫ,
ПОЛИСАХАРИДЫ (например,
крахмал и целлюлоза) - на
МОНОСАХАРИДЫ (например, на
ГЛЮКОЗУ), НУКЛЕИНОВЫЕ
КИСЛОТЫ - на свободные
НУКЛЕОТИДЫ.
При гидролизе жиров в
присутствии щёлочей
получают мыло; гидролиз
жиров в присутствии
катализаторов применяется
для получения глицерина и
жирных кислот. Гидролизом
древесины получают этанол, а
продукты гидролиза торфа
находят применение в
производстве кормовых
дрожжей, воска, удобрений и
др.

Гидролиз органических соединений

жиры гидролизуются с получением глицерина и
карбоновых кислот (с NaOH – омыление).
крахмал и целлюлоза гидролизуются до
глюкозы:

Обратимый и необратимый гидролиз

Почти все реакции гидролиза
органических веществ
обратимы. Но есть и
необратимый гидролиз.
Общее свойство необратимого
гидролиза - один (лучше оба)
из продуктов гидролиза должен
быть удален из сферы реакции
в виде:
- ОСАДКА,
- ГАЗА.
СаС₂ + 2Н₂О = Са(ОН)₂↓ + С₂Н₂
При гидролизе солей:
Al₄C₃ + 12 H₂O = 4 Al(OH)₃↓ + 3CH₄
Al₂S₃ + 6 H₂O = 2 Al(OH)₃↓ + 3 H₂S
CaH₂ + 2 H₂O = 2Ca(OH)₂↓ + H₂

Г И Д Р О Л И З С О Л Е Й

ГИДРОЛИЗ СОЛЕЙ
Гидролиз солей -
разновидность реакций
гидролиза, обусловленного
протеканием реакций
ионного обмена в растворах
(водных) растворимых
солей-электролитов.
Движущей силой процесса
является взаимодействие
ионов с водой, приводящее к
образованию слабого
электролита в ионном или
молекулярном виде
(«связывание ионов»).
Различают обратимый и
необратимый гидролиз солей.
1. Гидролиз соли слабой
кислоты и сильного основания
(гидролиз по аниону).
2. Гидролиз соли сильной
кислоты и слабого основания
(гидролиз по катиону).
3. Гидролиз соли слабой
кислоты и слабого основания
(необратимый).
Соль сильной кислоты и
сильного основания не
подвергается гидролизу.

Уравнения реакций

Гидролиз соли слабой кислоты и сильного основания
(гидролиз по аниону):
(раствор имеет щелочную среду, реакция протекает
обратимо, гидролиз по второй ступени протекает в
ничтожной степени).
Гидролиз соли сильной кислоты и слабого основания
(гидролиз по катиону):
(раствор имеет кислую среду, реакция протекает обратимо,
гидролиз по второй ступени протекает в ничтожной
степени).

10.

Гидролиз соли слабой кислоты и слабого основания:
(равновесие смещено в сторону продуктов, гидролиз
протекает практически полностью, так как оба продукта
реакции уходят из зоны реакции в виде осадка или
газа).
Соль сильной кислоты и сильного основания не
подвергает- ся гидролизу, и раствор нейтрален.

11. СХЕМА ГИДРОЛИЗА КАРБОНАТА НАТРИЯ

Na₂CO₃
NaOH
сильное основание
H₂CO₃
слабая кислота
ЩЕЛОЧНАЯ СРЕДА
СОЛЬ КИСЛАЯ, гидролиз по
АНИОНУ

12. СХЕМА ГИДРОЛИЗА ХЛОРИДА МЕДИ (II)

CuCl₂
Cu(OH)₂↓
слабое основание
HCl
сильная кислота
КИСЛАЯ СРЕДА
СОЛЬ ОСНОВНАЯ, гидролиз по
КАТИОНУ

13. СХЕМА ГИДРОЛИЗА СУЛЬФИДА АЛЮМИНИЯ

Al₂S₃
Al(OH)₃↓
слабое основание
H₂S
слабая кислота
НЕЙТРАЛЬНАЯ РЕАКЦИЯ
СРЕДЫ
гидролиз необратимый

14.

РОЛЬ ГИДРОЛИЗА В ПРИРОДЕ
Преобразование земной коры
Обеспечение слабощелочной среды морской
воды
РОЛЬ ГИДРОЛИЗА В ЖИЗНИ
ЧЕЛОВЕКА
Стирка
Мытье посуды
Умывание с мылом
Процессы пищеварения

Процесс образования слабодиссоциированных соединений с изменением водородного показателя среды при взаимодействии воды и соли называется гидролизом.

Гидролиз солей происходит в случае связывания одного иона воды с образованием труднорастворимых или слабодиссоциированных соединений за счет смещения равновесия диссоциации. По большей части этот процесс является обратимым и при разбавлении или увеличении температуры усиливается.

Чтобы узнать, какие соли подвергаются гидролизу, необходимо знать, какие по силе при ее образовании использовались основания и кислоты. Существует несколько видов их взаимодействий.

Получение соли из основания и кислоты слабой силы

Примерами могут служить сульфид алюминия и хрома, а также аммоний ускуснокислый и карбонат аммония. Данные соли при растворении в воде образуют основания и слабодиссоциирующие кислоты. Чтобы проследить обратимость процесса, необходимо составить уравнение реакции гидролиза солей:

Аммоний уксуснокислый + вода ↔ аммиак + уксусная кислота

В ионном виде процесс выглядит как:

CH 3 COO- + NH 4 + + Н 2 О ↔ CH 3 COOH + NH 4 OH.

В вышеприведенной реакции гидролизации образуются аммиак и уксусная кислота, то есть слабодиссоциирующие вещества.

Водородный показатель водных растворов (рН) напрямую зависит от относительной силы, то есть констант диссоциации продуктов реакции. Приведенная выше реакция будет слабощелочной, так как постоянная распада уксусной кислоты меньше константы гидроокиси аммония, то есть 1,75 ∙ 10 - 5 меньше, чем 6,3 ∙ 10 -5 . Если основания и кислоты удаляются из раствора, тогда процесс происходит до конца.

Рассмотрим пример необратимого гидролиза:

Сульфат алюминия + вода = гидроокись алюминия + сероводород

В этом случае процесс необратим, потому как один из продуктов реакции удаляется, то есть выпадает в осадок.

Гидролиз соединений, полученных взаимодествием слабого основания с сильной кислотой

Этот тип гидролиза описывают реакции разложения сульфата алюминия, хлорида или бромида меди, а также хлорида железа или аммония. Рассмотрим реакцию хлорида железа, которая протекает в две стадии:

Стадия первая:

Хлорид железа + вода ↔ гидроксохлорид железа + соляная кислота

Ионное уравнение гидролиза солей хлорида железа принимает вид:

Fe 2+ + Н 2 О + 2Cl - ↔ Fe(OH) + + Н + + 2Cl -

Вторая стадия гидролиза:

Fe(OH)+ + Н 2 О + Cl - ↔ Fe(OH) 2 + Н + + Cl -

По причине дефицита ионов гидроксогруппы и накапливания ионов водорода гидролиз FeCl 2 протекает по первой стадии. Образуется сильная соляная кислота и слабое основание - гидрокись железа. В случае подобных реакций среда получается кислой.

Негидролизующиеся соли, полученные путем взаимодействия сильных оснований и кислот

Примером таких солей могут быть хлориды кальция или натрия, сульфат калия и бромид рубидия. Однако приведенные вещества не гидролизуются, так как при растворении в воде имеют нейтральную среду. Единственным малодиссоциирующим веществом в этом случае является вода. Для подтверждения этого утверждения можно составить уравнение гидролиза солей хлорида натрия с образованием кислоты соляной и гидроокиси натрия:

NaCl + Н 2 О ↔ NaOH + HCl

Реакция в ионном виде:

Na + + Cl - + Н 2 О↔ Na + + ОН - + Н + + Cl -

Н 2 О ↔ Н + + ОН -

Соли как продукт реакции сильной щелочи и кислоты слабой силы

В данном случае гидролиз солей протекает по аниону, что соответствует щелочной среде водородного показателя. В качестве примеров можно назвать ацетат, сульфат и карбонат натрия, силикат и сульфат калия, а также натриевую соль синильной кислоты. Например, составим ионно-молекулярные уравнения гидролиза солей сульфида и ацетата натрия:

Диссоциация сульфида натрия:

Na 2 S ↔ 2Na + + S 2-

Первая стадия гидролиза многоосновной соли, происходит по катиону:

Na 2 S + Н 2 О ↔ NaH S + NaOH

Запись в ионном виде:

S 2- + Н 2 О ↔ HS - + ОН -

Вторая ступень осуществима в случае повышения температуры реакции:

HS - + Н 2 О ↔ H 2 S + ОН -

Рассмотрим еще одну реакцию гидролиза на примере натрия уксуснокислого:

Натрий уксуснокислый + вода ↔ уксусная кислота + едкий натр.

В ионном виде:

CH 3 COO - + Н 2 О ↔ CH 3 COOH + ОН -

В результате реакции образуется слабая уксусная кислота. В обоих случаях реакции будут иметь щелочную среду.

Равновесие реакции по принципу Ле-Шателье

Гидролиз, как и остальные химические реакции, бывает обратимым и необратимым. В случае обратимых реакций один из реагентов расходуется не весь, в то время как необратимые процессы протекают с полным расходом вещества. Это связано со смещением равновесия реакций, которое основано на изменении физических характеристик, таких как давление, температура и массовая доля реагентов.

Согласно понятию принципа Ле-Шателье, система будет считаться равновесной до тех пор, пока на нее не будет изменено одно или несколько внешних условий протекания процесса. К примеру, при уменьшении концентрации одного из веществ равновесие системы постепенно начнет смещаться в сторону образования этого же реагента. Гидролиз солей также имеет способность подчиняться принципу Ле-Шателье, с помощью которого можно ослабить или усилить протекание процесса.

Усиление гидролиза

Гидролиз можно усилить до полной необратимости несколькими способами:

  • Повысить скорость образования ионов ОН - и Н + . Для этого нагревают раствор, и за счет увеличения поглощения теплоты водой, то есть эндотермической диссоциации, этот показатель повышается.
  • Прибавить воды.
  • Перевести один из продуктов в газообразное состояние либо связать в тяжело растворимое вещество.

Подавление гидролиза

Подавить процесс гидролизации, так же как и усилить, можно несколькими способами.

Ввести в раствор один из образующихся в процессе веществ. Например, подщелачивать раствор, в случае если рН˃7, или же наоборот подкислять, где реакционная среда меньше 7 по водородному показателю.

Взаимное усиление гидролиза

Взаимное усиление гидролизации применяется в том случае, если система стала равновесной. Разберем конкретный пример, где системы в разных сосудах стали равновесны:

Al 3+ + Н 2 О ↔ AlOH 2+ + Н +

СО 3 2- + Н 2 О ↔ НСО 3 - + ОН -

Обе системы мало гидролизованы, поэтому, если смешать их друг с другом, произойдет связывание гидроксоинов и ионов водорода. В результате получим молекулярное уравнение гидролиза солей:

Хлорид алюминия + карбонат натрия + вода = хлорид натрия + гидроокись алюминия + диоксид углерода.

По принипу Ле-Шателье равновесие системы перейдет в сторону продуктов реакции, а гидролиз пройдет до конца с образованием гидроксида алюминия, выпавшего в осадок. Такое усиление процесса возможно лишь в том случае, если одна из реакций протекает по аниону, а другая по катиону.

Гидролиз по аниону

Гидролиз водных растворов солей осуществляется за счет соединения их ионов с молекулами воды. Один из способов гидролизации производится по аниону, то есть прибавление водного иона Н + .

В большинстве своем этому способу гидролиза подвержены соли, которые образуются посредством взаимодействия сильного гидроксида и слабой кислоты. Примером солей, разлагающихся по аниону, может выступать сульфат или сульфит натрия, а также карбонат или фосфат калия. Водородный показатель при этом более семи. В качестве примера разберем диссоциацию натрия уксуснокислого:

В растворе это соединение разделяется на катион - Na + , и анион - СН 3 СОО - .

Катион диссоциированного натрия уксуснокислого, образованный сильным основанием, не может вступить в реакцию с водой.

При этом анионы кислоты с легкостью реагируют с молекулами Н 2 О:

СН 3 СОО - + НОН = СН 3 СООН +ОН -

Следовательно, гидролизация осуществляется по аниону, и уравнение принимает вид:

CH3COONa + НОН = СН 3 СООН + NaOH

В случае, если гидролизу подвергаются многоосновные кислоты, процесс происходит в несколько стадий. В нормальных условиях подобные вещества гидролизуются по первой стадии.

Гидролиз по катиону

Катионному гидролизу в основном подвержены соли, образованные путем взаимодействия сильной кислоты и основания малой силы. Примером служит бромид аммония, нитрат меди, а также хлорид цинка. При этом среда в растворе при гидролизации соответствует менее семи. Рассмотрим процесс гидролиза по катиону на примере хлорида алюминия:

В водном растворе он диссоциирует на анион - 3Cl - и катион - Al 3+ .

Ионы сильной хлороводородной кислоты не взаимодействуют с водой.

Ионы (катионы) основания, напротив, подвержены гидролизу:

Al 3+ + НОН = AlOH 2+ + Н +

В молекулярном виде гидролизация хлорида алюминия выглядит следующим образом:

AlCl3 + Н 2 О = AlOHCl + HCl

При нормальных условиях предпочтительно пренебрегать гидролизацией по второй и третьей ступени.

Степень диссоциации

Любая реакция гидролиза солей характеризуется степенью диссоциации, которая показывает отношение между общим числом молекул и молекулами, способными переходить в ионное состояние. Степень диссоциации характеризуется несколькими показателями:

  • Температура, при которой осуществляется гидролиз.
  • Концентрация диссоциируемого раствора.
  • Происхождение растворяемой соли.
  • Природа самого растворителя.

По степени диссоциации все растворы делятся на сильные и слабые электролиты, которые, в свою очередь, при растворении в различных растворителях проявляют разную степень.


Константа диссоциации

Количественным показателем возможности вещества распадаться на ионы является константа диссоциации, также называемая константой равновесия. Говоря простым языком, постоянная равновесия есть отношение разложившихся на ионы электролитов к непродиссоциированным молекулам.

В отличие от степени диссоциации, этот параметр не зависит от внешних условий и концентрации солевого раствора в процессе гидролизации. При диссоциации многоосновных кислот степень диссоциации на каждой ступени становится на порядок меньше.

Показатель кислотно-основных свойств растворов

Водородный показатель или рН - мера для определения кислотно-основных свойств раствора. Вода в ограниченном количестве диссоциирует на ионы и является слабым электролитом. При расчете водородного показателя используют формулу, которая является отрицательным десятичным логарифмом скопления водородных ионов в растворах:

рН = -lg[Н + ]

  • Для щелочной среды этот показатель будет равен более семи. Например, [Н + ] = 10 -8 моль/л, тогда рН = -lg = 8, то есть рН ˃ 7.
  • Для кислой среды, напротив, водородный показатель должен быть менее семи. Например, [Н + ] = 10 -4 моль/л, тогда рН = -lg = 4, то есть рН ˂ 7.
  • Для нейтральной среды, рН = 7.

Очень часто для определения рН-растворов используют экспресс-метод по индикаторам, которые, в зависимости от рН, меняют свой цвет. Для более точного определения пользуются иономерами и рН-метрами.

Количественные характеристики гидролиза

Гидролиз солей, как и любой другой химический процесс, имеет ряд характеристик, в соответствии с которыми протекание процесса становится возможным. К наиболее значимым количественным характеристикам относится константа и степень гидролиза. Остановимся подробнее на каждом из них.

Степень гидролиза

Чтобы узнать, какие соли подвергаются гидролизу и в каком количестве, используют количественный показатель - степень гидролиза, который характеризует полноту протекания гидролизации. Степенью гидролиза называют часть вещества от общего количества молекул, способного к гидролизации, записывается в процентном соотношении:

h = n/N∙ 100%,

где степень гидролиза - h;

количество частиц соли, подвергнутых гидролизации - n;

общая сумма молекул соли, участвующих в реакции - N.

К факторам, влияющим на степень гидролизации, относятся:

  • постоянная гидролизации;
  • температура, при повышении которой степень возрастает за счет усиления взаимодействия ионов;
  • концентрация соли в растворе.

Константа гидролиза

Она является второй по значимости количественной характеристикой. В общем виде уравнения гидролиза солей можно записать как:

МА + НОН ↔ МОН + НА

Отсюда следует, что константа равновесия и концетрация воды в одном и том же растворе есть величины постоянные. Соответственно, произведение этих двух показателей будет также постоянной величиной, что и означает константу гидролиза. В общем виде Кг можно записать, как:

Кг = ([НА]∙[МОН])/[МА],

где НА - кислота,

МОН - основание.

В физическом смысле константа гидролиза описывает способность определенной соли подвергаться процессу гидролизации. Этот параметр зависит от природы вещества и его концентрации.