Виды связей в механике. Теоретическая механика статика. Основные виды связей и их реакции

Всякое свободное тело в пространстве имеет шесть степеней свободы: оно может перемещаться вдоль трех осей и вращаться относительно этих осей. В свободном состоянии тела находятся редко, в большинстве случаев их перемещение ограничено связями. Связями называют ограничения, исключающие возможность движения тела в определенном направлении. Если па закрепленное тело действуют активные силы, то в связях возникают реактивные силы или реакции, дополняющие систему активных сил до равновесной. Совокупность активных и реактивных уравновешенных сил определяет напряженное состояние тела и его деформацию.

Реакции связей находят с помощью уравнений равновесия. При этом решение ведется по следующему плану:

  • выявляют внешние активные силы, приложенные к выделенному телу или группе тел;
  • выделенный объект (тело) освобождают от связей и вместо них прикладывают силы реакции связей;
  • выбрав координатные оси, составляют уравнения равновесия и, решив их, находят силы реакции связей.

Для пространственной системы сил можно составить шесть уравнений равновесия (13.7). С помощью этих уравнений определяются шесть неизвестных реакций.

Задачи, решаемые только с помощью уравнений равновесия статики, называют статически определимыми. Если на выделенный объект будет наложено большее число связей, то задача становится статически неопределимой и для ее решения кроме уравнений равновесия необходимо использовать дополнительные уравнения, составляемые на основании анализа деформаций. В общем случае закрепление или соединение двух деталей может исключать от одной до шести степеней свободы, т.е. накладывать от одной до шести связей. В соответствии с этим в закреплении может возникнуть от одной до шести реакций. Количество реактивных сил и их направление зависят от характера связей.

Приведем наиболее распространенные типы закрепления и соединения деталей.

  • 1. Соединения, исключающие возможность перемещения только в одном направлении. В таких соединениях возникает только одна реакция определенного направления. К соединениям этого типа относятся:
    • а) соединение посредством касания двух тел в точке или по линии. При касании возникает реакция, направленная по общей нормали к поверхностям касания (рис. 13.5). Такое соединение называется шарнирно-подвижным;

Рис . 13.5.

  • б) соединение, осуществляемое тросом, нитыо, цепыо, дает реакцию, направленную вдоль гибкой связи, причем такая связь может работать только на растяжение (см. рис. 13.5, б );
  • в) соединение в виде жесткого прямого стержня с шарнирным закреплением концов также дает реакцию, направленную вдоль оси стержня (см. рис. 13.5, в) у но может работать как на растяжение, так и па сжатие.

Рис. 13.6.

На рис. 13.5, г показано тело с тремя наложенными на него связями; каждая связь исключает возможность движения в одном направлении и дает одну реакцию, направление которой известно.

  • 2. Закрепление или соединение, исключающее перемещения по двум направлениям и соответственно дающее две реакции, носит название шарнирно-неподвижной опоры или цилиндрического шарнира (рис. 13.6).
  • 3. Соединение, исключающее перемещения по трем направлениям и дающее три реакции, носит название пространственного или шарового шарнира (рис. 13.7).
  • 4. Закрепление, исключающее все шесть степеней свободы, носит название жесткого закрепления или заделки. В заделке могут возникнуть шесть реактивных силовых факторов - три реактивные силы и три реактивных момента (рис. 13.8). При действии на тело с жесткой заделкой сил, расположенных в одной плоскости, в заделке возникают две реактивные силы и один реактивный момент.

Рис. 13.7.

Рис. 13.8.

При расчетах опоры схематизируют и условно делят на три основных группы:

  • шарнирно-подвижная (рис. 13.9, а), воспринимающая только одну линейную реакцию /?;
  • шарнирно-неподвижная (рис. 13.9, б), воспринимающая две линейные реакции R и Н.
  • защемление , или заделка (рис. 13.9, в ), воспринимающая линейные реакции R и Н и момент М.

Рис. 13.9.

При соприкосновении реальных тел и при их относительном движении в местах их контакта возникают силы трения, которые можно рассматривать как особый вид реактивных сил. Сила трения расположена в плоскости касания тел; при движении она направлена в сторону, противоположную относительной скорости тела.

Пример. Вал 1 с закрепленным на нем зубчатым колесом 2 установлен в двух подшипниках А и В. Па свободном конце вала насажен шкив ременной передачи 3 (рис. 13.10), Известны геометрические размеры а , с, передававшие крутящий момент М, диаметр шкива Д все параметры конического зубчатого колеса, а также соотношение сил натяжения ремня F a JF al = 2. Требуется определить реакции опор и силы натяжения ремня.


Рис. 13.10.

Решение проводим в три этана.

1. Выявляем активные силы, действующие в системе. Па коническое зубчатое колесо действует пространственно расположенная сила, составляющие которой по осям координат обозначены соответственно F v F r и F a . Составляющая F { , называемая окружной силой, определяется но заданному крутящему моменту на основании уравнения моментов относительно оси z

Радиальная составляющая F r и осевая составляющая F a определяются но окружной силе F ( на основании заданной геометрии зубчатого конического колеса.

2. Освобождаем вал (объект равновесия) от связей и вместо них прикладываем силы реакции Х л У л, Х в, Y B Z B .

Подшипники А и В следует рассматривать как шарнирные опоры, так как в них всегда имеются зазоры. В опоре А возникают две реакции Х л и У л, так как эта опора запрещает перемещение вала только в поперечных направлениях. В правой опоре возникают три реакции Х в, У в и Z B , так как она ограничивает перемещение вала также и в осевом направлении. Активные и реактивные силы в совокупности образуют пространственную систему уравновешенных сил.

3. Выбираем систему координат: оси х и у располагаем в плоскости, перпендикулярной оси вала, а ось z направляем по оси вала. Составляем шесть уравнений равновесия, используя (13.7) и (13.8).

Используя заданное условие F al = 2F ii2 и решив уравнения равновесия, найдем силы F aV F a2 и реакции опор

Теоретическая механика – это раздел механики, в котором излагаются основные законы механического движения и механического взаимодействия материальных тел.

Теоретическая механика является наукой, в которой изучаются перемещения тел с течением времени (механические движения). Она служит базой других разделов механики (теория упругости, сопротивление материалов, теория пластичности, теория механизмов и машин, гидроаэродинамика) и многих технических дисциплин.

Механическое движение — это изменение с течением времени взаимного положения в пространстве материальных тел.

Механическое взаимодействие – это такое взаимодействие, в результате которого изменяется механическое движение или изменяется взаимное положение частей тела.

Статика твердого тела

Статика — это раздел теоретической механики, в котором рассматриваются задачи на равновесие твердых тел и преобразования одной системы сил в другую, ей эквивалентную.

    Основные понятия и законы статики
  • Абсолютно твердое тело (твердое тело, тело) – это материальное тело, расстояние между любыми точками в котором не изменяется.
  • Материальная точка – это тело, размерами которого по условиям задачи можно пренебречь.
  • Свободное тело – это тело, на перемещение которого не наложено никаких ограничений.
  • Несвободное (связанное) тело – это тело, на перемещение которого наложены ограничения.
  • Связи – это тела, препятствующие перемещению рассматриваемого объекта (тела или системы тел).
  • Реакция связи — это сила, характеризующая действие связи на твердое тело. Если считать силу, с которой твердое тело действует на связь, действием, то реакция связи является противодействием. При этом сила - действие приложена к связи, а реакция связи приложена к твердому телу.
  • Механическая система – это совокупность взаимосвязанных между собой тел или материальных точек.
  • Твердое тело можно рассматривать как механическую систему, положения и расстояние между точками которой не изменяются.
  • Сила – это векторная величина, характеризующая механическое действие одного материального тела на другое.
    Сила как вектор характеризуется точкой приложения, направлением действия и абсолютным значением. Единица измерения модуля силы – Ньютон.
  • Линия действия силы – это прямая, вдоль которой направлен вектор силы.
  • Сосредоточенная сила – сила, приложенная в одной точке.
  • Распределенные силы (распределенная нагрузка) – это силы, действующие на все точки объема, поверхности или длины тела.
    Распределенная нагрузка задается силой, действующей на единицу объема (поверхности, длины).
    Размерность распределенной нагрузки – Н/м 3 (Н/м 2 , Н/м).
  • Внешняя сила – это сила, действующая со стороны тела, не принадлежащего рассматриваемой механической системе.
  • Внутренняя сила – это сила, действующая на материальную точку механической системы со стороны другой материальной точки, принадлежащей рассматриваемой системе.
  • Система сил – это совокупность сил, действующих на механическую систему.
  • Плоская система сил – это система сил, линии действия которых лежат в одной плоскости.
  • Пространственная система сил – это система сил, линии действия которых не лежат в одной плоскости.
  • Система сходящихся сил – это система сил, линии действия которых пересекаются в одной точке.
  • Произвольная система сил – это система сил, линии действия которых не пересекаются в одной точке.
  • Эквивалентные системы сил – это такие системы сил, замена которых одна на другую не изменяет механического состояния тела.
    Принятое обозначение: .
  • Равновесие – это состояние, при котором тело при действии сил остается неподвижным или движется равномерно прямолинейно.
  • Уравновешенная система сил – это система сил, которая будучи приложена к свободному твердому телу не изменяет его механического состояния (не выводит из равновесия).
    .
  • Равнодействующая сила – это сила, действие которой на тело эквивалентно действию системы сил.
    .
  • Момент силы – это величина, характеризующая вращающую способность силы.
  • Пара сил – это система двух параллельных равных по модулю противоположно направленных сил.
    Принятое обозначение: .
    Под действием пары сил тело будет совершать вращательное движение.
  • Проекция силы на ось – это отрезок, заключенный между перпендикулярами, проведенными из начала и конца вектора силы к этой оси.
    Проекция положительна, если направление отрезка совпадает с положительным направлением оси.
  • Проекция силы на плоскость – это вектор на плоскости, заключенный между перпендикулярами, проведенными из начала и конца вектора силы к этой плоскости.
  • Закон 1 (закон инерции). Изолированная материальная точка находится в покое либо движется равномерно и прямолинейно.
    Равномерное и прямолинейное движение материальной точки является движением по инерции. Под состоянием равновесия материальной точки и твердого тела понимают не только состояние покоя, но и движение по инерции. Для твердого тела существуют различные виды движения по инерции, например равномерное вращение твердого тела вокруг неподвижной оси.
  • Закон 2. Твердое тело находится в равновесии под действием двух сил только в том случае, если эти силы равны по модулю и направлены в противоположные стороны по общей линии действия.
    Эти две силы называются уравновешивающимися.
    Вообще силы называются уравновешивающимися, если твердое тело, к которому приложены эти силы, находится в покое.
  • Закон 3. Не нарушая состояния (слово «состояние» здесь означает состояние движения или покоя) твердого тела, можно добавлять и отбрасывать уравновешивающиеся силы.
    Следствие. Не нарушая состояния твердого тела, силу можно переносить по ее линии действия в любую точку тела.
    Две системы сил называются эквивалентными, если одну из них можно заменить другой, не нарушая состояния твердого тела.
  • Закон 4. Равнодействующая двух сил, приложенных в одной точке, приложена в той же точке, равна по модулю диагонали параллелограмма, построенного на этих силах, и направлена вдоль этой
    диагонали.
    По модулю равнодействующая равна:
  • Закон 5 (закон равенства действия и противодействия) . Силы, с которыми два тела действуют друг на друга, равны по модулю и направлены в противоположные стороны по одной прямой.
    Следует иметь в виду, что действие - сила, приложенная к телу Б , и противодействие - сила, приложенная к телу А , не уравновешиваются, так как они приложены к разным телам.
  • Закон 6 (закон отвердевания) . Равновесие нетвердого тела не нарушается при его затвердевании.
    Не следует при этом забывать, что условия равновесия, являющиеся необходимыми и достаточными для твердого тела, являются необходимыми, но недостаточными для соответствующего нетвердого тела.
  • Закон 7 (закон освобождаемости от связей). Несвободное твердое тело можно рассматривать как свободное, если его мысленно освободить от связей, заменив действие связей соответствующими реакциями связей.
    Связи и их реакции
  • Гладкая поверхность ограничивает перемещение по нормали к поверхности опоры. Реакция направлена перпендикулярно поверхности.
  • Шарнирная подвижная опора ограничивает перемещение тела по нормали к опорной плоскости. Реакция направлена по нормали к поверхности опоры.
  • Шарнирная неподвижная опора противодействует любому перемещению в плоскости, перпендикулярной оси вращения.
  • Шарнирный невесомый стержень противодействует перемещению тела вдоль линии стержня. Реакция будет направлена вдоль линии стержня.
  • Глухая заделка противодействует любому перемещению и вращению в плоскости. Ее действие можно заменить силой, представленной в виде двух составляющих и парой сил с моментом.

Кинематика

Кинематика — раздел теоретической механики, в котором рассматриваются общие геометрические свойства механического движения, как процесса, происходящего в пространстве и во времени. Движущиеся объекты рассматривают как геометрические точки или геометрические тела.

    Основные понятия кинематики
  • Закон движения точки (тела) – это зависимость положения точки (тела) в пространстве от времени.
  • Траектория точки – это геометрическое место положений точки в пространстве при ее движении.
  • Скорость точки (тела) – это характеристика изменения во времени положения точки (тела) в пространстве.
  • Ускорение точки (тела) – это характеристика изменения во времени скорости точки (тела).
    Определение кинематических характеристик точки
  • Траектория точки
    В векторной системе отсчета траектория описывается выражением: .
    В координатной системе отсчета траектория определяется по закону движения точки и описывается выражениями z = f(x,y) — в пространстве, или y = f(x) – в плоскости.
    В естественной системе отсчета траектория задается заранее.
  • Определение скорости точки в векторной системе координат
    При задании движения точки в векторной системе координат отношение перемещения к интервалу времени называют средним значением скорости на этом интервале времени: .
    Принимая интервал времени бесконечно малой величиной, получают значение скорости в данный момент времени (мгновенное значение скорости): .
    Вектор средней скорости направлен вдоль вектора в сторону движения точки, вектор мгновенной скорости направлен по касательной к траектории в сторону движения точки.
    Вывод: скорость точки – векторная величина, равная производной от закона движения по времени.
    Свойство производной: производная от какой либо величины по времени определяет скорость изменения этой величины.
  • Определение скорости точки в координатной системе отсчета
    Скорости изменения координат точки:
    .
    Модуль полной скорости точки при прямоугольной системе координат будет равен:
    .
    Направление вектора скорости определяется косинусами направляющих углов:
    ,
    где — углы между вектором скорости и осями координат.
  • Определение скорости точки в естественной системе отсчета
    Скорость точки в естественной системе отсчета определяется как производная от закона движения точки: .
    Согласно предыдущим выводам вектор скорости направлен по касательной к траектории в сторону движения точки и в осях определяется только одной проекцией .
    Кинематика твердого тела
  • В кинематике твердых тел решаются две основные задачи:
    1) задание движения и определение кинематических характеристик тела в целом;
    2) определение кинематических характеристик точек тела.
  • Поступательное движение твердого тела
    Поступательное движение — это движение, при котором прямая, проведенная через две точки тела, остается параллельной ее первоначальному положению.
    Теорема: при поступательном движении все точки тела движутся по одинаковым траекториям и имеют в каждой момент времени одинаковые по модулю и направлению скорости и ускорения .
    Вывод: поступательное движение твердого тела определяется движением любой его точки, в связи с чем, задание и изучение его движения сводится к кинематике точки .
  • Вращательное движение твердого тела вокруг неподвижной оси
    Вращательное движение твердого тела вокруг неподвижной оси — это движение твердого тела, при котором две точки, принадлежащие телу, остаются неподвижными в течение всего времени движения.
    Положение тела определяется углом поворота . Единица измерения угла – радиан. (Радиан — центральный угол окружности, длина дуги которого равна радиусу, полный угол окружности содержит радиана.)
    Закон вращательного движения тела вокруг неподвижной оси .
    Угловую скорость и угловое ускорение тела определим методом дифференцирования:
    — угловая скорость, рад/с;
    — угловое ускорение, рад/с².
    Если рассечь тело плоскостью перпендикулярной оси, выбрать на оси вращения точку С и произвольную точку М , то точка М будет описывать вокруг точки С окружность радиуса R . За время dt происходит элементарный поворот на угол , при этом точка М совершит перемещение вдоль траектории на расстояние .
    Модуль линейной скорости:
    .
    Ускорение точки М при известной траектории определяется по его составляющим :
    ,
    где .
    В итоге, получаем формулы
    тангенциальное ускорение: ;
    нормальное ускорение: .

Динамика

Динамика — это раздел теоретической механики, в котором изучаются механические движении материальных тел в зависимости от причин, их вызывающих.

    Основные понятия динамики
  • Инерционность — это свойство материальных тел сохранять состояние покоя или равномерного прямолинейного движения, пока внешние силы не изменят этого состояния.
  • Масса — это количественная мера инерционности тела. Единица измерения массы — килограмм (кг).
  • Материальная точка — это тело, обладающее массой, размерами которого при решении данной задачи пренебрегают.
  • Центр масс механической системы — геометрическая точка, координаты которой определяются формулами:

    где m k , x k , y k , z k — масса и координаты k -той точки механической системы, m — масса системы.
    В однородном поле тяжести положение центра масс совпадает с положением центра тяжести.
  • Момент инерции материального тела относительно оси – это количественная мера инертности при вращательном движении.
    Момент инерции материальной точки относительно оси равен произведению массы точки на квадрат расстояния точки от оси:
    .
    Момент инерции системы (тела) относительно оси равен арифметической сумме моментов инерции всех точек:
  • Сила инерции материальной точки — это векторная величина, равная по модулю произведению массы точки на модуль ускорения и направленная противоположно вектору ускорения:
  • Сила инерции материального тела — это векторная величина, равная по модулю произведению массы тела на модуль ускорения центра масс тела и направленная противоположно вектору ускорения центра масс: ,
    где — ускорение центра масс тела.
  • Элементарный импульс силы — это векторная величина , равная произведению вектора силы на бесконечно малый промежуток времени dt :
    .
    Полный импульс силы за Δt равен интегралу от элементарных импульсов:
    .
  • Элементарная работа силы — это скалярная величина dA , равная скалярному прои

Все теоремы и уравнения статики выво-дятся из нескольких исходных положений, принимаемых без матема-тических доказательств и называемых аксиомами или принципами статики. Аксиомы статики представляют собою результат обобщений многочисленных опытов и наблюдений над равновесием и движением тел, неоднократно подтвержденных практикой. Часть из этих аксиом является следствиями основных законов механики, с которыми мы познакомимся в динамике.

Аксиома 1. Если на свободное абсолютно твердое тело действуют две силы, то тело может находиться в равновесии тогда и только тогда, когда эти силы равны по модулю (F 1 = F 2) и направлены вдоль одной прямой в противоположные стороны (рис. 10).

Рис.10

Аксиома 1 определяет простейшую уравновешенную систему сил, так как опыт показывает, что свободное тело, на которое действует только одна сила, находиться в равнове-сии не может.

Аксиома 2. Действие данной си-стемы, сил на абсолютно твердое тело не изменится, если к ней прибавить или от нее отнять уравновешенную систему сил.

Эта аксиома устанавливает, что две системы сил, отличающиеся на уравнове-шенную систему, эквивалентны друг другу.

Следствие из 1-й и 2-й аксиом. Действие силы на абсо-лютно твердое тело не изменится, если перенести точку при-ложения силы вдоль ее линии действия в любую другую точку тела.

Рис.11

В самом деле, пусть на твердое тело действует приложенная в точке А сила (рис.11). Возьмем на линии действия этой силы произвольную точку В и приложим к ней две уравновешенные силы и , такие, что = , = . От этого действие силы на тело не изменится. Но силы и со-гласно аксиоме 1 также образуют уравновешенную систему, которая может быть отброшена. В резуль-тате на тело. Будет действовать только одна сила , равная , но приложен-ная в точке В .

Таким образом, вектор, изобра-жающий силу , можно считать приложенным в любой точке на линии действия силы (такой вектор называется скользящим).

Аксиома 3 (аксиома параллелограмма сил). Две силы, приложенные к телу в одной точке, имеют равнодействующую, приложенную в той же точке и изображаемую диагональю па-раллелограмма, построенного на этих силах, как на сторонах.

Вектор , равный диагонали параллелограмма, построенного на векторах и (рис.12), называется геометрической суммой векторов и : = + .

Рис.12

Величина равнодействующей

Рис. 1.3.

Конечно, Такое равен-ство будет соблюдаться только при условии, что эти силы направлены по одной пря-мой в одну сторону. Если же векторы сил окажутся перпендикулярными, то

Следовательно, аксиому 3 можно еще формулировать так: две силы, приложенные к телу в одной точке, имеют равнодействую-щую, равную геометрической (векторной) сумме этих сил и прило-женную в той же точке.


Аксиома 4. При всяком действии одного материального тела на другое имеет место такое же по величине, но проти-воположное по направлению противодействие.

Закон о равенстве действия и противодей-ствия является одним из основных законов ме-ханики. Из него следует, что если тело А дей-ствует на тело В с силой , то одновременно тело В действует на тело А с такой же по модулю и направленной вдоль той же прямой, но противоположную сторону силой = (рис. 13). Однако силы и не образуют урав-новешенной системы сил, так как они приложены к разным телам.

Рис.13

Аксиома 5 (принцип отвердевания). Равновесие изме-няемого (деформируемого) тела, находящегося под действием дан-ной системы сил, не нарушится, если тело считать отвердевшим (абсолютно твердым).

Высказанное в этой аксиоме утверждение очевидно. Например, ясно, что равновесие цепи не нарушится, если ее звенья считать сва-ренными друг с другом и т. д.

Связи и их реакции.

По определению, тело, которое не скреплено с другими телами и может совершать из данного положе-ния любые перемещения в пространстве, называется свободным (например, воздушный шар в воздухе). Тело, перемещениям которого в пространстве препятствуют какие-нибудь другие, скрепленные или соприкасающиеся с ним тела, называется несвободным . Все то, что ограничивает перемещения данного тела в пространстве, будем называть связью.

Например, тело лежащее на столе - несвободное тело. Связью его является плоскость стола, которая препятствует перемещению тела вниз.

Очень важен так называемый принцип освобождаемости , которым будем пользоваться в дальнейшем. Записывается он так.

Любое несвободное тело можно сделать свободным, если связи убрать, а действие их на тело заменить силами, такими, чтобы тело оставалось в равновесии.

Сила, с которой данная связь действует на тело, препятствуя тем ила иным его перемещениям, называется силой реакции (противодействия) связи или просто реакцией связи.

Так у тела, лежащего на столе, связь - стол. Тело несвободное. Сделаем его свободным - стол уберем, а чтобы тело осталось в равнове-сии, заменим стол силой, направленной вверх и равной, конечно, весу тела.

Направлена реакция связи в сторону, противоположную той, куда связь не дает перемещаться телу. Когда связь одновременно препятствует перемещениям тела по нескольким направлениям, направление реакции связи также наперед неизвестно и должно определяться в результате решения рассматриваемой задачи.

Рассмотрим, как направлены реакции некоторых основных видов связей .

1. Гладкая плоскость (поверхность) или опора. Гладкой будем называть поверхность, трением о которую данного тела можно в первом приближении пренебречь. Такая поверхность не дает телу перемещаться только по направлению общего перпен-дикуляра (нормали) к поверхностям соприкасающихся тел в точке их касания (рис. 14,а ). Поэтому реакция N гладкой поверхности или опоры направлена по общей нормали к поверхностям сопри-касающихся тел в точке их касания и приложена в этой точке. Когда одна из соприкасающихся поверхностей является точкой (рис. 14,б ), то реакция направлена по нормали к другой поверх-ности.

Если поверхности не гладкие, надо добавить еще одну силу - силу трения , которая направлена перпендикулярно нормальной реакции в сторону, противоположную возможному скольжению тела.

Рис.14 Рис.15

Рис.16

2. Нить. Связь, осуществленная в виде гибкой нерастяжимой нити (рис.15), не дает телу М удаляться от точки подвеса нити по направлению AM . Поэтому реакция Т натянутой нити направлена вдоль нити от тела к точке ее подвеса. Если даже заранее можно догадаться, что реакция направлена к телу, все равно ее надо направить от тела. Таково правило. Оно избавляет от лишних и ненужных предположений и, как убедимся далее, помогает установить сжат стержень или растянут.

3. Цилиндрический шарнир (подшипник). Если два тела соединены болтом, проходящим через отверстия в этих телах, то такое соединение называется шарнирным или просто шарниром; осевая линия болта называется осью шарнира. Тело АВ , прикреплен-ное шарниром к опоре D (рис.16,а ), может поворачиваться как угодно вокруг оси шарнира (в плоскости чертежа); при этом конец А тела не может переместиться ни по какому направлению, перпен-дикулярному к оси шарнира. Поэтому реакция R цилиндрического шарнира может иметь любое направление в плоскости, перпен-дикулярной к оси шарнира, т.е. в плоскости А ху. Для силы R в этом случае наперед не известны ни ее модуль R , ни направле-ние (угол ).

4. Шаровой шарнир и подпятник. Этот вид связи закреп-ляет какую-нибудь точку тела так, что она не может совершать никаких перемещений в пространстве. При-мерами таких связей служат шаровая пята, с помощью которой прикрепляется фото-аппарат к штативу (рис.16,б ) и подшипник с упором (подпятник) (рис. 16,в ). Реакция R шарового шарнира или подпятника может иметь любое направление в пространстве. Для нее наперед неизвестны ни модуль реакции R , ни углы, образуемые ею с осями х, у, z .

Рис.17

5. Стержень. Пусть в какой-нибудь конструкции связью является стержень АВ , закрепленный на концах шарнирами (рис.17). Примем, что весом стержня по сравнению с воспринимаемой им нагрузкой можно пре-небречь. Тогда на стержень будут действовать только две силы при-ложенные в шарнирах А и В . Но если стержень АВ находится в равновесии, то по аксиоме 1 приложенные в точках А и В силы должны быть направлены вдоль одной прямой, т. е. вдоль оси стержня. Следовательно, нагруженный на концах стержень, весом ко-торого по сравнению с этими нагрузками можно пренебречь, работает только на растяжение или на сжатие. Если такой стержень является связью, то реакция стержня будет направлена вдоль оси стержня.

6. Подвижная шарнирная опора (рис.18, опора А ) препятствует движению тела только в направ-лении перпендикулярном плоскости скольжения опоры. Реакция такой опоры направлена по нормали к поверхности, на которую опираются катки подвижной опоры.

7. Неподвижная шарнирная опора (рис.18, опора В ). Реакциятакой опоры проходит через ось шарнира и может иметь любое направление в плоскости чертежа. При решении задач будем реакцию изображать ее составляющими и по направлениям осей координат. Если мы, решив задачу, найдем и , то тем самым будет определена и реакция ; по модулю

Рис.18

Способ закрепления, показанный на рис.18, употребляется для того, чтобы в балке АВ не возникало дополнительных напряжений при изменении ее длины от изменения температуры или от изгиба.

Заметим, что если опору А балки (рис.18) сделать тоже непо-движной, то балка при действии на нее любой плоской системы сил будет статически неопределимой, так как тогда в три уравнения равновесия вой-дут четыре неизвестные реакции , , , .

8. Неподвижная защемляющая опора или жесткая заделка (рис.19). В этом случае на заделанный конец балки со стороны опорных плоско-стей действует система распределенных сил реакций. Считая эти силы приведен-ными к центру А

Иногда приходится исследовать равновесие нетвердых тел. При этом будем пользоваться предположением, что если это нетвердое тело находится в равновесии под действием сил, то его можно рассматривать как твердое тело, используя все правила и методы статики.

1. Гладкая (без трения) плоскость или поверхность. Такие связи препятствуют перемещениям тела только в направлении общей нормали в точке касания, вдоль которой и будет направлена соответствующая реакция. Поэтому реакция гладкой плоской опоры перпендикулярна этой опоре (реакция на рис. 12,а); реакция гладкой стенки перпендикулярна этой стенке рис. 12, б); реакция гладкой поверхности направлена по нормали к этой поверхности, проведенной в точке касания на рис. 12, в).

2. Острый выступ. В этом случае можно считать, что опирается сам выступ, а опорой служит рассматриваемое тело. Это приводит к случаю 1 и выводу, что реакция гладкого выступа направлена по нормали к поверхности опирающегося тела (сила на рис. 12, в).

3. Гибкая связь (невесомые нить, трос, цепь и т.п.). Соответствующая реакция направлена вдоль связи от точки крепления нити к точке подвеса (сила на рис. 11,г, сила на рис. 12, б).

4. Невесомый прямолинейный стержень с шарнирами на концах. Реакция направлена вдоль стержня. Поскольку стержень может быть как сжат, так и растянут, реакция может иметь направление как к точке подвеса стержня, так и от точки подвеса (реакции и на рис. 13, а).

5. Невесомый коленчатый или криволинейный стержень. Реакция направлена вдоль прямой, проходящей через центры концевых шарниров (сила 53 на рис. 13, а; сила S на рис. 13, б).

6. Подвижная шарнирная опора. Реакция направлена перпендикулярно плоскости опоры (плоскости катания) (рис. 14, а, б).

7. Цилиндрический шарнир (рис. 15, а), радиальный подшипник (рис. 15, б). Реакция проходит через центр шарнира (центр срединного сечения подшипника) и лежит в плоскости, перпендикулярной оси шарнира (подшипника).

Она эквивалентна двум неизвестным по модулю силам - составляющим этой реакции вдоль соответствующих координатных осей (силы на рис. 15,а; и на рис. 15, б). (Разъяснения по этому поводу см. также в примере на стр. 16).

8. Сферический шарнир (рис. 16, а), подпятник (или радиально-упорный подшипник) (рис. 16, б). Реакция состоит из трех неизвестных по модулю сил - составляющих реакции вдоль осей пространственной системы координат.

9. Жесткая заделка (рис. 17). При действии на тело плоской системы сил полная реакция заделки складывается из силы с составляющими ХА и УА, и пары сил с моментом М, расположенных в той же плоскости, что и действующие силы.

10. Скользящая заделка (рис. 18). В случае плоской системы сил и отсутствия трения реакция состоит из силы N и пары сил с моментом М, расположенных в одной плоскости с действующими силами. Сила N перпендикулярна к направлению скольжения.

Вопросы для самопроверки

1. Что называется абсолютно твердым телом, материальной точкой?

2. Укажите элементы силы. Какими способами можно задать силу?

3. Что называется векторным моментом силы относительно точки Что такое алгебраический момент силы?

4. В каком случае момент силы относительно точки равен нулю?

5. Что называется системой сил? Какие системы сил называются эквивалентными?

6. Что называется равнодействующей системы сил?

7. Дайте определение несвободного твердого тела, связи, реакции связи?

8. Можно ли несвободное тело рассматривать как свободное?

9. На какие две группы делятся силы, действующие на несвободное твердое тело?

Тела, рассматриваемые в механике, могут быть сво­бодными и несвободными .

Свободным называют тело, которое не испытывает никаких препятствий для перемещения в пространстве в любом направлении. Если же тело связано с другими телами, которые ограничивают его движение в одном или нескольких направлениях, то оно является несвободным .

Тела, которые ограничивают движение рассматриваемого тела называют связями .

В результате взаимодействия между телом и его свя­зями возникают силы , противодействующие возможным движениям тела . Эти силы действуют на тело со стороны связей и называются реакциями связей.

Реакция связи всегда противоположна тому направле­нию, по которому связь препятствует движению тела.

Определение реакций связей является одной из наи­более важных задач статики. Ниже приведены наиболее распространенные виды связей, встречающиеся в меха­нике.

Связь в виде гладкой (т. е. без учета сил трения) плоскости или поверхности (рис.а, б ). В этом случае реакция связи всегда направлена по нормали к опорной поверхности .

Связь в виде шероховатой плоскости (рис. в ). Здесь возникают две составляющие реакции: нормальная N , перпендикулярная плоскости, и касательная Т , лежащая в плоскости. Касательная реакция Т называется силой трения и всегда направлена в сторону, противоположную действительному или возможному движению тела.

Полная реакция R , равная геометрической сумме нормальной и касательной составляющих

R =N + Т , отклоняется от нормали к опорной поверхности на некоторый угол ρ .

При взаимодействии тела с реальными связями возни­кают силы трения . Однако во многих случаях силы тре­ния незначительны и вследствие этого ими часто пренебре­гают , т. е. считают связи абсолютно гладкими .

Связи , в которых отсутствуют силы трения , называют идеальными . Приведенная выше связь в виде гладкой плоскости или поверхности относится к категории иде­альных .

Гибкая связь, осуществляемая веревкой, тросом, цепью и т. п. (рис. г ). Реакция гибкой связи направ­лена вдоль связи, причем гибкая связь может работать только на растяжение .

Связь в виде жесткого стержня с шарнирным закреп­лением концов (рис.д ). Здесь реакции, так же как и в гибкой связи, всегда направлены вдоль осей стерж­ней , но стержни могут быть как растянутыми, так и сжа­тыми .

Связь, осуществляемая ребром двугранного угла или точечной опорой (рис.е ). Реакция такой связи направлена перпендикулярно поверхности опирающегося тела, если эту поверхность можно считать гладкой .

Существование реакций связей обосновывается . Для определения реакций связей используют прием освобождения от связей.

Вот этот прием. Не изменяя равновесия тела или системы тел, каждую связь, наложенную на систему, можно отбросить, заменив ее действием реакции отброшенной связи.