Числа и их свойства егэ. Тема: Теория чисел в заданиях С6 из ЕГЭ XII Межрайонная научно-практическая конференция «Шаг в будущее» Секция: математика Выполнили: Ильдар Гарифуллин, - презентация

Тип задания: 19
Тема: Числа и их свойства

Условие

Можно ли в бесконечно убывающей последовательности 1; \frac12 ;\frac13 ;\frac14 ;\frac15 ;... выбрать:

а) пять чисел;

б) пятьдесят чисел;

в) бесконечное множество чисел, которые образуют арифметическую прогрессию.

Показать решение

Решение

а) Можно. Данная последовательность убывающая, поэтому будем искать убывающую прогрессию. Заметим, что последовательность \frac5n ; \frac4n ; \frac3n ; \frac2n ; \frac1n является убывающей арифметической прогрессией, её разностью является число -\frac1n. Остаётся подобрать знаменатель n таким, чтобы сократились числители. Понятно, что в качестве знаменателя n можно взять кратное всех числителей, например, число 60 . Тогда получим арифметическую прогрессию \frac1{12} ;\frac1{15} ;\frac1{20} ;\frac1{30} ;\frac1{60} , удовлетворяющую условию задачи.

б) Можно. Последовательность \frac{50}n ;\frac{49}n ;...;\frac3n ;\frac2n ;\frac1n является убывающей арифметической прогрессией c разностью -\frac1n. Если в качестве знаменателя n взять число 50!=50\cdot 49\cdot ...\cdot 2\cdot 1, то после сокращения дробей получим 50 различных дробей, все числители которых равны 1 , то есть получим искомую арифметическую прогрессию.

в) Нельзя. В самом деле, любая арифметическая прогрессия является линейной функцией на множестве натуральных чисел. В данном случае убывающей, значит, прямая на которой лежат точки, соответствующие членам этой прогрессии будет пересекать ось Ox . Поэтому начиная с некоторого номера все члены арифметической прогрессии станут отрицательными, а в данной последовательности нет отрицательных членов. Значит, в данной бесконечно убывающей последовательности нельзя выбрать бесконечное множество чисел, которые образуют арифметическую прогрессию.

Ответ

а) да; б) да; в) нет.

Тип задания: 19
Тема: Числа и их свойства

Условие

Существуют ли такие восемьсот различных натуральных чисел, что их среднее арифметическое больше их наибольшего общего делителя

а) ровно в 500 раз;

б) ровно в 400 раз;

в) Найдите наименьшее возможное натуральное число, равное отношению среднего арифметического этих чисел к их наибольшему общему делителю.

Показать решение

Решение

а) Построим пример 800 — элементной последовательности, для которой среднее арифметическое больше НОД ровно в 500 раз. Пусть x — последнее число в последовательности 1, 2, 3,..., 799, x. Тогда, так как НОД этих чисел равен 1 , то должно выполняться условие \frac{1+2+3+...+799+x}{800}= 500. Отсюда, \frac{(799+1)\cdot 799}{2}+x= 800\cdot 500; x=800\cdot 500-400\cdot 799= 400(2\cdot 500-799) =400\cdot 201=80\,400. Таким образом, искомая последовательность имеет вид 1, 2, 3,..., 798, 799, 80\,400.

б) Пусть НОД восьмисот чисел a_1 < a_2 < a_3 < ... < a_{800} равен d . Тогда a_1 \geqslant d, a_2 \geqslant 2d,..., a_{800} \geqslant 800d. Следовательно, a_1+a_2+...+a_{800} \geqslant d(1+2+3+...+800)= 400\cdot 801d, а среднее арифметическое \frac{a_1+a_2+...+a_{800}}{800}\geqslant \frac{801}2 d=400,5d. Значит, среднее арифметическое не может быть больше НОД ровно в 400 раз.

в) В предыдущем пункте для среднего арифметического последовательности a_1, a_2, a_3,..., a_{800} была получена оценка \frac{a_1+a_2+...+a_{800}}{800} \geqslant 400,5d. Значит, наименьшее натуральное число равное отношению среднего арифметического этих чисел к их НОД, не меньше чем 401 . Покажем, что оно может равняться 401 . Пусть d=1. Примером такой последовательности является 800 — элементная последовательность 1, 2, 3,..., 799, 1200. Её наибольший общий делитель равен 1 , а среднее арифметическое \frac{1+2+3+...+799+1200}{800}= \frac{400\cdot 799+1200}{800}= \frac{400(799+3)}{800}= \frac{802}2= 401.

Ответ

а) да; б) нет; в) 401 .

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 19
Тема: Числа и их свойства

Условие

Кристина задумала трёхзначное натуральное число.

а) Может ли частное этого числа и суммы его цифр быть равным 3 ?

б) Может ли частное этого числа и суммы его цифр быть равным 28 ?

в) Какое наименьшее натуральное значение может иметь частное данного числа и суммы его цифр?

Показать решение

Решение

Пусть трёхзначное число имеет вид \overline{abc}, где a , b и c — цифры, причём a \neq 0. Тогда задуманное число \overline{abc}=100a+10b+c \geqslant 100, а сумма его цифр равна a+b+c \leqslant 9+9+9=27.

а) Нет, так как рассматриваемое частное равно \frac{100a+10b+c}{a+b+c}\geqslant \frac{100}{27} > 3. Значит, трём оно равняться не может.

б) Да, может. Если \frac{100a+10b+c}{a+b+c}=28, то 100a+10b+c=28a+28b+28c; 72a=18b+27c; 8a=2b+3c. Последнее равенство верно, например, при a=1, b=4, c=0. Значит, частное числа 140 и суммы его цифр равно \frac{140}{1+4+0=28}.

в) Пусть n — значение частного числа и суммы его цифр, причём n — натурально. Тогда \frac{100a+10b+c}{a+b+c}=n. 100a+10b+c=na+nb+nc, (100-n)a+(10-n)b=(n-1)c.

Если n \leqslant 10, то (100-n)a+(10-n)b \geqslant (100-n)a \geqslant (100-n)\cdot 1 \geqslant 90, а (n-1)c \leqslant 9c. Отсюда, 9c \geqslant 90, c \geqslant 10, что невозможно, так как c — цифра.

Значит, n > 10, но тогда n \geqslant 11 (так как n натурально). Для n=11 подберём пример. Из равенства 100a+10b+c=na+nb+nc в этом случае получим 89a=b+10c. При a=1, b=9 и c=8 получаем требуемое. Таким образом, частное числа 198 и суммы его цифр равно 11 . Это и есть наименьшее натуральное значение n .

Ответ

а) нет; б) да; в) 11 .

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 19
Тема: Числа и их свойства

Условие

На доске написано более 20 , но менее 30 целых чисел. Среднее арифметическое этих чисел равно -3, среднее арифметическое всех положительных из них равно 5 , а среднее арифметическое всех отрицательных из них равно -10.

а) Сколько чисел написано на доске?

б) Каких чисел больше: положительных или отрицательных?

в) Какое наибольшее количество положительных чисел может быть среди них?

Показать решение

Решение

Пусть всего на доске было записано n чисел, 20 < n < 30. Пусть среди этих чисел было k положительных, обозначим их a_1, a_2,..., a_{k};\, m отрицательных, обозначим их b_1, b_2,..., b_m и p нулей. Тогда k+m+p=n и по условию задачи \frac{a_1+a_2+...+a_k+b_1+b_2+...+b_m+0+0+...+0}{n}= -3,

\frac{a_1+a_2+...+a_k }{k}=5, \frac{b_1+b_2+...+b_m }{m}=-10.

Из этих равенств следует, что a_1+a_2+...+a_k+b_1+b_2+...+b_m+0+0+...+0 = -3n,

a_1+a_2+...+a_k=5k,

b_1+b_2+...+b_m=-10m.

Откуда имеем 5k-10m=-3n.

а) Заметим, что в равенстве 5k-10m=-3n левая часть делится нацело на 5 , значит, и правая тоже делится на 5 . Из этого следует, что n делится нацело на 5 . Так как 20 < n < 30, то n=25.

б) Подставим в равенство, 5k-10m=-3n выражение для n=k+m+p. Получим: 5k-10m=-3(k+m+p), 8k+3p=7m. Поскольку p\geqslant 0, это означает, что k Следовательно, отрицательных чисел больше, чем положительных.

в) Подставим в формулу 5k-10m=-3n значение n=25. Получим: 5k-10m=-75, откуда k=2m-15. Так как k+m=25-p \leqslant 25, имеем 2m-15+m=3m-15 \leqslant 25, 3m \leqslant 40, m \leqslant 13. Тогда k=2m-15 \leqslant 11, то есть положительных чисел не более 11 .

Приведём пример, показывающий, что положительных чисел может быть ровно 11 .

Пусть на доске 11 раз было написано число 5 , 13 раз написано число -10 и один раз написан 0 . Тогда \frac{11\cdot 5+13\cdot (-10) }{25}=-\frac{75}{25}=-3.

Таким образом, указанный набор удовлетворяет всем условиям задачи.

Ответ

а) 25 ; б) отрицательных; в) 11 .

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 19
Тема: Числа и их свойства

Условие

Множество чисел назовём красивым, если его можно разбить на два подмножества с одинаковой суммой чисел.

а) Является ли множество \{500; 501; 502;..., 599\} красивым?

б) Является ли множество \{5; 25; 125;..., 5^{100}\} красивым?

в) Сколько красивых четырёхэлементных подмножеств у множества \{1; 3; 5; 6; 7; 9; 14\} ?

Показать решение

Решение

а) Разобьём множество \{500; 501; 502;...; 599\} на 50 пар, сумма чисел в каждой из которых равна 1099: \{500; 599\}, \{501; 598\},...\,.

Множество \{500; 501; 502;...; 599\} можно разбить на два подмножества, в каждом из которых по 25 таких пар. Значит, сумма в этих двух подмножествах одинакова и множество \{500; 501; 502;...; 599\} является красивым.

б) Заметим, что 5^{100} > \frac{5^{100}-1}4= 5^{99} +5^{98} +...+25+5+1. Поэтому сумма чисел в подмножестве множества \{5; 25; 125;...; 5^{100} \}, содержащем 5^{100} , всегда больше суммы остальных чисел, следовательно, множество \{5; 25; 125;...; 5^{100} \} не является красивым.

в) Заметим, что четырёхэлементное множество является красивым в двух случаях: либо одно число является суммой трёх других, либо множество содержит две пары чисел с равными суммами.

Подмножества множества \{1; 3; 5; 6; 7; 9; 14\}, удовлетворяющие первому случаю, — это \{1; 3; 5; 9\}, \{3; 5; 6; 14\}, \{1; 6; 7; 14\}.

Рассмотрим второй случай. Заметим, что сумма всех чисел красивого подмножества чётна. В исходном множестве всего два чётных числа, поэтому числа 6 и 14 либо одновременно входят в красивое четырёхэлементное подмножество, либо одновременно не входят в него. Если 6 и 14 входят в подмножество, то либо сумма двух других чисел равна 20 , что невозможно, так как сумма самых больших оставшихся чисел 7+9 < 20, либо разность двух других чисел равна 8 .

Получаем красивое подмножество: \{1; 6; 9; 14\}.

Если 6 и 14 не входят в подмножество, то красивое подмножество лежит во множестве \{1; 3; 5; 7; 9\}. Получаем красивые подмножества (две пары чисел с равными суммами): \{1; 3; 5; 7\}, \{1; 3; 7; 9\}, \{3; 5; 7; 9\}. Всего получилось 7 красивых подмножеств.

Ответ

а) да; б) нет; в) 7 .

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 19
Тема: Числа и их свойства

Условие

Учитель задумал несколько различных целых чисел и выписал набор этих чисел и все их возможные суммы (по 2 , по 3 и т.д. слагаемых) на доске в порядке неубывания. Например, если бы он задумал числа 1,-5,6, то на доске был бы выписан набор -5,-4,1,1,2,6,7.

а) На доске был выписан набор -5,-2,3,4,7,9,12. Какие числа задумал учитель?

б) Для некоторых трех задуманных чисел на доске был выписан набор. Всегда ли по этому набору можно определить задуманные числа?

в) Дополнительно известно, что учитель задумал 4 числа. Все они не равны 0 . Какое наибольшее число нулей может быть выписано на доске?

Показать решение

Решение

а) Если учитель задумал 4 числа или больше, тогда на доске должно быть выписано не менее 15 чисел. Если учитель задумал 2 числа или меньше, тогда на доске должно быть выписано не более 3 чисел. Отсюда следует, что было задумано 3 числа. Если бы учитель задумал 2 отрицательных числа, тогда на доске было бы записано не менее трёх отрицательных чисел. Значит в наборе отрицательное число одно и оно является наименьшим, то есть -5 . Наибольшим числом из набора будет результат суммы двух положительных задуманных чисел. Из положительных выписанных чисел только 3 и 9 дают в сумме 12 . Таким образом, были задуманы числа -5,3,9.

б) Нет, не всегда. Например, для задуманных чисел -5,2,3 и -3,-2,5 на доске будет выписан один и тот же набор -5,-3,-2,0,2,3,5.

в) Если учитель задумал 4 числа (a, b, c, d), то на доске выписано 15 чисел: сами задуманные числа (4 штуки), суммы по 2 слагаемых — 6 штук, суммы по 3 слагаемых — 4 штуки, а также сумма всех чисел. Разобьём выписанные числа на 3 группы.

Группа A — это сами задуманные числа, группа B — это суммы по 2 слагаемых, C — суммы по 3 и 4 слагаемых.

В группе A нет нулей по условию.

Рассмотрим группу B . Пусть сумма каких-то двух чисел равна 0 , то есть a+b=0. Если предположить, что a+c=0, то a+b=a+c, b=c, а это противоречит тому, что все задуманные числа различны. Значит, a+c \neq 0. Аналогично a+d \neq 0, b+c \neq 0, b+d \neq 0. Возможно, что c+d=0. Других сумм по 2 слагаемых нет. Значит, в группе B не более двух нулей.

Рассмотрим группу C . Покажем, что в ней не более одного нуля. Предположим противное. Тогда найдется хотя бы два нуля. В этом случае хотя бы один нуль является суммой некоторых трех задуманных чисел, то есть можно считать, что a+b+c=0. Если a+b+c+d=0, то d=0, что противоречит условию. Тогда выполняется хотя бы одно из равенств: a+b+d=0, a+c+d=0, b+c+d=0. В первом случае a+b+c=a+b+d=0, тогда c=d. Во втором случае b=d, в третьем a=d. Значит, все три случая противоречат условию, и наше предположение неверно. Следовательно, в группе C не более одного нуля.

Таким образом, общее число нулей не превышает 0+2+1=3. Приведём пример задуманных чисел, для которых на доске будет выписано ровно 3 нуля. Пусть учитель задумал числа 2,-2,3,-3. Тогда 2+(-2)=0; 3+(-3)=0; 2+(-2)+3+(-3)=0. На доске выписано ровно 3 нуля.48 , среднее арифметическое равно 6 , наибольший общий делитель равен 1 .

б) Да. Например, 1, 2, 3, 4, 5, 6, 8, 11. Сумма этих чисел равна 40 , среднее арифметическое равно 5 , наибольший общий делитель равен 1 .

в) Пусть наибольший общий делитель восьми чисел a_{1} < a_{2} <...< a_{8} равен d . Тогда a_{1} \geq d, a_{2} \geq 2d,..., a_{8} \geq 8d. Следовательно, a_{1}+a_{2}+...+a_{8} \geq 36d, а среднее арифметическое \frac{a_{1}+a_{2}+...+a_{8}}{8} \geq \frac{36}{8}d=4,5d. Значит, среднее арифметическое не может быть больше наибольшего общего делителя ровно в 4 раза.

Ответ

а) да; б) да; в) нет.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

То есть 1 \leq S(x) \leq 28, значит, 1987 \leq x \leq 2014. Согласно признаку делимости на 3 , числа x и S(x) имеют одинаковые остатки от деления на 3 . Если число x кратно 3 , то x=3k, k \in \mathbb N и S(x)=3m, m \in \mathbb N и сумма x+S(x) кратна 3 . Но число 2015 не кратно 3 . В данном случае уравнение не имеет решений.

Пусть x=3k+1 и S(x)=3m+1, тогда сумма x+S(x), как и число 2015 , при делении на 3 имеет остаток 2 . Среди чисел от 1987 до 2014 остаток 1 при делении на 3 дают числа 1987 , 1990 , 1993 , 1996 , 1999 , 2002 , 2005 , 2008 , 2011 , 2014 . Проверив эти числа, убеждаемся, что подходят только 1993 и 2011 . Пусть x=3k+2 и S(x)=3m+2, тогда сумма x+S(x) при делении на 3 имеет остаток 1 , а число 2015 при делении на 3 имеет остаток 2 . В этом случае уравнение не имеет решений.

б) Согласно признаку делимости на 3 числа x , S(x) и S(S(x)) имеют одинаковые остатки от деления на 3 . Значит, сумма x+S(x)+S(S(x)) делится на 3 . Число 2015 на 3 не делится, поэтому решений нет.

в) Число x < 2015. Среди чисел, меньших 2015 , наибольшую сумму цифр 28 имеет число 1999 . Так как S(x) \leq 28, S(S(x)) \leq S(19)=10, S(S(S(x))) \leq 9, то x= 2015-S(x)-S(S(x))-S(S(S(x))) \geq 2015-28-10-9=1968.

Согласно признаку делимости на 9 числа x , S(x) и S(S(x)) и S(S(S(x))) имеют одинаковые остатки от деления на 9 . Число 2015 при делении на 9 дает остаток 8 , поэтому число x должно давать остаток 2 . Среди чисел от 1968 до 2015 остаток 2 при делении на 9 дают 1973 , 1982 , 1991 , 2000 , 2009 . Проверив эти числа, убеждаемся, что подходит только 1991 .

Ответ

а) 1993 ; 2011 ;

б) нет решений;

в) 1991.

  • N – натуральные числа (1, 2, 3, …);
  • Z – целые числа (0, ±1, ±2, ±3, …);
  • Q – рациональные числа, их можно представить в виде дроби \frac{m}{n} , где mцелое число, а п – натуральное (3,\frac{2}{3} , -\frac{4}{3} );
  • R – действительные числа (3, \sqrt{7} , 0, -\frac{2}{3} );
  • Иррациональные числа – это действительные числа, которые не являются рациональными (\sqrt{7} ).
  • C - комплексные числа (a+i⋅b , где i - мнимая единица и i 2 =−1). Любое действительное число является комплексным.
  • Положительные числа - больше нуля. Например, 4, \sqrt{5} , 213. Но не 0 и не −5.
  • Неотрицательные числа - не меньше нуля. Например, 6, 0, 32. Но не −3.
  • Отрицательные числа. Числа, которые меньше нуля. Например, −4, -\sqrt{5} . Но не 0 и не 5.
  • Неположительные числа. Числа, которые не больше нуля. Например, 0, −\sqrt{3} . Но не 6, не \sqrt{7} .

Свойства сложение и умножения натуральных чисел:

  • a + b = b + a – переместительное свойство сложения
  • (a + b) + с = a + (b + c) –
  • a∙b = b∙a – переместительное свойство умножения
  • (a∙b)∙c = a∙(b∙c) – сочетательное свойство сложения
  • a(b ± с) = ab ± ac – распределительное свойство умножения относительно сложения/вычитания

Если m, n, k натуральные числа, то при m – n = k говорят, что m – уменьшаемое, n – вычитаемое, k – разность; m: n = k говорят, что m – делимое, n – делитель, k – частное.

Наименьшим общим кратным (НОК) двух и более натуральных чисел называется наименьшее натуральное число, которое само делится нацело на каждое из этих чисел.

Наибольший общий делитель (НОД) двух данных чисел a и b – это наибольшее число, на которое оба числа a и b делятся без остатка.

Среднее арифметическое множества чисел – сумма всех чисел, делённое на их количество

Арифметическая прогрессия – это числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с постоянным для этой последовательности числом d .

Формула вычисления арифметической прогрессии : а п = а 1 + d(n – 1).

Геометрическая прогрессия – это числовая последовательность задаваемая двумя параметрами b, q (q ≠ 0) и законом b 1 = b, b n = b n-1 ∙q, n = 2, 3, … .

Формула вычисления геометрической прогрессии: b n = b 1 ∙q n-1 .

Формула знаменателя геометрической прогрессии: q = b n+1 / b n

Формула суммы n -первых членов геометрической прогрессии:

S n = b 1 (1 - q n)/(1 - q)

S n = (b 1 - b n q)/(1 - q), где q ≠ 1

19 задание в профильном уровне ЕГЭ по математике направлено на выявление у учеников способности оперировать числами, а именно их свойствами. Это задание наиболее сложное и требует нестандартного подхода и хорошего знания свойств чисел. Перейдем к рассмотрению типового задания.

Разбор типовых вариантов заданий №19 ЕГЭ по математике профильного уровня

Первый вариант задания (демонстрационный вариант 2018)

На доске написано более 40, но менее 48 целых чисел. Среднее арифметическое этих чисел равно –3, среднее арифметическое всех положительных из них равно 4, а среднее арифметическое всех отрицательных из них равно –8.

а) Сколько чисел написано на доске?

б) Каких чисел написано больше: положительных или отрицательных?

в) Какое наибольшее количество положительных чисел может быть среди них?

Алгоритм решения:
  1. Вводим переменные k, l , m.
  2. Находим сумму набора чисел.
  3. Отвечаем на пункт а).
  4. Определяем, каких чисел больше (пункт б)).
  5. Определяем, сколько положительных чисел.
Решение:

1. Пусть среди записанных на доске чисел положительных k. Отрицательных чисел l и нулевых m.

2. Сумма выписанных чисел равна их количеству в данной записи на доске, умноженному на среднее арифметическое. Определяем сумму:

4k −8l + 0⋅m = − 3(k + l +m)

3. Заметим, что слева в приведенном только что равенстве каждое из слагаемых делится на 4, потому сумма количества каждого типа чисел k + l + m тоже делится на 4. По условию общее число записанных чисел удовлетворяет неравенству:

40 < k + l + m < 48

Тогда k + l + m = 44, потому что 44 единственное между 40 и 48 натуральное число, которое делится на 4.

Значит, написано на доске всего 44 числа.

4. Определяем, чисел какого вида больше: положительных или отрицательных. Для этого приведем равенство 4k −8l = − 3(k + l +m) к более упрощенному виду: 5l = 7k + 3m.

5. m≥ 0. Отсюда вытекает: 5l ≥ 7k, l > k. Получается, что отрицательных чисел записано больше положительных. Подставляем вместо k + l + m число 44 в равенство

4k −8l = − 3(k + l + m).

4k − 8l = −132, k = 2l − 33

k + l ≤ 44, тогда получается: 3l − 33 ≤ 44; 3l ≤ 77; l ≤ 25; k = 2l − 33 ≤17. Отсюда приходим к выводу, что положительных чисел не более 17.

Если же положительных чисел всего 17, то на доске 17 раз записано число 4, 25 раз – число −8 и 2 раза записано число 0. Такой набор отвечает всем требованиям задачи.

Ответ: а) 44; б) отрицательных; в) 17.

Второй вариант 1 (из Ященко, №1)

На доске написано 35 различных натуральных чисел, каждое из которых либо чётное, либо его десятичная запись оканчивается на цифру 3. Сумма написанных чисел равна 1062.

а) Может ли на доске быть ровно 27 чётных чисел?

б) Могут ли ровно два числа на доске оканчиваться на 3?

в) Какое наименьшее количество чисел, оканчивающихся на 3, может быть на доске?

Алгоритм решения:
  1. Приведем пример набора чисел, который удовлетворяет условию (Это подтверждает возможность набора чисел).
  2. Проверяем вероятность второго условия.
  3. Ищем ответ на третий вопрос, введя переменную n.
  4. Записываем ответы.
Решение:

1. Такой примерный перечень чисел на доске соответствует заданным условиям:

3,13,23,33,43,53,63,73,2,4,6,…,50,52,56

Это дает положительный ответ на вопрос а.

2. Пусть на доске написано ровно два числа, у которых последняя цифра 3. Тогда там записано 33 чётных числа. Их сумма:

Это противоречит тому, что сумма написанных чисел равна 1062, то есть, утвердительного ответа на вопрос б нет.

3. Полагаем, что на доске записано n чисел, которые оканчиваются на 3, и (35 – n)из выписанных чётные. Тогда сумма чисел, которые оканчиваются на 3, равна

а сумма чётных:

2+4+…+2(35 – n)=(35 – n)(36 – n)= n 2 -71 n+1260.

Тогда из условия:

Решаем получившееся неравенство:

Получается, что . Отсюда, зная, что n - натуральное, получаем .

3. Наименьшее число чисел, оканчивающихся на 3, может быть только 5. И добавлено 30 чётных чисел, тогда сумма всех чисел нечётна. Значит, чисел, которые оканчиваются на 3, больше. чем пять, поскольку сумма по условию равна четному числу. Попробуем взять 6 чисел, с последней цифрой 3.

Приведём пример, когда 6 чисел, оканчиваются на три, и 29 чётных чисел. Сумма их равна 1062. Получается такой список:

3, 13, 23, 33, 43, 53, 2, 4, ..., 54, 56, 82.

Ответ: а) да; б) нет; в) 6.

Третий вариант (из Ященко, №4)

Маша и Наташа делали фотографии несколько дней подряд. В первый день Маша сделала m фотографий, а Наташа - n фотографий. В каждый следующий день каждая из девочек делала на одну фотографию больше, чем в предыдущий день. Известно, что Наташа за всё время сделала суммарно на 1173 фотографии больше, чем Маша, и что фотографировали они больше одного дня.

а) Могли ли они фотографировать в течение 17 дней?

б) Могли ли они фотографировать в течение 18 дней?

в) Какое наибольшее суммарное число фотографий могла сделать Наташа за все дни фотографирования, если известно, что в последний день Маша сделала меньше 45 фотографий?

Алгоритм решения:
  1. Ответим на вопрос а).
  2. Найдем ответ на вопрос б).
  3. Найдем суммарное количество фотографий, сделанных Наташей.
  4. Запишем ответ.
Решение:

1. Если Маша сделала m фотографий в 1-й день, то за 17 дней она сфотографировала снимков.

Тема: Теория чисел в заданиях С6 из ЕГЭ XII Межрайонная научно-практическая конференция «Шаг в будущее» Секция: математика Выполнили: Ильдар Гарифуллин, Роман Синицкий 11 а класс, МОУ Лицей 6 Руководитель: Мунтян Е.М. учитель математики МОУ Лицей 6 г. Северобайкальск 2012 г.


Актуальность Сдать ЕГЭ – вот главная задача всех выпускников, причём желательно набрать больше баллов. От результатов ЕГЭ зависит кол-во и престиж ВУЗов, куда выпускник сможет поступить. Безусловно, на ЕГЭ нужно решать столько, сколько можешь. Задание С6 в ЕГЭ по математике оценивается самым высоким балом, но к сожалению очень маленький процент выпускников приступают к решению этого задания, считая его сложность запредельной. Мы хотим развеять этот миф и показать как решаются некоторые из этих заданий. Дальше приведена статистика выполнения задания С6 выпускниками школ, сдающих ЕГЭ по математике.


ПроцентКол-во Не приступили к выполнению задания С6 90.3% Решили С6 на 1 балл %1236 Решили С6 на 2 балла %269 Решили С6 на 3 балла 0.097%727 Решили С6 на 4 балла %123 Оценка в тестовых баллах (2011 г.) 4 балла в первичном виде 24 баллов в тестовом виде






Признак делимости на 11 (теория) Для того чтобы натуральное число делилось на 11, необходимо и достаточно, чтобы алгебраическая сумма его цифр, взятых со знаком «+», если цифры находятся на нечётных местах (начиная с цифры единиц), и взятых со знаком «-», если цифры находятся на чётных местах, делилась на 11.


Применение признака делимости на 11 Число делится на 11 тогда и только тогда, когда разность между суммами его цифр, стоящих на нечётных и на чётных местах, делится на 11. Запишем все цифры подряд: В написанном числе указанная разность сумм равна 5. Цифры 0, 2, 4, 6, 8 – стоят на нечётных местах Цифры 1, 3, 5, 7, 9 – стоят на чётных местах ()+()=5


Меняя местами цифры, допусти 1 и 4, мы увеличиваем обе скобки на 3. А так как у нас 2 скобки то общая сумма увеличивается на 6 Получается число с на У нас было ()+()=5 После замены ()+()=11 Применение признака делимости на 11


Чтобы получить другие числа по заданию, достаточно поменять местами одну из пар чисел. При перестановки пар сумма в скобках не меняется, так как чётные числа остаются на чётных местах, а нечётные на нечётных Нас не просят найти все числа, поэтому достаточно 3: (; ;)


Задача 2 (применение знаний о рациональных числах) Бесконечная десятичная дробь устроена следующим образом. Перед десятичной запятой стоит нуль. После запятой подряд выписаны члены арифметической прогрессии (d – целое). Из полученной записи удалены минусы, если они есть. В результате получается рациональное число. Найдите это число.


Рациональные числа (теория) Рациональное число – число, которое может быть представлено в виде дроби, где и – целые числа (m 0) Рациональные числа могут быть представлены лишь конечными десятичными или бесконечными периодическими дробями. Периодическая дробь – бесконечная десятичная дробь, в которой, начиная с некоторого места, стоит только периодически повторяющаяся определённая группа цифр.








Задача 4 последовательность Все члены конечной последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, либо в 14 раз больше, либо в 14 раз меньше предыдущего. Сумма всех членов последовательности равна А) Может ли последовательность состоять из двух членов? Б) Может ли последовательность состоять из трёх членов? В) Какое наибольшее количество членов может быть в последовательности?



В) Какое наибольшее количество членов может быть в последовательности? чтобы найти наибольшее количество членов, нужно чтобы элементы были наименьшие из возможных, тесть числа 1 и 14. Возможны четыре варианта. 1)(14+1)+(14+1)…+(14+1)=7424 –количество элементов четно, первый элемент 14 2)14+(1+14)+(1+14)…+(1+14)=7424 –количество элементов нечетно, первый элемент 14 3) (1+14)+(1+14)…+(1+14)=7424 -количество элементов четно, первый элемент 1 4)1+(14+1)+(14+1)…+(14+1)=7424 -количество элементов нечетно, первый элемент 1 1,3)(14+1)n=7424 2) 14+(1+14)n= (14+1)n=7424 Очевидно, что 1,3,4- варианты 15n= n= n=7423 не подходят. n=494.9(3) n=494 n=494.8(6) 2)Во-втором случае у нас 494 пары (1+14) и первый элемент 14. Ответ.989


Задача 5 минимумы и максимумы Перед каждым из чисел 3, 4, 5, и 14, 15, произвольным образом ставят знак плюс или минус, после чего к каждому из образовавшихся чисел первого набора прибавляют каждое из образовавшихся чисел второго набора, а затем все 45 полученных результатов складывают. Какую наименьшую по модулю сумму и какую наибольшую сумму можно получить в итоге?




0, т.е Целые y: -2;-1;0. При y=-2, второе уравнение не имеет решения. При y=-1, x=-7 или х=4. Но при х=-7, первое неравенство не выполняется. При y=0, x=2 или" title="Решение: Рассмотрим I нер-во. Оно является квадратным относительно x, и имеет решение при D>0, т.е Целые y: -2;-1;0. При y=-2, второе уравнение не имеет решения. При y=-1, x=-7 или х=4. Но при х=-7, первое неравенство не выполняется. При y=0, x=2 или" class="link_thumb"> 23 Решение: Рассмотрим I нер-во. Оно является квадратным относительно x, и имеет решение при D>0, т.е Целые y: -2;-1;0. При y=-2, второе уравнение не имеет решения. При y=-1, x=-7 или х=4. Но при х=-7, первое неравенство не выполняется. При y=0, x=2 или х=-2. Но при этих значениях первое не неравенство не выполняется. Ответ: (4;-1). 0, т.е Целые y: -2;-1;0. При y=-2, второе уравнение не имеет решения. При y=-1, x=-7 или х=4. Но при х=-7, первое неравенство не выполняется. При y=0, x=2 или"> 0, т.е Целые y: -2;-1;0. При y=-2, второе уравнение не имеет решения. При y=-1, x=-7 или х=4. Но при х=-7, первое неравенство не выполняется. При y=0, x=2 или х=-2. Но при этих значениях первое не неравенство не выполняется. Ответ: (4;-1)."> 0, т.е Целые y: -2;-1;0. При y=-2, второе уравнение не имеет решения. При y=-1, x=-7 или х=4. Но при х=-7, первое неравенство не выполняется. При y=0, x=2 или" title="Решение: Рассмотрим I нер-во. Оно является квадратным относительно x, и имеет решение при D>0, т.е Целые y: -2;-1;0. При y=-2, второе уравнение не имеет решения. При y=-1, x=-7 или х=4. Но при х=-7, первое неравенство не выполняется. При y=0, x=2 или"> title="Решение: Рассмотрим I нер-во. Оно является квадратным относительно x, и имеет решение при D>0, т.е Целые y: -2;-1;0. При y=-2, второе уравнение не имеет решения. При y=-1, x=-7 или х=4. Но при х=-7, первое неравенство не выполняется. При y=0, x=2 или">