Главный момент, согласно пуанкаре

В докладе, опубликованном в "Заметках Академии наук" З июня
1905 года, Пуанкаре комментирует группу преобразований, найденную им при анализе уравнений Лоренца. Он подчеркивает, что главным моментом, оказавшимся в основе принципа относительности, является инвариантность уравнений электромагнитного поля.

Действительно Лоренц предложил двухступенчатую замену переменных, связывающую координаты события {x,y,z,t} в одном инерциальном репере с координатами этого же события {х", у", z", t"} в другом инерциальном репере, движущемся по отношению к первому. В то время как Пуанкаре связал координаты {x, y, z, t} с координатами {х", у", z", t"} единым преобразованием. Это преобразование симметрично и обратимо: никакой репер не имеет привилегированного характера и в этом суть релятивизма. Немедленное следствие: постоянство скорости света.

Именно этому преобразован он дал имя Лоренца, ставшее классическим. В заметке 5 июня он писал: "Множество всех этих преобразований вместе со всеми поворотами пространства должно обладать групповыми свойствами для того, чтобы удовлетворять принципу относительности".

Термин имеет специальное употребление в теории групп преобразований в геометрии после работ Феликса Клейна 1872 года. С теорией групп в то время были знакомы лишь несколько математиков самого высокого уровня и некоторые кристаллографы. Поэтому этой теорией воспользовался Пуанкаре, который ею владел, а не Лоренц.

Последствия того открытия, что в основе релятивизма лежит специальная группа, были весьма значительными, так как из этого следовало, что y 2 +y 2 +z 2 -c 2 t 2 является инвариантом этой групп, преобразования которой в пространстве четырех измерений x, y, z, ict являются вращениями. Эта группа, которой Пуанкаре дал название Группа Лоренца, и которую современные физики именуют Группа Пуанкаре, является основой специальной теории относительности.

Итак, в своей заметке 5 июня 1905 года Пуанкаре дал новую форму преобразованиям, предложенным Лоренцем и установил их групповую природу. В силу этих преобразований уравнения Максвелла инвариантны и этим удовлетворяется принцип относительности: в этом и состоит главный момент . Основы теории относительности были сформированы.

В это время 26 сентября 1905 года "Annalen der Physik" (Берлин-Лейпциг) публикуют статью Альберта Эйнштейна, озаглавленную "К электродинамике движущихся тел". Рукопись, подписанная Эйнштейном и его женой Милевой Марич (см. Science & Vie N 871, р. 32), была получена редакцией 30 июня 1905 года, то есть более трех недель спустя заметки Пуанкаре. Эта рукопись была немедленно уничтожена после ее публикации. Родившийся в 1879 году Эйнштейн получил образование в Цюрихском Политехникуме, после чего поступил в патентное бюро Берна.


В его статье можно найти то, о чем в течение десяти лет Пуанкаре дискутировал с Лоренцем и что уже неоднократно публиковалось: ненужность эфира, абсолютного пространства и абсолютного времени, условность понятия одновременности, принцип относительности, постоянство скорости света, синхронизация часов световыми сигналами, преобразования Лоренца, инвариантность уравнений Максвелла, и так далее. К уже известному Эйнштейн добавил формулы релятивистского эффекта Доплера и аберрации, которые немедленно вытекают из преобразований Лоренца.

Таким образом, независимый исследователь, никогда ничего не публиковавший по обсуждаемому вопросу прежде, якобы переоткрыл практически мгновенно то, что ученые класса Лоренца и Пуанкаре смогли установить только после десяти лет усилий. Более того, вопреки научной этике в своей статье Эйнштейн не делает никаких ссылок на работы предшественников, что особенно поразило Макса Борна. При этом Эйнштейн, который читал по-французски так же хорошо, как и по-немецки, знал работу Пуанкаре и "Наука и гипотеза", а также, без сомнения, и все другие статьи Лоренца и Пуанкаре.

Это не помешало Эйнштейну стать в глазах общественности творцом теории относительности, что обрекало Пуанкаре на забвение. Такое произошло под влиянием немецкой школы и благодаря научному авторитету Планка и фон Лауе. В 1907 году Планк писал: "Принцип относительности намеченный Лоренцем и в наиболее общем виде сформулированный Эйнштейном,...". Пуанкаре был уже полностью проигнорирован.

Этому два главных объяснения. Прежде всего конфликт двух кланов: Пуанкаре был математиком, а не физиком. Мог ли профессор математики с высоты своей кафедры давать советы тем, кто внизу ведет тяжелую борьбу с грубой реальностью практики? Затем конфликт наций: в начале века наука была немецкой (Рентген, Герц, Планк, Вайи и др.), как могли немцы получать уроки от французов?

Хотя Эйнштейн и работал в Берне, но родился он в Ульме, в Баварии. Он принадлежал немецкой школе. Поэтому он и стал знаменитым. Потом американцы, склонные все преувеличивать до абсурда, сделали из него самого Великого ученого человечества.

В этом избытке почестей есть, однако, небольшая осечка. Пуанкаре умер в 1912 году, в этом же году, а затем и в последующих, Эйнштейн выдвигался на Нобелевскую премию по теории относительности. В конце концов он получил эту премию, но не за эту теорию, а за фотоэффект. Для премии по теории относительности было существенное препятствие: Лоренц, престиж которого в шведской Академии наук был огромен, и который лучше, чем кто-либо знал о приоритете Пуанкаре в генезисе релятивизма.

Группы Пуанкаре являются «тяжёлой артиллерией» проповедников СТО. В технических ВУЗах они не изучаются из-за малой практической применимости. Однако против критиков СТО этот арсенал используется успешно. Так один из критиков СТО И.В. Секерин, работающий в СО РАН, написал письмо министру образования и науки А.А. Фурсенко с требованием исключить СТО из программы преподавания школ и ВУЗов, как заведомо ложную теорию. Его письмо было отдано на экспертизу в несколько научных учреждений. И вот ответ из Объединённого Института Ядерных Исследований (Дубна, Московская область): «Лаборатория теоретической физики им. Д.И.Блохинцева.

Относительность имеет точное математическое представление или как группа Галилея или как группа Пуанкаре. Указанные группы принадлежат к классу групп Ли, теория которых разработана очень глубоко. Компоненты скорости относительного движения являются групповыми параметрами, рассматриваемых групп пространственно-временной симметрии. Закон сложения скоростей определяется алгеброй Ли группы Галилея или группы Пуанкаре. Во втором случае скорость света является абсолютным масштабом в пространстве скоростей (с геометрической точки зрения - константой Лобачевского). Геометрия Лобачевского и группа Пуанкаре являются здесь сторонами одной медали. Отрицать относительность Эйнштейна (группа Пуанкаре) означает отрицать геометрию Лобачевского.

Ст. научный сотрудник ЛТФ ОИЯИ

Пестов А.Б.»

Вывод А. Пуанкаре преобразований координат и «пространства-времени» СТО в групповой форме представлен в статье «Википедии»: http://en.wikipedia.org/wiki/Lorenz_transformation Отметим, что А. Пуанкаре не является автором этих преобразований. Автором их является даже не Лоренц, которому они ложно приписываются, а английский учёный Иосиф Лармор, опубликовавший их в 1897 году. Пуанкаре осуществил подгонку под заранее известный ему результат как можно более сложным для восприятия способом. Для этого использована малонаглядная матричная форма записи уравнений. Рассмотрим этот вариант вывода формул СТО, по возможности, кратко. А. Пуанкаре достигает требуемого результата путём введения «аксиом» и предположений. Причём, если А. Эйнштейн хотя бы пытается создать видимость физической обоснованности своих «постулатов», то А. Пуанкаре берёт свои «аксиомы» и предположения «с потолка», ничем физически их не обосновывая. Просто при таких ничем не обоснованных предположениях получается заранее известный ему результат - формулы Лармора. В разделе: Coordinate transformations as a group вместо двух постулатов А. Эйнштейна вводится 4 постулата А. Пуанкаре, из которых в процессе дальнейшего вывода используются только 2:

В следующем разделе: Transformation matrices consistent with group axioms в первой же системе уравнений вводятся t и t", z и z" с коэффициентами. Это тоже скрытый «постулат». Для чего вводится t", отличное от t? Мы прекрасно знаем, что в классической физике нет ни какого t". Везде имеется одно и то же время t. Как в СТО достигается видимость выполнения постулата о постоянстве скорости света в инерциальных системах? - масштаб длины и «пространства-времени» меняется в равной степени (см ПРИЛОЖЕНИЕ 5, формула 30). То, что уже в первой системе уравнений вводятся разные t и t", z и z" с коэффициентами, является подготовкой к математической реализации данного фокуса. В следующих двух системах уравнений скорость движения начала координат системы K" относительно K, измеренная в системе K" и K задаётся равной одной и той же величине v. Это кажется вполне естественным.

В преобразованиях Галилея это так. Но в КЛФП это не так. В движущейся системе изменился эталон длины, это же предполагается сделать и в данном случае. Скорость начала координат системы K", измеренная разными эталонами длины в движущейся системе и в системе, неподвижной относительно мирового эфира, будет разной. Здесь же, полагая измеренные скорости одинаковыми, заранее подготавливают ситуацию, когда изменение масштаба длины будет компенсировано равным изменением масштаба «пространства-времени» так, чтобы скорость начала координат была инвариантной. Но скорость света, это тоже скорость, в этих условиях и она тоже будет инвариантной. То есть вот это малоприметное предположение, взятое А. Пуанкаре ниоткуда, подготавливает почву для реализации постулата о постоянстве скорости света в инерциальных системах. Теперь осталось только так изменить масштаб длины, чтобы скорость света, измеренная в подвижной и неподвижной системах, не зависела от суммирующейся с нею скорости подвижной системы. И.В. Савельев для этого прямо вводит постулат А. Эйнштейна о постоянстве скорости света в инерциальных системах и решает полученную систему уравнений. Здесь же, в начале, менее наглядным матричным методом решают систему уравнений в общем виде. Но место для скорости света C в них уже забронировано в виде коэффициента, предыдущим составлением уравнений для скорости начала координат системы K". Вместо постулата о постоянстве скорости света в инерциальных системах А. Эйнштейна А. Пуанкаре вводит постулат №1, на основании которого после умножения матриц предъявляется требование равенства диагональных элементов, которое эквивалентно требованию постоянства во всех инерциальных системах величины, заготовленной предыдущими манипуляциями под скорость света C. То есть, это тот же самый постулат, но выраженный максимально запутанным способом. Второму постулату А. Эйнштейна, а именно «принципу относительности А. Эйнштейна» у А. Пуанкаре соответствует постулат №4. Соответствие здесь достаточно очевидное. «Принцип относительности А. Эйнштейна» заключается в том, что формулы, в частности, преобразований координат в разных инерциальных системах должны быть с виду одинаковыми. Это у А. Пуанкаре, не мудрствуя лукаво, и достигается прямым применением «аксиомы» №4. То есть эта «аксиома» эквивалентна второму постулату СТО или «принципу относительности А. Эйнштейна». Важно понимать, что, как «постулаты» А. Эйнштейна, так и «аксиомы» А. Пуанкаре, взяты не из экспериментальных данных (экспериментальным данным они прямо противоречат), а из личных представлений данных авторов о том, что требуется для полного и окончательного счастья человечества. Другими словами группы Пуанкаре, основанные на «аксиомах», эквивалентных «постулатам» А. Эйнштейна, не имеют самостоятельной ценности и используются проповедниками СТО только для заморачивания мозгов критикам СТО и остальной публике.

То есть с 1890 до 1905 года объяснение результатов опыта Майкельсона-Морли данное КЛФП, повсеместно признавалось, как правильное. И до сих пор КЛФП является единственной теорией, давшей математически и физически корректное объяснение данному эксперименту. В КЛФП выводы основываются не на «постулатах», взятых с потолка, а на экспериментальных данных и всём предшествующем опыте развития науки. Однако в 1905 году нормальное развитие физики было прервано появлением полного собрания нелепостей и абсурда - СТО А. Эйнштейна. Ответ на вопрос, каким образом столь неудовлетворительная теория смогла получить статус общепризнанной и единственно верной в мировой физической науке? - выходит далеко за рамки собственно физики.

В 1887 году физика была в тупике: опыт с интерферометром, поставленный Майкельсоном и Морли, не обнаружил тех эффектов, которые должны были бы иметь место в соответствии с тогдашними представлениями в науке. Эти представления таковы: Ньютон в 1687 году постулировал существование абсолютного пространства и абсолютного времени. Френель в 1820 году выдвинул волновую теорию света, в соответствии с которой распространение световой волны имеет место по отношению к бестелесной среде – эфиру, заполняющей все бесконечное пространство. Этот эфир представлялся межзвездной субстанцией наподобие тому, как воздух окружает нас в обыденной жизни. При этом он обладал жесткостью наподобие твердого тела и был легче любого газа.

Звездная аберрация, кажущееся движение, открытая Бредли в 1728 году, объяснялась тогда результатом сложения скорости света со скоростью Земли относительно неподвижного эфира. В 1865 году Максвелл вывел уравнения, которые описывали распространение электромагнитных процессов в пространстве. Это распространение происходит со скоростью света; Герц в 1887 году показал, что и сам свет представляет собой электромагнитную волну. Оставалось подтвердить движение Земли по отношению к эфиру, который служит средой для распространения света. С этой целью и был поставлен эксперимент Майкельсона, в котором ничего обнаружить не удалось. Поэтому надо было предположить, что эфир увлекается Землей, но тогда необъяснимой оставалась аберрация. Проблема казалась неразрешимой.

Именно в этот момент и вступили в игру крупный голландский физик Хендрик Лоренц и гениальный французский математик Анри Пуанкаре. Первый всемирно известен благодаря преобразованиям, которые носят его имя, второй в этой области известен значительно меньше. К счастью, бывший политеховец Жюль Левегль вот уже более двух лет занимается выяснением роли, которую сыграл Пуанкаре в генезисе работ, которые привели к отказу от концепций эфира в пользу преобразований четырехмерного пространства-времени.

Левегль опубликовал результат своих исследований в апреле 1994 в ежемесячнике выпускников политехнической школы и мы встретились с ним после этого, чтобы лучше очертить работы Пуанкаре в критическую для физики эпоху с 1899 по 1905 годы.

Итак, в 1887 году отрицательный результат опыта Майкельсона привел к замешательству. Спустя пять лет Лоренц представил первые публикации по теории электронов, позволяющей упростить интерпретацию уравнений Максвелла. Несколько позже он ввел сокращение размеров движущихся через неподвижный эфир тел. Эта теория, опубликованная в 1895 году, содержала искусственный математический элемент, который сам Лоренц назвал "местное время".

Именно в этот момент на сцене появился Пуанкаре, вмешавшийся фундаментальным образом в дебаты по электродинамике движущихся тел. Анри Пуанкаре родился в Нанси в 1854 году, где закончил среднюю школу, поступив в 1873 году в Политехническую школу. Близорукий, левша, удивительно неловкий в обычной жизни, он уже в начале учебы рассматривался профессорами как "математическое чудовище".

Анри Пуанкаре был репетитором по математическому анализу в Политехнической школе, затем профессором математической физики и математической астрономии в Сорбонне, профессором теоретической электротехники в Школе телекоммуникаций и действительным членом Академии наук в 33 года. Он умер в 1912 году в возрасте 57 лет после операции. Его открытия в дифференциальной геометрии, в алгебраической топологии, в теории вероятностей, в функциональном анализе и в других областях позволили Жану Дьедоне, одному из основателей группы Бурбаки, сказать: "Гений Пуанкаре эквивалентен гению Гаусса и столь же универсален. Он превосходил всех математиков своего времени".

Его рассеянность и его отрешенность от житейских проблем были легендарными. Вследствие беспримерной щедрости он, приписывал другим открытия, которые сделал сам. Его репутация в среде математиков была всеобщей. Над решенной им проблемой трех тел бились самые выдающиеся математики. Предложенное решение позволило сделать далеко идущие выводы и открыть новые разделы анализа, как например, стохастизация в динамических системах. Он показал, не прибегая к помощи вычислительных машин, что траектории динамических систем могут иметь беспорядочное поведение в зависимости от начальных условий, что называется сейчас чувствительностью к начальным условиям в теории хаоса. Он показал, что точки пересечения траекторий с секущей плоскостью образуют разрывное множество, плотность которого в заданной области может быть описана в терминах теории вероятности. Тем самым он установил связь между детерминизмом и случайностью. Ему также принадлежит концепция аттракторов и фрактальных кривых, основанная на представлении о предельных циклах. Пуанкаре был экстраординарной математической фигурой, какие встречаются два-три раза в столетие.

Итак, в 1899 году Пуанкаре был профессором математической физики в Сорбонне, где занимался математическим описанием наблюдаемых в физике явлений. В этом качестве он внимательно следил за проблемами, возникшими в физике после опытов Майкельсона. Он сразу обратил внимание на предложенную Лоренцем теорию локального времени и сокращения размеров движущихся в эфире тел. В своем курсе "Электричество и оптика " Пуанкаре пишет: "Это странное свойство производит впечатление фокуса, разыгранного природой для того, чтобы было невозможно определить движение Земли посредством оптических экспериментов. Такое положение дел не может меня удовлетворить. Я полагаю весьма правдоподобным, что оптические явления могут зависеть только от относительных движений присутствующих материальных тел."

Тем самым в трех фразах Пуанкаре исключил эфир, в следующем, 1900 году в статье "Теория Лоренца и принцип противодействия " он дал физическую интерпретацию Лоренцева локального времени: это время подвижных наблюдателей, которые настроили свои часы с помощью оптических сигналов, игнорируя собственное движение. Он там также замечает: "Если аппарат массы 1 кг посылает в некотором направлении со скоростью света энергию в 3 мегаджоуля, то скорость противодействия будет 1 см/сек".

Этот означает, что лучевая энергия обладает свойством инерции, так же как любое материальное дело, для которого коэффициентом инерции является ею масса. Эта эквивалентная масса электромагнитной энергии Е равна, следовательно, Е/c 2 , формула, которую он явно выписывает, что влечет за собой Е = mc 2 . Имеет место эквивалентность между массой и энергией в случае электромагнитного излучения, Макс Планк обобщит эту формулу на случай тела, которое поглощает и теряет энергию и произведет доказательство в 1907 году, опираясь на электромагнитное количество движения Пуанкаре.

В 1902 году Пуанкаре публикует работу "Наука и гипотеза ", работу, которая имела большой резонанс в научном сообществе. Там он, в частности, писал: "Не существует абсолютного пространства и мы воспринимаем только относительные движения. Не существует абсолютного времени: утверждение, что два промежутка времени равны друг другу, само по себе не имеет никакого смысла. Оно может обрести смысл только при определенных дополнительных условиях. У нас нет непосредственной интуиции одновременности двух событий, происходящих в двух разных театрах. Мы могли бы что-либо утверждать о содержании фактов механического порядка, только отнеся их к какой-либо неевклидовой геометрии".

В этих высказываниях нетрудно увидеть ряд положений, которые типичны для современной релятивистской физики. Лоренц, впрочем, читал эту работу Пуанкаре и был в курсе тех критических замечаний, которые высказывал Пуанкаре еще в 1899 году. Лоренц получил в 1902 Нобелевскую премию по физике, вторую в истории науки (первую получил Рентген), что делало его весьма авторитетным. Строгий ученый, он принимал в расчет критику Пуанкаре, как он сам об этом пишет в своем мемуаре в мае 1904 года, где он предлагает новые уравнения. Однако он не может расстаться с идеей неподвижного эфира.

В сентябре 1904 года Пуанкаре приглашают в Соединенные штаты прочитать лекцию в городе Сент-Луис (штат Миссури). Он должен там рассказать о состоянии науки и о будущем математической физики. Он начал лекцию с того, что рассказал о той роли, которую выпало играть в современной ему науке великим принципам, таким как закон сохранения энергии, второе начало термодинамики, равенство действия противодействию, закон сохранения массы, принцип наименьшего действия. К ним он затем добавляет радикальное нововведение: принцип относительности, в соответствии с которым законы физики должны быть одинаковыми, как для неподвижного наблюдателя, так и для наблюдателя, вовлеченного в равномерное движение, так, что мы не имеем и не можем иметь никакого способа узнать находимся ли мы или нет в подобном движении".

Впервые он обнародовал принцип относительности, касающийся не только механики, но и электромагнетизма. Пуанкаре закончил свою лекцию словами: "Возможно, нам предстоит построить механику, контуры которой уже начинают проясняться и где возрастающая со скоростью масса сделает скорость света непреодолимым барьером".

Из мемуара Лоренца 1904 года, с которым он познакомился до этой лекции, он извлек главное, что оправдывает и обосновывает принцип относительности. Он публикует резюме своих исследований в заметке в Академии наук от 5 июня 1905 года, где можно найти следующую фразу: "Самое главное, что было установлено Лоренцем – это то, что уравнения электромагнитного поля не изменяются под действием преобразований, которым я даю название преобразований Лоренца".

На самом деле это именно Пуанкаре принадлежит доказательство инвариантности уравнений Максвелла. Это позже честно признал сам Лоренц "Это были мои рассуждения, опубликованные в мае 1904 года, которые подвигнули Пуанкаре написать свою статью, в которой он приписывает мое имя преобразованиям, из которых я не смог извлечь всей пользы. Позже я смог увидеть в мемуаре Пуанкаре, что я мог добиться больших упрощений. Не заметив их, я не смог установить принцип относительности как строго и универсально справедливый. Пуанкаре, напротив, установил совершенную инвариантность и сформулировал постулат относительности. Именно этот термин он первым и употребил".

Действительно, Лоренц предложил двухступенчатую замену переменных, связывающую координаты событи {x ,y ,z ,t } в некотором инерциальном репере с координатами этого же событи {x" ,y" ,z" ,t" } в другом инерциальном репере, движущимся по отношению к первому. В то время как Пуанкаре связал координаты {x ,y ,z ,t } с координатами {x" ,y" ,z" ,t" } единым преобразованием. Это преобразование симметрично и обратимо: никакой репер не имеет привилегированного характера и в этом суть релятивизма. Немедленное следствие: постоянство скорости света.

Именно этому преобразованию Пуанкаре дал имя Лоренца, ставшее классическим. В заметке 5 июня он писал: "Множество всех этих преобразований вместе со всеми поворотами пространства должно обладать групповыми свойствами, для того, чтобы удовлетворять принципу относительности".

Термин преобразование имеет специальное употребление в теории групп преобразований в геометрии после работ Феликса Клейна 1872 года. По этой причине, с теорией групп в то время были знакомы лишь несколько математиков самого высокого уровни и некоторые кристаллографы. Поэтому этой теорией воспользовался Пуанкаре, который ею владел, а не Лоренц.

Последствия того открытия, что в основе релятивизма лежит специальная группа, были весьма значительными, так как из этого следовало, что x 2 + у 2 + z 2 – c 2 t является инвариантом этой группы, преобразования которой в пространстве четырех измерений х ,у ,z ,ict являются вращениями. Эта группа, которой Пуанкаре дал название группа Лоренца , и которую современные физики именуют группа Пуанкаре , является основой специальной теории относительности.

Итак, в своей заметке 5 июня 1905 года Пуанкаре дал новую форму преобразованиям, предложенным Лоренцем, и установил их групповую природу. В силу этих преобразований уравнения Максвелла инвариантны и этим удовлетворяется принцип относительности: в этом и состоит главный момент . Основы теории относительности были сформированы.

В это время 26 сентября 1905 года журнал "Annalen der Physik " (Берлин-Лейпциг) публикуют статью Альберта Эйнштейна, озаглавленную "К электродинамике движущихся тел ". Рукопись, подписанная Эйнштейном и его женой Милевой Марич (см. Science & Vie No. 871, р. 32) была получена редакцией 30 июня 1905 года, то есть более трех недель спустя заметки Пуанкаре. Эта рукопись была немедленно уничтожена после ее публикации. Родившийся в 1879 году Эйнштейн получил образование в Цюрихском Политехникуме, после чего поступил в патентное бюро Берна.

В его статье можно найти то, о чем в течение десяти лет Пуанкаре дискутировал с Лоренцем и что уже неоднократно публиковалось: ненужность эфира, абсолютного пространства и абсолютного времени, условность понятия одновременности, принцип относительности, постоянство скорости света, синхронизация часов световыми сигналами, преобразования Лоренца, инвариантность уравнений Максвелла, и так далее. К уже известному Эйнштейн добавил формулы релятивистского эффекта Доплера и аберрации, которые немедленно вытекают из преобразований Лоренца.

Таким образом, независимый исследователь, никогда, ничего не публиковавший по обсуждаемому вопросу прежде, якобы переоткрыл практически мгновенно то, что ученые класса Лоренца и Пуанкаре смогли установить только после десяти лет усилий. Более того, вопреки научной этике в своей статье Эйнштейн не делает никаких ссылок на работы предшественников, что особенно поразило Макса Борна. При этом Эйнштейн, который читал по-французски также хорошо, как и по-немецки, знал работу Пуанкаре "Наука и гипотеза ", а также, без сомнения, и все другие статьи Лоренца и Пуанкаре.

Это не помешало Эйнштейну стать в глазах общественности творцом теории относительности, что обрекало Пуанкаре на забвение. Такое произошло под влиянием немецкой школы и благодаря научному авторитету Планка и фон Лауе. В 1907 году Планк писал: "Принцип относительности, намеченный Лоренцем и в наиболее общем виде сформулированный Эйнштейном..."; здесь Пуанкаре был уже полностью проигнорирован.

Этому есть два главных объяснения. Прежде всего, конфликт двух кланов: Пуанкаре был математиком, а не физиком. Мог ли профессор математики с высоты своей кафедры давать советы тем, кто внизу ведет тяжелую борьбу с грубой реальностью практики? Затем конфликт наций: в начале века наука была немецкой (Рентген, Герц, Планк, Вайн и др.), как могли немцы получать уроки от французов?

Хотя Эйнштейн и работал в Берне, но родился в Ульме, в Баварии. Он принадлежал к немецкой школе и поэтому стал знаменитым. Потом американцы, склонные все преувеличивать до абсурда, сделали из него самого великого ученого человечества.

В этом избытке почестей есть, однако, "небольшая осечка". Пуанкаре умер в 1912 году, в этом же году, а затем и в последующих, Эйнштейн неоднократно выдвигался на Нобелевскую премию по теории относительности. В конце концов он получил эту премию, но не за эту теорию, а за фотоэффект. Для премии по теории относительности было существенное препятствие: Лоренц, престиж которого в Шведской Академии Наук был огромен, и который лучше, чем кто-либо знал о приоритете Пуанкаре в генезисе релятивизма.

* Par Renard de la Taille, Relativite Poincare a precede Einstein , Science et Vie, No. 931, avril 1995, p. 114-119 (оригинал статьи в формате djvu)

2005 В.Ф. Журавлев (перевод с французского)