Химия в жизни человека. Роль химии в жизни людей

Андриянова Елизавета, Манькова Валентина

Химия - это удивительный мир загадок и открытий. Именно она позволяет человеку извлекать из минерального, животного и растительного сырья вещества, одно другого удивительней и чудесней.

Оглянитесь вокруг и вы увидите, что жизнь современного человека невозможна без химии. Роль ее огромна.

Скачать:

Предварительный просмотр:

Муниципальное общеобразовательное бюджетное учреждение

Тюкалинского муниципального района Омской области

«Тюкалинский лицей»

Тема проекта: «Химия в нашей жизни»

Учебно-исследовательская работа

Научное направление: химия 9 класс

Выполнили:

учащиеся 9б класса

Андриянова Елизавета и

Манькова Валентина

Руководитель проекта:

Хиневич Татьяна Васильевна,

учитель химии

Тюкалинск - 2017

I Введение …… ……………… …………………………… 3

1.Актуальность темы, цель, задачи, методы....................... 3

II Основная часть………………………………………… 4-18

2. Теоретический материал……………………………… 4-9

2.1 Вода …………………………………… ……………. 4

2.2 Хлор……………………………… ………………… 4-6

2.3.Пищевая сода …………………………………… 6-7

2.4 Уксусная кислота……………………………………. 7-8

2.5 Лимонная кислота……………. …………………… 8

2.6 Иод …………………………………… ……………….8-15

2.7. Аммиак …………………………………………………

2.8. Перекись водорода ………………………………………

III Заключение………………………………………………19-22

5. Выводы……………………………………………………… 19

7. Перспективы работы………………………………………. 21

8. Литература………………………………………………… 22

I Введение

  1. Актуальность темы, цель, задачи, гипотеза, методы

Широко распростирает химия руки свои в дела человеческие… Куда ни посмотрим, куда не оглянемся, везде обращаются перед очами нашими успехи её прилежания.

(М.В. Ломоносов)

Химия – это целый удивительный мир, мир загадок и открытий, мир прошлого, настоящего и будущего. Именно она позволяет человеку извлекать из минерального, животного и растительного сырья вещества, одно другого чудесней и удивительней. Она не только копирует природу, подражая ей, а и – с каждым годом всё более начинает превосходить её. Рождаются тысячи и десятки тысяч веществ, природе неизвестных. Со свойствами очень полезными и важными для практики, для жизни человека.

Оглянитесь вокруг, и Вы увидите, что жизнь современного человека невозможна без химии. Мы используем химию при производстве пищевых продуктов. Мы передвигаемся на автомобилях, металл, резина и пластик которых сделаны с использованием химических процессов. Мы используем духи, туалетную воду, мыло и дезодоранты, производство которых немыслимо без химии. Химия окружает нас на каждом шагу. Роль её огромна. Многие жизненные и природные процессы связаны с химией. Во все времена химия служила человеку в его практической деятельности, служит и по сей день. Знания по химии обязательно помогут сохранить здоровье, найти нестандартный способ решения бытовых проблем, дадут ответы на многие наши вопросы, химия раскроет тайны не только привычных нам вещей, но и далеких звезд…

Цель работы: Исследовать химические вещества, которые помогают нам в нашей жизни.

Задачи: 1. Выявить степень информативности о химических веществах, используемых в нашей жизни среди родителей и обучающихся 9 класса МОБУ « Тюкалинский лицей».

2. Проанализировать информацию о химических веществах в Интернете и научно-популярной литературе.

3. Обработать результаты и сделать выводы.

Гипотеза: не все вещества нужны в жизни человека.

Предмет исследования: химические вещества

Объект исследования: Образцы химических веществ

Методы исследования:

1. Сбор информации по теме

2. Анализ информации по теме

3. Наблюдение

II Основная часть

  1. Теоретический материал
  1. ВОДА

Вода́ (оксид водорода ) - бинарное неорганическое соединение с химической формулой Н 2 O . При нормальных условиях представляет собой прозрачную жидкость , не имеющую цвета (при малой толщине слоя), запаха и вкуса . В твёрдом состоянии называется льдом (кристаллы льда могут образовывать снег или иней ), а в газообразном - водяным паром . Вода также может существовать в виде жидких кристаллов .

Свойства воды используется живыми существами. В живой клетке и в межклеточном пространстве вступают во взаимодействие растворы различных веществ в воде. Вода необходима для жизни всех без исключения одноклеточных и многоклеточных живых существ на Земле.

Живое человеческое тело содержит от 50 % до 75 % воды, в зависимости от веса и возраста. Потеря организмом человека более 10 % воды может привести к смерти. В зависимости от температуры и влажности окружающей среды, физической активности и т. д. человеку нужно выпивать разное количество воды.

Выращивание достаточного количества сельскохозяйственных культур на открытых засушливых землях требует значительных расходов воды на ирригацию , доходящих до 90 % в некоторых странах.

Вода является растворителем для многих веществ. Она используется для очистки как самого человека, так и различных объектов человеческой деятельности. Вода используется как растворитель в промышленности.

Среди существующих в природе жидкостей вода обладает наибольшей теплоёмкостью. Теплота её испарения выше теплоты испарения любых других жидкостей. В качестве теплоносителя воду используют в тепловых сетях , для передачи тепла по теплотрассам от производителей тепла к потребителям. Воду в виде льда используют для охлаждения в системах общественного питания, в медицине. Большинство атомных электростанций используют воду в качестве теплоносителя.

Многими видами спорта занимаются на водных поверхностях, на льду, на снегу и даже под водой. Это подводное плавание , хоккей , лодочные спорта, биатлон , шорт-трек и др.

Вода используется как инструмент для разрыхления, раскалывания и даже резки пород и материалов.

Вода применяется как смазочный материал для смазки подшипников из древесины, пластиков, текстолита, подшипников с резиновыми обкладками и др. Воду также используют в эмульсионных смазках.

2.2 ХЛОР

Хлор (от греч. χλωρός - «зелёный») - химический элемент с атомным номером 17 .Простое вещество хлор, при нормальных условиях - ядовитый газ желтовато-зелёного цвета , тяжелее воздуха, с резким запахом и сладковатым, «металлическим» вкусом . Молекула хлора двухатомная (формула Cl 2 ).

Хлор применяют во многих отраслях промышленности, науки и бытовых нужд: В производстве поливинилхлорида , пластикатов, синтетического каучука, из которых изготавливают: изоляцию для проводов, оконный профиль, упаковочные материалы , одежду и обувь, линолеум и грампластинки, лаки, аппаратуру и пенопласты , игрушки, детали приборов, строительные материалы.

Оконный профиль, изготовленный из хлорсодержащих полимеров

Отбеливающие свойства хлора известны с давних времен

Производство хлорорганических инсектицидов - веществ, убивающих вредных для посевов насекомых, но безопасных для растений. Один из самых важных инсектицидов.

Для обеззараживания воды - « хлорирования ». В химическом производстве соляной кислоты , хлорной извести, ядов, лекарств, удобрений.

2.3.ПИЩЕВАЯ СОДА

Гидрокарбонат натрия (Natrii hydrocarbonas) 3 (другие названия: питьевая сода, пищевая сода , бикарбонат натрия, натрий двууглекислый) - кислая соль угольной кислоты и натрия. Обыкновенно представляет собой мелкокристаллический порошок белого цвета. Используется в пищевой промышленности, в кулинарии, в медицине как нейтрализатор ожогов кожи и слизистых оболочек человека кислотами и снижения кислотности желудочного сока.

Применяется в химической промышленности - для производства красителей, пенопластов и других органических продуктов, фтористых реактивов, товаров бытовой химии, наполнителей в огнетушителях, для отделения диоксида углерода, сероводорода из газовых смесей.

В легкой промышленности - в производстве подошвенных резин и искусственных кож, кожевенном производстве (дубление и нейтрализация кож), текстильной промышленности (отделка шелковых и хлопчатобумажных тканей).

В пищевой промышленности - хлебопечении, производстве кондитерских изделий, приготовлении напитков.

Гидрокарбонат натрия входит в состав порошка, применяемого в порошковых системах пожаротушения , утилизируя тепло и оттесняя кислород от очага горения выделяемым углекислым газом.

2.4. УКСУСНАЯ КИСЛОТА

У́ксусная кислота (эта́новая кислота ) - органическое вещество с формулой CH 3 COOH. Слабая, одноосно́вная карбоновая кислота .

Уксусная кислота представляет собой бесцветную жидкость с характерным резким запахом и кислым вкусом . Гигроскопична, т.е поглощает воду .

Водные растворы уксусной кислоты широко используются в пищевой промышленности (пищевая добавка E260 ) и бытовой кулинарии, а также в консервировании.

Уксусную кислоту применяют для получения лекарственных и душистых веществ, как растворитель. Она используется в книгопечатании и крашении.

Уксусная кислота используется для избавления от накипи.

Уксусная кислота используется как реакционная среда для проведения окисления различных органических веществ.

Поскольку пары уксусной кислоты обладают резким раздражающим запахом, возможно её применение в медицинских целях в качестве замены нашатырного спирта для выведения больного из обморочного состояния.

Пары уксусной кислоты раздражают слизистые оболочки верхних дыхательных путей. Действие уксусной кислоты на биологические ткани зависит от степени её разбавления водой. Опасными считаются растворы, в которых концентрация кислоты превышает 30 %. Концентрированная уксусная кислота способна вызывать химические ожоги.

2.5. ЛИМОННАЯ КИСЛОТА

Лимо́нная кислота́ (C 6 H 8 O 7 ) Кристаллическое вещество белого цвета. Хорошо растворима в воде.

Кристаллы лимонной кислоты под микроскопом .

Широко используется в пищевой промышленности и в бытовой химии в качестве очистительного средства.

Лимонная кислота опасна только в очень больших количествах, так как приводит к ожогам пищеварительного тракта.

2.6. ЙОД

Иод

126,9045

4d 10 5s 2 5p 5

Ио́д( от др.-греч. ἰώδης - «фиалковый (фиолетовый )») .

Простое вещество иод при нормальных условиях - кристаллы чёрно-серого цвета с фиолетовым металлическим блеском , легко образует фиолетовые пары , обладающие резким запахом.

Иод ядовит. Смертельная доза - 3 г . Вызывает поражение почек и сердечно-сосудистой системы. При вдыхании паров иода появляется головная боль, кашель, насморк, может быть отёк лёгких . При попадании на слизистую оболочку глаз появляется слезотечение, боль в глазах и покраснение. При попадании внутрь появляется общая слабость, головная боль, повышение температуры, рвота, понос, бурый налёт на языке, боли в сердце и учащение пульса. Через день появляется кровь в моче. Через 2 дня появляются почечная недостаточность и миокардит . Без лечения наступает летальный исход.

5-процентный спиртовой раствор иода используется для дезинфекции кожи вокруг повреждения (рваной, резаной или иной раны), но не для приёма внутрь при дефиците иода в организме.

В криминалистике пары иода применяются для обнаружения отпечатков пальцев на бумажных поверхностях, например, на купюрах.

Иод используется в источниках света :

галогеновых лампах - в качестве компонента газового наполнителя колбы для осаждения испарившегося вольфрама нити накаливания обратно на неё.

Иод используется в качестве компонента положительного электрода (окислителя) в литиево-иодных аккумуляторах для автомобилей.

В последние годы резко повысился спрос на иод со стороны производителей жидкокристаллических дисплеев.

У животных и человека иод входит в состав так называемых гормонов, вырабатываемых щитовидной железой, оказывающих многостороннее воздействие на рост, развитие и обмен веществ организма.

В организме человека (масса тела 70 кг) содержится 12-20 мг иода. Суточная потребность человека в иоде определяется возрастом, физиологическим состоянием и массой тела. Для человека среднего возраста нормальной комплекции суточная доза иода составляет 0,15 мг.

Отсутствие или недостаток иода в рационе (что типично для некоторых местностей) приводит к заболеваниям (эндемический зоб , кретинизм, базедова болезнь ).

Также при небольшом недостатке иода отмечается усталость, головная боль, подавленное настроение, природная лень, нервозность и раздражительность; слабеет память и интеллект. Со временем появляется аритмия, повышается артериальное давление, падает уровень гемоглобина в крови.

2.7.АММИАК

Аммиа́к (нитрид водорода) - химическое соединение с формулой NH 3 , при нормальных условиях - бесцветный газ с резким характерным запахом.

Жидкий аммиак - хороший растворитель для очень большого числа органических, а также для многих неорганических соединений. Твёрдый аммиак - бесцветные кубические кристаллы.

По физиологическому действию на организм относится к группе веществ удушающего и нейротропного действия, способных при ингаляционном поражении вызвать токсический отёк лёгких и тяжёлое поражение нервной системы.

Пары аммиака сильно раздражают слизистые оболочки глаз и органов дыхания, а также кожные покровы. Это человек и воспринимает как резкий запах. Пары аммиака вызывают обильное слезотечение, боль в глазах, химический ожог конъюнктивы и роговицы, потерю зрения, приступы кашля, покраснение и зуд кожи. При соприкосновении сжиженного аммиака и его растворов с кожей возникает жжение, возможен химический ожог с пузырями, изъязвлениями.

В основном используется для производства азотных удобрений (нитрат и сульфат аммония, мочевина ), взрывчатых веществ и полимеров , азотной кислоты, соды (по аммиачному методу) и других продуктов химической промышленности. Жидкий аммиак используют в качестве растворителя .

В холодильной технике используется в качестве холодильного агента (R717)

В медицине 10 % раствор аммиака, чаще называемый нашатырным спиртом , применяется при обморочных состояниях (для возбуждения дыхания), для стимуляции рвоты, а также наружно - невралгии, миозиты, укусах насекомых, для обработки рук хирурга.

Физиологическое действие нашатырного спирта обусловлено резким запахом аммиака, который раздражает специфические рецепторы слизистой оболочки носа и способствует возбуждению дыхательного и сосудодвигательного центров мозга, вызывая учащение дыхания и повышение артериального давления. 3 % раствор перекиси водорода

Благодаря своим сильным окислительным свойствам пероксид водорода нашёл широкое применение в быту и в промышленности, где используется, например, как отбеливатель на текстильном производстве и при изготовлении бумаги.

Применяется как ракетное топливо , в качестве окислителя. Используется в аналитической химии , в качестве пенообразователя при производстве пористых материалов, в производстве дезинфицирующих и отбеливающих средств.

Хотя разбавленные растворы перекиси водорода применяются для небольших поверхностных ран. Обеспечивая антисептический эффект и очищение, также продлевает время заживления. Обладая хорошими очищающими свойствами, пероксид водорода на самом деле не ускоряет заживление ран. Достаточно высокие концентрации, обеспечивающие антисептический эффект, могут также продлевать время заживления из-за повреждения прилегающих к ране клеток. Более того, пероксид водорода может мешать заживлению и способствовать образованию рубцов из-за разрушения новообразующихся клеток кожи. Без предварительной обработки пероксидом водорода антисептический раствор не сможет удалить эти патологические образования, что приведет к значительному увеличению времени заживления раны и ухудшит состояние больного.

Пероксид водорода применяется также для обесцвечивания волос и отбеливания зубов , однако эффект в обоих случаях основан на окислении, а следовательно - разрушении тканей. В пищевой промышленности растворы пероксида водорода применяются для дезинфекции технологических поверхностей оборудования, непосредственно соприкасающихся с продукцией. Кроме того, на предприятиях по производству молочной продукции и соков, растворы перекиси водорода используются для дезинфекции упаковки (технология « Тетра Пак »). Для технических целей пероксид водорода применяют в производстве электронной техники.

В быту применяется также для выведения пятен MnO 2 , образовавшихся при взаимодействии перманганата калия («марганцовки») с предметами (ввиду его восстановительных свойств).

3%-ный раствор пероксида водорода используется в аквариумистике для оживления задохнувшейся рыбы, а также для очистки аквариумов и борьбы с нежелательной флорой и фауной в аквариуме.

III Заключение

5. Выводы

  1. В нашей жизни очень много химических веществ, которые нужны нам.
  2. Для того, чтобы применять химические вещества в быту нужно знать о них: как они применяются, какими свойствами обладают, какие правила техники безопасности нужно соблюдать.
  1. Беречь воду, использовать только необходимое количество.
  2. Перед применением любого химического вещества внимательно причитать инструкцию.
  3. Не использовать химические вещества с истекшим сроком годности.

7. Перспективы работы

Провести анализ других химических веществ, встречающихся в нашей жизни.

8. Литература

  1. https://ru.wikipedia.org/wiki/
  2. Энциклопедический словарь юного химика Крицман В.А., Станцо В.В., М, Просвещение, 1990г.
  3. Я познаю мир: Детская энциклопедия. Растения. М. АСТ, 1996.

Муниципальное бюджетное общеобразовательное учреждение

«Гимназия №16»

По теме:
«Роль химии в жизни человека»

2011
Введение

Для решения многих задач можно использовать одну из важнейших отраслей науки и естествознания - химическую науку. Современная химия развивается стремительными темпами, плодотворно сотрудничая с физикой, математикой, биологией и другими науками. Роль химии в жизни и развитии общества очень велика. Химия очень тесно связана с производством материальных ценностей. Естествознание, в том числе и химическая наука, начиная с давно известных положений и законов, и кончая современными сложными теориями, взаимосвязана с философией.
Колоссальные достижения химической практики весомо и зримо ощутимы в нашей повседневной жизни. Сейчас практически немыслимо остановиться на этом пути или вернуться назад, отказавшись от использования знаний об окружающем мире, которыми человечество уже обладает.

1. Химия в нашей повседневной жизни

Повсюду, куда бы мы ни обратили свой взор, нас окружают предметы и изделия, изготовленные из веществ и материалов, которые получены на химических заводах и фабриках. Кроме того, в повседневной жизни, сам того не подозревая, каждый человек осуществляет химические реакции. Например, умывание с мылом, стирка с использованием моющих средств и др. При опускании кусочка лимона в стакан горячего чая происходит ослабление окраски – чай здесь выступает в роли кислотного индикатора. Аналогичное кислотно-основное взаимодействие проявляется при смачивании уксусом нарезанной синей капусты. Хозяйки знают, что капуста при этом розовеет. Зажигая спичку, замешивая песок и цемент с водой или гася водой известь, обжигая кирпич, мы осуществляем настоящие, а иногда и довольно сложные химические реакции. Объяснение этих и других широко распространенных в жизни человека химических процессов – удел специалистов.
Приготовление пищи – это тоже химические процессы. Не зря говорят, что женщины-химики часто очень хорошие кулинары. Действительно, приготовление пищи на кухне иногда напоминает выполнение органического синтеза в лаборатории. Только вместо колб и реторт на кухне используют кастрюли и сковородки, а иногда и автоклавы в виде скороварок. Не стоит далее перечислять химические процессы, которые проводит человек в повседневной жизни. Необходимо лишь отметить, что в любом живом организме в огромных количествах осуществляются различные химические реакции. Процессы усвоения пищи, дыхания животного и человека основаны на химических реакциях. В основе роста маленькой травинки и могучего дерева также лежат химические реакции.
Химия – это наука, важная часть естествознания. Строго говоря, наука не может окружать человека. Его могут окружать результаты практического приложения науки. Это уточнение весьма существенное. В настоящее время часто можно слышать слова: «химия испортила природу», «химия загрязнила водоем и сделала его непригодным для использования» и т.д. На самом же деле наука химия здесь вовсе не причем. Люди, используя результаты науки, плохо оформили их в технологический процесс, безответственно отнеслись к требованиям правил безопасности и к экологически допустимым нормам промышленных сбросов, неумело и не в меру использовали удобрения на сельскохозяйственных угодьях и средства защиты растений от сорняков и вредителей растений. Любая наука, особенно естествознание, не может быть хорошей или плохой. Наука – накопление и систематизация знаний. Другое дело, как и в каких целях используются эти знания. Однако это уже зависит от культуры, квалификации, моральной ответственности и нравственности людей, не добывающих, а использующих знания.

2. Химическая промышленность

Химическая промышленность – комплексная отрасль, определяющая, наряду с машиностроением, уровень научно-технического прогресса, обеспечивающая все отрасли народного хозяйства химическими технологиями и материалами, в том числе новыми, прогрессивными и производящая товары массового народного потребления.
Химическая промышленность объединяет множество специализированных отраслей, разнородных по сырью и назначению выпускаемой продукции, но сходных по технологии производства.
В состав современной химической промышленности России входят следующие отрасли.
Отрасли химической промышленности:

    горно-химическая (добыча и обогащение химического минерального сырья – фосфоритов, апатитов, калийных и поваренных солей, серного колчедана);
    основная (неорганическая) химия (производство неорганических кислот, минеральных солей, щелочей, удобрений, химических кормовых средств, хлора, аммиака, кальцинированной и каустической соды);
    органическая химия:
    производство синтетических красителей;
    производство синтетических смол и пластических масс;
    производство искусственных и синтетических волокон и нитей;
    производство химических реактивов, особо чистых веществ и катализаторов;
    фотохимическая (производство фотокинопленки, магнитных лент и других фотоматериалов);
    лакокрасочная (получение белил, красок, лаков, эмалей, нитроэмалей и т.п.);
    химико-фармацевтическая
- производство лекарственных веществ и препаратов;
- производство химических средств защиты растений.
7. производство товаров бытовой химии;
    производство пластмассовых изделий, стекловолокнистых материалов, стеклопластиков и изделий из них.
8. микробиологическая отрасль.

Экономические районы страны, в которых сложились наиболее крупные комплексы химической промышленности:
Центральный район – полимерная химия (производство пластмасс и изделий из них, синтетического каучука, шин и резинотехнических изделий, химического волокна), производство красителей и лаков, азотных и фосфорных удобрений, серной кислоты;
Уральский район – производство азотных, фосфорных и калийных удобрений, соды, серы, серной кислоты, полимерная химия (производство синтетического спирта, синтетического каучука, пластмасс из нефти и попутных газов);
Северо-Западный район – производство фосфорных удобрений, серной кислоты, полимерная химия (производство синтетических смол, пластмасс, химического волокна);
Поволжье – нефтехимическое производство (органический синтез), производство полимерной продукции (синтетического каучука, химического волокна);
Северный Кавказ – производство азотных удобрений, органического синтеза, синтетических смол и пластмасс;
Сибирь (Западная и Восточная) – химия органического синтеза, азотная промышленность на коксовом газе, производство полимерной химии (пластмасс, химического волокна, синтетического каучука), шинное производство.

3. Химия и здоровье человека

Живая клетка это настоящее царство больших и малых молекул, которые непрерывно взаимодействуют, образуются и распадаются... В организме человека реализуется около 100 000 процессов, причем каждый из них представляет собой совокупность различных химических превращений. В одной клетке организма может происходить примерно 2000 реакций. Все эти процессы осуществляются при помощи сравнительно небольшого числа соединений. Большая часть болезней обусловлена отклонением концентраций какого-либо вещества от нормы. Это связано с тем, что огромное число химических превращений внутри живой клетки происходит в несколько этапов, и многие вещества важны клетке не сами по себе, они являются лишь посредниками в цепи сложных реакций; но, если нарушается какое-то звено, то вся цепь в результате часто перестает выполнять свою передаточную функцию; останавливается нормальная работа клетки по синтезу необходимых веществ.
Фармакология - это наука о лекарственных средствах, действии различных химических соединений на живые организмы, о способах введения лекарств в организмы и о взаимодействии лекарств между собой. Молекулярная фармакология изучает поведение молекул лекарственных веществ внутри клетки, транспорт этих молекул через мембраны и т.д. Человек начал применять лекарственные вещества очень давно, несколько тысяч лет назад. Древняя медицина практически полностью основывалась на лекарственных растениях, и этот подход сохранил свою привлекательность до наших дней. Множество современных лекарственных препаратов содержат вещества растительного происхождения или химически синтезированные соединения, идентичные тем, которые можно обнаружить в лекарственных растениях. Один из самых ранних из дошедших до нас трактат о лекарственных средствах был написан древнегреческим врачом Гиппократом в IV веке до нашей эры.

4. Химия и проблемы продовольствия и экологии

Население нашей планеты растёт. По прогнозам Организации объединенных наций к 2050г. оно составит около 7 млрд. человек и будет, естественно, увеличиваться в последующие десятилетия. Это значит, что уже сейчас необходимо задуматься над тем, как обеспечить население Земли питанием в будущем. Расчёты учёных приводят к выводу, что проблема будет решена, если за ближайшие 40 - 50 лет мировое производство продуктов питания возрастёт в 3 - 4 раза. Подобный прирост может быть осуществлён только в том случае, если произойдёт "зелёная революция" - резкий подъём сельского хозяйства, прежде всего в развивающихся странах, на базе внедрения всех достижений
современной науки, в том числе химии.
Есть ли основания верить в возможность такой "зелёной революции"? Учёные отвечают на этот вопрос определённо: да, можно. Модернизированное сельское хозяйство с помощью своих могучих союзниц - химии и биологии - без труда может прокормить более 7 млрд. человек.
В решении продовольственной проблемы в глобальном масштабе основной акцент делается на увеличение производства растительной и животной пищи естественного происхождения. Увеличение же объёма производства пищи естественного производства, по мнению специалистов, будет в ближайшем будущем достигаться за счёт создания благоприятных условий для размножения и роста растений и животных. Сюда относится в первую очередь применение удобрений, а затем стимуляторов роста, искусственных кормов для сельскохозяйственных животных, средств защиты растений и животных, введение в практику питания новых продуктов, добытых в океане, и т. д.
Большие потери урожая связанны с вредителями и болезнями сельскохозяйственных растений. Гибнет примерно одна треть урожая. Если отказаться от применения химических средств защиты растений, то эта доля удвоится. Для 3 тыс. видов культурных растений известно около 30 тыс. возбудителей болезней! Из них более 25 тыс. - грибы, около 600 - нематоды (черви), более 200 - бактерии, около 300 - вирусы.
В результате заболеваний растений люди теряют 10 - 15% урожая ещё до того, как он собран. Совместное же воздействие болезней, вредителей и сорняков отнимают от урожая от 25 до 40%. Цифра не малая, но и это ещё не всё. От 5 до 25% продукции сельского хозяйства теряется при перевозке и хранении. В результате суммарные потери урожая, до того как он попадёт к потребителю, составляют в разных странах около 40 до 50%. Есть над чем призадуматься специалистам по борьбе с вредителями и болезнями сельскохозяйственных культур.
В животноводстве приобретают всё большее значение искусственные, производимые на специальных заводах корма. Для увеличения массы домашний скот должен в остаточном количестве снабжаться сырьём. Это может быть растительный белок, рыбная мука и т. д. Однако при расширении масштабов животноводства и увеличении спроса на его продукцию этих источников белка может не хватать, поэтому химики совместно с биологами давно уже начали искать пути замены таких кормов. И придуманы хорошие заменители натуральных кормов.
Научно-технический прогресс, дающий человеку много благ, одновременно оказывает и отрицательное влияние на окружающую природу.
В промышленно развитых стран на одного жителя ежегодно в атмосферу попадает до 150 -200 кг пыли, золы и других промышленных выбросов. За сутки промышленность мира сбрасывает более 100 млн. кубических метров сточных вод.
Мощным источником загрязнения атмосферы являются все виды транспорта, работающие на тепловых двигателях. Выбрасываемые ими вещества в целом идентичны газообразным отходам промышленного происхождения. С выхлопными газами автомобилей в воздух попадают оксиды углерода, азота, серы, альдегиды, несгоревшие углеводороды, а также продукты, содержащие хлор, бор, фосфор и свинец. Загрязняют атмосферу дизельные двигатели автомобильного, водного и железнодорожного транспорта.
Вредное воздействие на гидросферу оказывают продукты нефтихимических предприятий, сырая нефть, перевозимая танкерами. Исследования Атлантического океана и шельфовых вод Европы и Северной Америки показывают, что уровень загрязнения в открытом океане в 2 - 3 раза меньше, чем в прибрежных водах, где плёнка из нефти держится более продолжительное время. 1 тонна нефти способна покрыть тонкой плёнкой поверхность водного массива площадью 1200 гектар.
Кроме того, в различных отраслях промышленности используется громадное количество новых соединений, отсутствующих в природе. Ежегодно их синтезируется в мире более 250 тысяч, из них около 300 находят промышленное применение и могут попасть в окружающую среду. По данным Всемирной организации здравоохранения, среди химических соединений, используемых в промышленном масштабе, примерно 40 тыс. вредны для человека. Процесс загрязнения окружающей среды несвойственной ей веществами, раньше носивший локальный характер, в последнее время принял глобальные масштабы. Особенно загрязнение среды такими несвойственными биосфере элементами, как свинец, ртуть, кадмий. Мощность техногенного воздействия на живую природу достигла такой величины, что возникла опасность необратимых изменений за счёт нарушения слагавшихся в течение миллионов лет природных динамических равновесий. Даже загрязнение среды такими характерными для природных круговоротов веществами, как нитраты, соли аммония, фосфаты, достигло на значительных участках земной поверхности концентраций, при которых природные механизмы оказываются недостаточными для плавного включения этих веществ в круговорот. В результате, например, во многих крупных водоёмах земного шара произошло резкое изменение в экосистемах, что привело к большому обеднению видами живых организмов.
Какой же выход видит наука, в частности химия, из создавшегося экологического кризиса? Ведь химизация промышленного и сельского хозяйства не означает разрушения всего живого, а, наоборот, предлагает пути решения проблем современности. Прежде все
и т.д.................

Значение химии в жизни человека трудно переоценить. Приведём фундаментальные области, в которых химия оказывает своё созидательное воздействие на жизнь людей.

1. Возникновение и развитие жизни человека не возможно без химии. Именно химические процессы, многие тайны которых учёные ещё не раскрыли, ответственны за тот гигантский переход от неживой материи к простейшим одноклеточным, и далее к вершине современного эволюционного процесса - человеку.

2. Большинство материальных потребностей, возникающих в жизни человека, обслуживается природной химией или получает удовлетворение в результате использования в производстве химических процессов.

3. Даже возвышенные и гуманистические устремления людей в своей основе опираются на химию человеческого организма, и, в частности, сильно зависят от химических процессов в мозге человека.

Конечно же, всё богатство и разнообразие жизни нельзя свести только к химии. Но наряду с физикой и психологией, химия как наука, представляет собой определяющий фактор развития человеческой цивилизации.

Химия жизни

Насколько сейчас известно, наша планета образовалась приблизительно 4.6 миллиарда лет назад, а простейшие ферментирующие одноклеточные формы жизни существуют 3.5 миллиарда лет. Уже 3.1 миллиарда лет они могли бы использовать фотосинтез, но геологические данные об окислительном состоянии осадочных отложений железа указывают, что атмосфера Земли приобрела окислительный характер лишь 1.8-1.4 миллиарда лет назад. Многоклеточные формы жизни, которые, по-видимому, зависели от изобилия энергии, возможного только при дыхании кислородом, появились На Земле приблизительно от миллиарда до 700 миллионов лет назад, и именно в то время наметился путь дальнейшей эволюции высших организмов. Наиболее революционным шагом, после зарождения самой жизни, было использование внеземного источника энергии, Солнца. В конечном итоге, именно это превратило жалкие ростки жизни, которые использовали случайно встречающиеся природные молекулы с большой свободной энергией, в огромную силу, способную преобразовать поверхность планеты и даже выйти за её пределы.

В настоящее время учёные придерживаются точки зрения, что зарождение жизни на Земле происходило в восстановительной атмосфере, которая состояла из аммиака, метана, воды и диоксида углерода, но не содержала свободного кислорода.
Первые живые организмы получали энергию, разлагая молекулы небиологического происхождения с большой свободной энергией на меньшие молекулы без их окисления. Предполагается, что на ранней стадии существования Земли она имела восстановительную атмосферу, состоящую из таких газов как водород, метан, вода, аммиак и сероводород, но содержащую очень мало свободного кислорода или вообще его не имевшего. Свободный кислород разрушал бы органические соединения быстрее, чем они могли синтезироваться в результате естественно протекающих процессов (под воздействием электрического разряда, ультрафиолетового излучения, теплоты или естественной радиоактивности). В этих восстановительных условиях органические молекулы, которые образовались небиологическими способами, не могли разрушаться в результате окисления, как это происходит в наше время, а продолжали накапливаться в течении тысячелетий, до тех пор, пока, наконец, не появились компактные локализованные образования из химических веществ, которые можно уже считать живыми организмами.
Появившиеся живые организмы могли поддерживать существование за счёт разрушения естественно образующихся органических соединений, поглощая их энергию. Но если бы это был единственный источник энергии, то жизнь на нашей планете была бы крайне ограниченной. К счастью, около 3 миллиардов лет назад появились важные соединения металлов с порфиринами, и это открыло путь к использованию совершенно нового источника энергии – солнечного света. Первым шагом, который поднял жизнь на Земле над ролью простого потребителя органических соединений, было включение в неё процессов координационной химии.

По-видимому, перестройка явилась побочным следствием появления нового способа запасания энергии – фотосинтеза*, – который давал его обладателям огромное преимущество над простыми ферментативными поглотителями энергии. Организмы, в которых развилось это новое свойство, могли использовать энергию солнечного света для синтеза своих собственных энергоёмких молекул и уже не зависеть от того, что находится среди их окружения. Они стали предшественниками всех зелёных растений.
Сегодня все живые организмы можно подразделить на две категории: те, которые способны изготовлять свою собственную пищу при помощи солнечного света, и те, которые не имеют такой возможности. Скорее всего, и родственные ей бактерии сегодня являются живыми ископаемыми, потомками тех древних способных к ферментации анаэробов, которые отступили в редкие анаэробные области мира, когда атмосфера в целом накопила большие количества свободного кислорода и приобрела окислительный характер. Поскольку организмы второй категории существуют за счёт поедаемых ими организмов первой категории, накопление энергии посредством фотосинтеза является источником движущей силы для всего живущего на Земле.

Общая реакция фотосинтеза в зелёных растениях обратна реакции сгорания глюкозы и проходит с поглощением значительного количества энергии.

6 CO 2 + 6 H 2 O --> C 6 H 12 O 6 + 6 O 2

Вода расщепляется на элементы, что создаёт источник атомов водорода для восстановления углекислого газа в глюкозу, а нежелательный газообразный кислород выделяется в атмосферу. Энергия, необходимая для осуществления этого в высшей степени несамопроизвольного процесса, обеспечивается солнечным светом. В наиболее древних формах бактериального фотосинтеза в качестве источника восстановительного водорода использовалась не вода, а сероводород, органические вещества или сам газообразный водород, но лёгкая доступность воды сделала этот источник наиболее удобным, и в настоящее время он используется всеми водорослями и зелёными растениями. Простейшими организмами, в которых осуществляется фотосинтез с высвобождением кислорода, являются сине-зелёные водоросли. Их правильнее обозначать современным названием цианобактерии, поскольку это, в самом деле бактерии, научившиеся добывать собственную пищу из углекислого газа, воды и солнечного света.

К сожалению, фотосинтез приводит к высвобождению опасного побочного продукта, кислорода. Кислород был не только бесполезен для ранних организмов, он конкурировал с ними, окисляя естественно образующиеся органические соединения прежде, чем они могли быть окислены в процессе метаболизма этими организмами. Кислород представлял собой гораздо более эффективный «пожиратель» энергоёмких соединений, чем живая материя. Ещё хуже было то, что слой озона, который постепенно образовывался из кислорода в верхней части атмосферы, преграждал доступ ультрафиолетовому излучению Солнца и ещё более замедлял естественный синтез органических соединений. Со всех современных точек зрения, появление свободного кислорода в атмосфере представляло собой угрозу для жизни.
Но, как часто случается, жизнь сумела обойти это препятствие и даже обратила его в преимущество. Отходами жизнедеятельности первичных простейших организмов были такие соединения, как молочная кислота и этанол. Эти вещества намного менее энергоёмки по сравнению с сахарами, но они способны высвобождать большое количество энергии, если полностью окисляются до СО 2 и Н 2 О. В результате эволюции возникли живые организмы, способные «фиксировать» опасный кислород в виде Н 2 О и СО 2 , а взамен получать энергию сгорания того, что прежде было их отходами. Преимущества сжигания пищи с помощью кислорода оказались столь велики, что подавляющее большинство форм жизни – растения и животные – пользуются в настоящее время кислородным дыханием.

Когда появились новые источники энергии, возникла новая проблема, связанная уже не с получением пищи или кислорода, а с транспортировкой кислорода в надлежащее место организма. Малые организмы могли обходиться простой диффузией газов через содержащиеся в них жидкости, но этого недостаточно для многоклеточных существ. Так перед эволюцией возникла очередная преграда.
Выход из тупика в третий раз оказался возможен благодаря процессам координационной химии. Появились такие молекулы, состоящие из железа, порфирина и белка, в которых железо могло связывать молекулу кислорода, не окисляясь при этом. Кислород просто переносится в различные участки организма, чтобы высвободиться при надлежащих условиях – кислотности и недостатке кислорода. Одна из таких молекул, гемоглобин, переносит О 2 в крови, а другая, миоглобин, получает и запасает (хранит) кислород в мышечных тканях до тех пор, пока он не понадобится в химических процессах. В результате появления миоглобина и гемоглобина были сняты ограничения на размеры живых организмов. Это привело к появлению разнообразных многоклеточных, и, в конечном итоге, человека.

* Фотосинтез – это процесс преобразования энергии света в энергию химической связи получающихся веществ.

** Метаболизм – расщепление богатых энергией веществ и извлечение их энергии.

Химия как зеркало жизни человека.

Оглянитесь вокруг, и Вы увидите, что жизнь современного человека невозможна без химии. Мы используем химию при производстве пищевых продуктов. Мы передвигаемся на автомобилях, металл, резина и пластик которых сделаны с использованием химических процессов. Мы используем духи, туалетную воду, мыло и дезодоранты, производство которых немыслимо без химии. Есть даже мнение, что самое возвышенное чувство человека, любовь, это набор определённых химических реакций в организме.
Такой подход к рассмотрению роли химии в жизни человека, является, на мой взгляд, упрощённым, и я предлагаю Вам его углубить и расширить, перейдя в совершенно новую плоскость оценки химии и её влияния на человеческое общество.

Глицин был первой из двадцати различных аминокислот, выделенных в следующем веке из природных белков.

Французский химик Мишель Эжен Шеврель (1786-1889) посвятил первую половину свой очень долгой творческой жизни изучению жиров. В 1809 г. он обрабатывал мыло (полученное нагреванием жира со щелочью) кислотой и выделил то, что мы теперь называем жирными кислотами. Позднее он показывал, что, превращаясь в мыло, жиры теряют глицерин.

Бертло в 1954 г. нагревая глицерин со стеариновой кислотой (одной из самых распространенных жирных кислот, полученных из жиров), получил молекулу, состоящую из остатка молекулы глицерина и трех остатков молекул стеариновой кислоты. Этот тристеарин, который оказался идентичен тристеарину, полученному из природных жиров, был самым сложным из синтезированных к тому времени аналогов природных продуктов. Химик может синтезировать из продуктов неживой природы соединение, по всем своим свойствам являющееся органическим. Именно с синтезом аналогов природных продуктов связаны самые крупные достижения органической химии второй половины XIX и XX вв.

Роль химии в современном мире и ее будущее.

В атмосфере «хемифобии» надо полностью сознавать невозможность социального прогресса без развития химии и применения ее достижений для решения проблем энергетики, экологии, национальной обороны, здравоохранения, развития промышленности, сельского хозяйства.

Достаточно сказать, что 92% энергии, потребляемой сейчас обществом, мы получаем, осуществляя химические процессы. И если современная энергетика создает экологические проблемы, то виновата в этом не химия, а неграмотное или недобросовестное использование продуктов ее деятельности (хим. процессы, продукты, материалы).

Надо помнить, что химия – это не только ДДТ, дефолианты, нитраты и диоксины. Но и сахар и соль, воздух и валидол, молоко и магний, полиэтилен и пенициллин.

Все чем мы пользуемся, что носим, в чем живем, передвигаемся, чем играем, производится посредством управляемых химических реакций.

Занятие химика – изобретение реакций, превращающих окружающие нас вещества в те, что служат удовлетворению наших нужд.

Нам необходимо иметь эффективное средство против болезни Паркинсона. Химики синтезируют карбидофу – соединение, отсутствующее в природе, но обладающее высокой терапевтической активностью.

Миллионы автомашин загрязняют атмосферу. Эту задачу отчасти помогает решить автомобильный каталитический конвертор выхлопных газов.

Сейчас насчитывается более 8 миллионов синтезированных соединений. Химия играет роль в решении проблем обеспечения людей продовольствием, одеждой и жильем, новых источников энергии, в создании возобновляемых заменителей истощающихся или редких материалов, в укреплении здоровья человека, в контроле за состоянием среды обитания и ее защите.

Поскольку все жизненные процессы вызываются хим. изменениями, знания о химических реакциях обеспечивают необходимый фундамент для постижения сущности жизни. Таким образом, химия вносит вклад в решение проблем универсальной философской значимости.

Трагедия в Бхопале (Индия) ярко показывает две стороны химии. Тысячи отравленных токсичными веществами, применяемыми для производства продуктов питания, ежегодно спасавших миллионы людей от голодной смерти.

Исследуя процессы, совершающиеся в природе, и открывая законы, управляющие ими, химия вместе с другими естественными науками составляет основу химической промышленности и химизации народного хозяйства страны.

Химическая промышленность преследует цель снабдить народное хозяйство различными веществами, материалами, продуктами, получаемыми ею путем изменения состава или структуры исходных веществ, т. е. химическими способами. Эти способы химической промышленности доставляет химия вместе с механикой, физикой и другими естественными науками, которые развиваются под влиянием требований материального производства. Химическая промышленность своими потребностями оказывает решающее влияние на развитие химической науки.

Химизация народного хозяйства - это внедрение химических методов обработки материалов и продуктов химической промышленности во все отрасли производства, культуры и быта. Она является, как мы видели выше, одним из основных направлений научно-технического прогресса, создания материально- технической базы коммунизма. Химизация ускоряет технический прогресс, внося неоценимый вклад в совершенствование материалов, орудий труда, технологии производства. Она способствует повышению производительности труда и созданию изобилия продуктов, необходимых для всестороннего удовлетворения потребностей людей. Для осуществления химизации народного хозяйства необходимо развитие химической науки и химической промышленности, распространение химических знаний в народе

Отсюда видно значение химии в строительстве коммунистического общества. Рассмотрим более подробно роль химии в современной жизни.

Важнейшее значение для промышленности, сельского хозяйства, транспорта, обороны страны и быта имеет твердое, жидкое и газообразное топливо. Химии принадлежит выдающаяся роль в разработке процессов производства этих видов топлива. Она обосновала способы производства из угля, торфа, горючих сланцев различных видов газообразного и жидкого топлива. Она разработала способы разгонки и различных видов крекинга нефти, обеспечивающие получение из нее большого количества бензина, керосина и других видов моторного топлива. Химия выработала способы получения топлива для реактивных двигателей и с этой стороны обеспечила развитие реактивного движения. Вместе с физикой она создала научные основы получения горючего для атомных реакторов. Химия раскрыла научные основы рационального сжигания топлива с высоким коэффициентом полезного действия. Другими словами, химия играет выдающуюся роль в современной энергетике.

Современное производство немыслимо без машин и инструментов. Главными материалами, из которых изготовляются они, являются металлы и их сплавы, которые получаются на основе химической переработки природных материалов. Химия предоставляет металлургии методы исследования материалов природы с целью определения содержания в них нужных металлов, методы обогащения сырья необходимыми веществами, методы получения металлов и сплавов из этих веществ. В основе современных методов производства металлов лежат окислительно-восстановительные процессы. Производство чугуна основано на восстановлении железа окисью углерода, получающейся при сжигании кокса. Обжиг сернистых руд и восстановление металлов углем составляет основу получения меди, цинка, свинца. Восстановление металлов водородом из окислов применяется в производстве молибдена, вольфрама, ванадия и других металлов. Восстановление в электрических печах хрома и марганца из их окислов лежит в основе производства феррохрома и ферромарганца Восстановление электрическим током используется в производстве алюминия, магния, натрия, калия, а также при рафинировании меди и других металлов. Применение кислорода в металлургии повышает производительность труда. Химия имеет большое значение для развития металлургии.

Производство машин и приборов - это в основном физикомеханическое производство, требующее изготовления разнообразных деталей и их сборки. Но и в производство приборов и машин глубоко проникла химия. Широким потоком идут в машиностроение и приборостроение продукты химической индустрии пластмассы для изготовления деталей, каучук для изготовления шин, покрышек и прокладок, различные изоляционные материалы для электротехники и радиоэлектроники, смазочные масла для предупреждения изнашивания трущихся поверхностей и т. д. Химия подсказала правильные пути предупреждения металлов от коррозии: оксидирование, меднение, хромирование, никелирование, покрытие металлов лаками и красками, применение различных ингибиторов и т. д. В связи с этим в машиностроении широко используются кислоты и соли, лаки и краски, синтетические смолы и т. д. Машиностроительное производство широко использует химические методы и продукты химической промышленности.

Строительная промышленность для выполнения своих задач нуждается в стали, кирпиче, цементе, стекле, блоках, панелях, керамических изделиях, в красках, лаках, олифе, в различных синтетических материалах (для покрытия полов, дверей, потолков, стен), являющихся продуктами физико-химической переработки природных материалов. Монтаж зданий из панелей и блоков, кладка кирпичных стен и их штукатурка, бетонирование, цементирование - это важные процессы строительного дела. Раскрытие химических основ этих процессов имело большое значение для рационального и производительного выполнения строительных работ. Химия доставляет производству строительных материалов способы их получения, а строительному делу - химические методы соединения материалов, отделки помещений и т. д.

Производство продуктов питания - задача сельского хозяйства. Высокие урожаи немыслимы без применения минеральных и органо-минеральных удобрений, химических средств борьбы с сорняками (гербициды), с вредителями и болезнями сельскохозяйственных растений (инсектофунгициды), без стимуляторов роста и т. д. С каждым годом увеличивается потребление в сельском хозяйстве фосфорных, калийных и азотных удобрений, соединений бора, марганца, молибдена и других веществ, используемых в качестве микроудобрений, гексахлорана, ДДТ, парахлорбензола, дихлорэтана и многих других средств борьбы с вредителями и болезнями культурных растений, получаемых в химической промышленности. Для производства удобрений химическая промышленность потребляет сотни тысяч тонн азотной кислоты и миллионы тонн серной кислоты. Животноводству химия доставляет кормовые, лечебные и санитарные средства. Многие процессы пищевой промышленности, перерабатывающей первичные сельскохозяйственные продукты, базируются на химии - производство крахмальной патоки, уксусной кислоты, спирта, сахара, маргарина и пр. Химия глубоко проникла в сельское хозяйство и пищевую промышленность.

В производстве одежды и обуви также широкое применение имеют продукты химической промышленности и методы химической технологии. В последние годы химия стала успешно соревноваться с природой в изготовлении искусственного (вискоза, ацетатный шелк) и синтетического (капрон, нейлон, энант, хлорин и т. д.) волокон для текстильной и кожзаменителей для обувной промышленности. Бучение и беление, мерсеризация и крашение, набивка рисунков и аппретирование- тканей являются химическими процессами и для своего выполнения требуют применения продуктов химической промышленности: щелочей, гипохлоритов, красителей, уксусной кислоты, разнообразных солей, применяемых в качестве протрав, моющих средств и т. д. Для обеспечения текстильной промышленности красителями развилась мощная анилокрасочная химическая промышленность.

Широко проникла химия в область культуры. Изготовление бумаги, приготовление типографских красок и сплавов, производство материалов для радио и телевизионной аппаратуры, кинолент, фотоматериалов основано на применении химии и продуктов химической промышленности.

Огромное значение имеет химия для здравоохранения. Со второй половины XIX столетия все в большей и большей мере для лечения, обезболивания и дезинфекции стали применять продукты органического синтеза. Всем известные лекарства, как аспирин, фенацетин, салол, уротропин, были первыми успехами этого синтеза. В последние годы медицина получила от химии такие важные синтетические средства для лечения болезней, как стрептоцид, сульфидин, сульфазол, стрептомицин, витамины и т. д.

Химия широко вошла в современный быт людей не только опосредствованно, через применение пищи, одежды, обуви, топлива, жилищ, но и непосредственно, путем использования мыла, стиральных порошков, соды, дезинфицирующих и профилактических веществ, средств для выведения пятен, пищевкусовых веществ и т. п.

Поистине великим провидцем был М. В. Ломоносов, когда еще на заре современной химии в своей речи «Слово о пользе химии» в 1751 г. говорил: «Широко распростирает химия руки свои в дела человеческие, слушатели». Осуществляется предвидение К. Маркса о том, что по мере овладения человечеством химическими методами и реакциями механическая обработка будет все более и более уступать методу химического воздействия.

Отсюда становится понятным, почему Коммунистическая партия и Советское правительство уделяли и уделяют самое пристальное внимание развитию химии и химической промышленности в нашей стране.

Так, в докладе Н. С. Хрущева на XXII съезде КПСС о Программе партии говорится: «Исключительное значение приобретает химическая индустрия. За 20 лет ее продукция при интенсивном расширении номенклатуры возрастет примерно в 17 раз. Широчайшее распространение получит химия полимеров. Производство синтетических смол и пластических масс будет увеличено примерно в 60 раз. Выпуск искусственного и синтетического волокна, имеющего особое значение для производства товаров широкого потребления, возрастет примерно в 15 раз. Производство минеральных удобрений предстоит увеличить в 9-10 раз» («Материалы XXII съезда КПСС»,Гос- политиздат, М., 1961, стр. 149).

В Программе Коммунистической партии ставится задача всемерного развития химии, химической промышленности и внедрения химических методов обработки материалов в различные отрасли производства.

«Одна из крупнейших задач - всемерное развитие химической промышленности, полное использование во всех отраслях народного хозяйства достижений современной химии, в огромной степени расширяющей возможности роста народного богатства, выпуска новых, более совершенных и дешевых средств производства и предметов народного потребления. Металл, дерево и другие материалы будут все более заменяться экономичными, практичными и легкими синтетическими материалами. Резко возрастает производство минеральных удобрений и химических средств защиты растений» (там же, стр. 372).

Таким образом, чтобы понять химические процессы, совершающиеся в природе, чтобы овладеть научными принципами современного производства и, следовательно, иметь политехнический кругозор, чтобы понять сущность химизации страны, чтобы быть готовым к труду в области современного производства, культуры и быта, необходимо знать основы современной химии.

От работников массовых профессий промышленности теперь требуется знание состава и свойств разнообразных видов сырья и материалов, способов химического изменения их, свойств наиболее распространенных химических реагентов, характера воздействия их на главнейшие материалы и т. д. От всех работников массовых профессий сельскохозяйственного труда теперь требуется знание состава растений и почв, химии питания и химических способов борьбы с сорняками, вредителями и болезнями растений, свойств и способов хранения удобрений, гербицидов, инсектофунгицидов, химии питания и содержания сельскохозяйственных животных, научных основ предупреждения коррозии сельскохозяйственных машин, знание состава и свойств моторного топлива, теории рационального сжигания его и т. п. От работников строительства требуется знание состава и свойств строительных материалов, химических основ их применения и пр.

По мере технического прогресса, ликвидации существенного различия между умственным и физическим трудом, подъема работников производства до уровня работников интеллигентного труда эти требования к образованию будут становиться все более широкими и глубокими.

Для удовлетворения этих требований коммунистического строительства необходимо, чтобы наши учащиеся за время обучения в школе получили прочные и систематические знания по химии, ориентировку в научных принципах химического производства, сведения об успехах и задачах химизации страны, некоторые практические навыки в обращении с продуктами химической индустрии. Учащиеся, владеющие основами химии, практическими знаниями и навыками, быстрее и лучше овладеют различными видами труда в производстве и вместе с тем будут хорошим пополнением техникумов и вузов, подготовляющих квалифицированные кадры для все более и более химизирующегося народного хозяйства страны.