Измерение амплитуды сигналов. Связь амплитуды, формы импульса, частоты следования импульсов, длительности импульсного сигнала с раздражающим действием импульсного тока. Закон Дюбуа-Реймона, уравнение Вейса-Лапика

Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Рисунок 1. Период и амплитуда синусоидального колебания. Период - время одного колебания; Аплитуда - его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т .

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

1 мс =0,001сек =10 -3 сек.

1 мкс=0,001 мс = 0,000001сек =10 -6 сек.

1000 мкс = 1 мс.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока .

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц - мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 Гц = 10 3 Гц = 1 кГц;

1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Например, если частота тока равна 50 Гц, то период будет равен:

Т = 1/f = 1/50 = 0,02 сек.

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

f = 1/T=1/0,02 = 100/2 = 50 Гц

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Амплитуда переменного тока

Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока . Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно бук­вами Im, Em и Um (рисунок 1).

Угловая (циклическая) частота переменного тока.

Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах - радианах.

Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2.

Рисунок 2.

1рад = 360°/2

Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f , то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока - ? .

? = 6,28*f = 2f

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока . Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Рисунок 3.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.

Как мы скоро увидим, детектирование АМ-сигнала является просто генерацией напряжения, пропорционального мгновенной амплитуде модулируемого ВЧ-сигнала. Во многих других применениях (радиоастрономия, лабораторные ВЧ-измерения, «нивелировка» сигналов генератора, проектирование фильтров, наблюдения и т.д.), очень важно бывает иметь возможность измерять амплитуду и мощность ВЧ-сигналов. Поэтому, прежде чем переходить к обсуждению организации связи, рассмотрим некоторые касающиеся этого вопроса схемы и методы.

Выпрямление сигналов.

В разд. 1.30 мы показали, как использовать простой диод для получения выходного напряжения пропорционального амплитуде сигнала. Мы показали, как компенсировать падение напряжения на диоде с помощью второго диода, обеспечивающего смещение порядка 0,6 В, если характеристика диода еще не имеет резкого изменения. В разд. 4.18 показано, как обойти диодную нелинейность и обеспечить смещение путем включения диода в цепь обратной связи операционного усилителя и формируя таким образом схему точного выпрямления (или выделения абсолютного значения сигнала).

Каждая из таких схем не лишена проблем. Преимуществом простых диодных детекторов является работа в аномально широкой области частот (до ), если правильно подобрать диоды), но они нелинейны при низких уровнях сигналов. Использование диодов Шоттки (основные носители) в некоторой степени помогает, так как прямое напряжение для них ниже. Вы можете значительно улучшить ситуацию, если перед выпрямлением пропустите сигнал через предусилитель (это используется, например, в «детекторе уровня» усилитель/диод Avantek); однако этот путь ограничивает динамическую область из-за насыщения усилителя имеет область 30 дБ и работает на частотах от 10 до 1000 МГц). Активный выпрямитель, наоборот, высоко линеен; но он хорошо работает только в области относительно низких частот и совместно со схемами операционных усилителей. Можно, конечно, использовать быстродействующие ОУ, но все равно вы будете ограничены частотой 10 МГц или около этого.

Синхронное (гомодин) детектирование.

Интересным методом, в котором сочетаются динамическая область, точность и быстродействие, является синхронное детектирование, также называемое «гомодинным детектированием». В этом методе (рис. 13.28) выходной сигнал выпрямляется путем инвертирования во время какой-либо половины цикла.

Рис. 13.28. Синхронный («гомодинный») детектор.

Это, очевидно, требует чистого сигнала той же частоты, что и детектируемый сигнал, который либо подают извне, либо вырабатывают внутри с помощью системы фазовой автоматической подстройки частоты (ФАПЧ) (разд. 9.27). Наконец, синхронное детектирование хорошо работает вплоть до нескольких мегагерц; большой недостаток - это нужда в когерентном опорном сигнале. Можно видеть, что это та же схема, что и в разд. 15.15, где она выступает в роли фазового детектора (форма, которой мы кратко касались также в разд. 9.27).

Схема с источником тока.

Другим решением проблемы диодной нелинейности является переход к управлению выпрямительной схемой с помощью тока, а не напряжения; выход в таком случае нагружается резистивно для получения пропорционального выходного напряжения (рис. 13.29). Хорошее осуществление этой идеи с помощью источника тока на транзисторе, управляемом напряжением, показано на рис. 13.30; характеристики этой схемы приведены на рис. 13.31.

Рис. 13.30. Широкополосный линейный детектор с источником тока.

Рис. 13.31. Характеристики широкополосного детектора.

Работу ее можно истолковать и так: в отсутствии входного сигнала выход усилителя развязывается от выпрямительной цепи, имеющей очень высокое усиление по напряжению (из-за его нагрузки, потребляющей ток); таким образом, чтобы открыть диод, достаточно очень небольшого входного сигнала. Здесь, усиление по напряжению падает до величины (в данном случае, предотвращая насыщение. Благодаря широкополосному усилителю и быстродействующему диоду, эта схема будет работать в области до 100 МГц и выше.

Диодная компенсация пост-детектированием.

Фирма Hewlett-Packard (HP Journal, 10/80) поставляет схемы, показанные на рис. 13.32, в которых так умно используют согласованные диоды Шоттки, что на каждый диод поступает один и тот же сигнал. Поскольку операционные усилители работают на выпрямленных (низкочастотных) сигналах, ширина полосы ограничивается только диодной цепью. Проектировщики этой схемы заслуживают высокой похвалы (они, можно сказать, «трижды молодцы»).

Рис. 13.32. Диодный детектор с самокомпенсацией; указаны падения напряжения и потенциалы в контрольных точках.

Детекторы с амплитудным слежением.

На рис. 13.33 продемонстрирована другая хорошая идея. Чтобы свести на нет неизвестный ток, устранение диодных нелинейностей и смещений осуществляют, используя локально генерируемый сигнал, выпрямленный в симметричной схеме. Обратная связь регулирует амплитуду локального низкочастотного сигнала, делая сбалансированными выпрямленные выходы. Частота сигнала, формирующего нуль, достаточно низка так, что его амплитуда может быть точно измерена с помощью прецизионного выпрямителя на ОУ. При хорошем исполнении эти схемы будут работать линейно с сигналами в несколько милливольт и при частоте вплоть до гигагерц.

Детектирование мощности.

Все вышеописанные методы касаются измерений амплитуды высокочастотного сигнала. Но часто бывает, когда нужно реально знать величину мощности. Конечно, для синусоидальной волны имеется простое соотношение, связывающее две величины, по измеренной амплитуде вы можете рассчитать мощность.

Рис. 13.33. Детектор с амплитудным слежением.

Однако, для волны несинусоидальной формы правильное измерение мощности может быть сделано только усреднением квадрата фактической формы сигнала напряжения. В языке радиочастотных измерений это означает, что вам необходим «квадратичный детектор».

Существуют некоторые пригодные для этого цифровые методы. Для сигналов с частотой ниже средних хорошо использовать «функциональные модули», например, монолитный преобразователь среднеквадратичного напряжения в постоянное Analog Devices. В этих устройствах экспоненциальная характеристика диода в цепи обратной связи используется для формирования квадрата входного сигнала, который затем проходит через низкочастотный фильтр и поступает на аналоговую схему, извлекающую квадратный корень. Схема характеризуется прекрасной линейностью, динамической областью и хорошей шириной полосы. Например, имеет полную ширину полосы 8 МГц, нелинейность 0,02% и динамическую область 60 дБ; у него даже есть логарифмический выход.

Рис. 13.34. Квадратичный детектор на обращенном диоде. (С разр. Alan Rogers, Haystack Observatory.)

При частотах выше нескольких мегагерц методы «квадрат/квадратный корень» преобразования среднеквадратичного сигнала не работают из-за неадекватности полосы в цепи операционного усилителя. Однако можно использовать другие методы. На рис. 13.34 представлена простая схема квадратичного детектора с обращенным диодом, который есть не что иное, как туннельный диод (разд. 1.06), используемый в нетуннельном направлении (где он имеет нулевое прямое падение напряжения). Мы получили эту схему от радиоастрономов Haystack Observatory и были поражены ее экстраординарной линейностью по мощности (рис. 13.35).

В значительной мере эта квадратичная техника произошла от болометрических методов, где входной сигнал (предварительно усиленный) подается на мощный омический нагреватель, температура которого затем измеряется. Поскольку мощность нагревателя точно пропорциональна , этот метод является чисто квадратичным. Примером болометрического модуля может служить Linear Technology. В нем согласованная пара омических нагревателей связана с согласованной парой диодов, измеряющих температуру. Входной сигнал подается на один из нагревателей, а обратная связь подключается к опорному нагревателю, диод которого находится при той же температуре.

Измерение амплитуды сигналов

Амплитуду синусоидального сигнала, а также любого другого сигнала, можно оценивать не только как абсолютное максимальное его значение. Иногда пользуются понятием двойная амплитуда (амплитуда от пика до пика сигнала), которая, как нетрудно догадаться, равна удвоенной амплитуде. Иногда употребляют понятие эффективное значение, которое определяется следующим образом: U ЭФФ = U m = 0,707U m . Это соотношение справедливо только для синусоидальных сигналов: для других видов сигналов отношение амплитуды к эффективному значению будет другим. Синусоидальные сигналы часто характеризуются эффективными значениями; дело в том, что именно эффективное значение используется для определения мощности. В России напряжение в сети имеет эффективное значение 220 В и частоту 50 Гц.

Измерение амплитуды в децибелах . Как сравнить амплитуды двух сигналов? Можно, например, сказать, что сигнал X в два раза больше, чем сигнал Y . Во многих случаях именно так и производят сравнение. Но очень часто подобные отношения достигают миллионов, и тогда удобнее пользоваться логарифмической зависимостью и измерять отношение в децибелах (децибел составляет одну десятую часть бела, но единицей «бел» никогда не пользуются). По определению отношение двух сигналов, выраженное в децибелах:

= 20lg(А 2 /А 1 ),

где А 1 и А 2 – амплитуды двух сигналов. Например, если один сигнал имеет амплитуду вдвое большую, чем другой, то отношение первого сигнала ко второму составляет +6 дБ, так как lg2 = 0,3010. Если один сигнал в 10 раз больше другого, то отношение первого ко второму составляет +20 дБ, в 100 раз – +40 дБ, а если один сигнал в 10 раз меньше другого – то -20 дБ. Отношение мощностей двух сигналов определяется как dБ = 10lg(Р 2 /Р 1 ), где P 1 и Р 2 – мощности двух сигналов. Если оба сигнала имеют одну и ту же форму, т.е. представлены синусоидами, то оба способа определения отношения сигналов (через амплитуду и мощность) дают одинаковый результат. Для сравнения сигналов разной формы, например, синусоидального и шумового следует использовать мощность (или эффективные значения).

Хотя децибел служит для определения отношения двух сигналов, иногда эту единицу используют для измерения абсолютного, а не относительного значения амплитуды. Дело в том, что можно взять некоторую эталонную амплитуду и определять любую другую амплитуду в децибелах по отношению к эталонной. Известно несколько стандартных значений амплитуды, используемых для такого сравнения (эти значения не указываются, но подразумеваются); приведем некоторые из них: а) дБВ – эффективное значение 1 В; б) дБВт – напряжение, соответствую-щее мощности 1 мВт на некоторой предполагаемой нагрузке, для радиочастот это обычно 50 Ом, для звуковых частот – 600 Ом (напряжение 0 дБВт на этих нагрузках имеет эффективное значение 0,22 В и 0,78 В); в) дБп – небольшой шумовой сигнал, генерируемый резистором при комнатной температуре. Нужно обратить внимание на эталонную амплитуду 0 дБ: при использовании этого значения нужно не забывать его оговаривать, например «амплитуда 27 дБ относительно эффективного значения 1 В», или в сокращенной форме «27 дБ относительно 1 В эфф » или пользоваться условным обозначением дБВ.

Импульсные сигналы

Электрическим импульсом называют напряжение или ток, отличающийся от нуля и имеющий постоянное значение лишь в течение короткого промежутка времени, меньшего или сравнимого с длительностью установления процессов в электрической системе, в которой действует этот ток или напряжение. В случае следующих друг за другом импульсов обычно предполагается, что интервал между ними существенно превышает длительность процессов установления.

В противном случае этот сигнал называют переменным напряжением или током сложной формы. С чисто математической точки зрения переходные процессы протекают, как известно, бесконечно долго, поэтому данное определение не совсем строго. Однако в реальных цепях длительность этих процессов не превышает 3τ , где τ – постоянная времени цепи, поэтому такое определение вполне допустимо.

Все многообразие электрических импульсов можно разделить на видеоимпульсы (рис. 1.2, а) и радиоимпульсы (рис. 1.2, б).

Связь между этими двумя типами импульсов состоит в том, что огибающая радиоимпульса представляет собой видеоимпульс. Частота синусоидального сигнала, которым заполнен видеоимпульс, называется частотой заполнения. Системы автоматики и управления оперируют в основном с видеоимпульсами, которые в дальнейшем будем называть просто импульсами.

Рис.1.2. Видео- и радиоимпульсы

На рис.1.3 приведен пример реального импульса.

Основными характеристиками и параметрами импульсов являются:

1.Амплитуда импульса U m = А ;

2.Активная длительность импульса (измеряется на уровне 0,1А) t И;

3.Крутизна фронта s Ф = dU/dt ≈ U m /t Ф ;

4.Крутизна спада s СП = dU/dt ≈ U m /t СП ;

Рис. 1.3. Реальный прямоугольный импульс

5.Искажение вершины импульса ΔU ;

6.Амплитуда обратного выброса U m ОБР;

7.Длительность обратного выброса t И ОБР;

8.Мощность импульса P = W/t И, где W – энергия импульса.

Периодически повторяющиеся импульсы образуют импульсную последовательность (рис.1.4). Она характеризуется следующими параметрами:

1.Частота импульсной последовательности ƒ = 1/Т , где T = t И + t П;

2.Коэффициент заполнения γ = t И (диапазон изменения 0…1) и скважность Q = Т/t И (диапазон изменения от до 1);

3.Среднее значение импульса (рис.1.5)

Рис. 1.4. Импульсная последовательность

Рис. 1.5. Определение среднего значения импульса

Импульсы имеют различную форму: прямоугольные, треугольные, трапецеидальные, экспоненциальные и др. (рис.1.6), так же могут быть однополярными (а) и разнополярными (б) (рис.1.7). Однополярные импульсы могут быть положительными и отрицательными. Для получения импульсных последовательностей различной формы, частоты и амплитуды применяют специальные генераторы.

Рис. 1.6. Треугольные (а), трапецеидальные (б), экспоненциальные (в) импульсы


Рис. 1.7. Однополярные положительные (а) и разнополярные (б) прямоугольные импульсы

При анализе работы систем автоматического управления и их отдельных элементов в качестве типовых возмущений используют одно из следующих.

Ступенчатое возмущение - мгновенное изменение воздействия на постоянную величину, чаще всего равную единице измерения (рис. 1.8, а). Физически система испытывает толчок. Аналитически



(1.5)

Единичный скачок в момент t 1 пo отношению к моменту t 0 аналитически записывается в виде 1(t 1 – t 0).

Рис.1.8. Типовые возмущения

2. Импульсное возмущение – это возмущение, полученное как последовательность двух одинаковых по величине, но противоположных по знаку ступенчатых возмущений, сдвинутых во времени. Особое значение имеет единичная импульсная или дельта-функция. Она обозначается .

Дельта-функция обладает следующими свойствами:

Свойство (1.6) означает, что, несмотря на то, что функция имеет пренебрежимо малую длительность, площадь, ограниченная ей, имеет конечное значение, равное 1.

Свойство (1.7) означает, что импульсная функция , полученная как произведение произвольной функции на дельта-функцию, существует лишь в момент t 1 и площадь ее равна значению функции в точке t 1 . Единичная импульсная функция является производной от единичного скачка.

3. Периодическое возмущение . В ряде случаев периодическое возмущение является наиболее удобным для исследования. Так, для автоматических систем, работающих в режиме незатухающих колебаний, целесообразно проводить проверку их свойств под действием периодических возмущений.

Стандартным считается периодическое возмущение единичной амплитуды x(t)= sin ωt .

Аналоговые и дискретные сигналы имеют некоторые общие характеристики, с помощью которых они описываются. К таким характеристикам относятся: динамический диапазон, время установления и ширина спектра сигнала.

Динамический диапазон характеризуется отношением наибольшей мгновенной (пиковой) мощности к наименьшей (пороговой) мощности. Динамический диапазон является чисто физической характеристикой сигнала и не отражает смысла передаваемой с помощью этого сигнала информации. Однако его выбор определяется максимально допустимыми искажениями, которым может подвергаться сигнал в процессе формирования, передачи, обработки и приема без потери заключенной в нем информации. Наименьшая (пороговая) мощность сигнала определяется уровнем шумов и помех, которые неизбежно присутствуют в виде колебаний и скачков питающего напряжения, тепловых шумов, наводок от излучения, электромагнитных полей и т. д. При этом сигнал должен быть таким, чтобы он четко различался на уровне помех. Увеличение сигнала приводит к росту отношения сигнал-помеха, однако максимальное (пиковое) значение сигнала ограничивается как ростом затрачиваемой мощности, так и предельными характеристиками элементов и устройств, через которые происходит передача сигналов. Насыщение этих элементов приводит к искажению передаваемых сигналов, а значит и заключенной в них информации.

Время установления является динамической характеристикой сигнала и определяется временем, за которое сигнал достигнет своего установившегося значения. Этот параметр непосредственно связан с временными характеристиками устройств, формирующих сигнал, и определяется их инерционностью. Время установления можно характеризовать либо функцией времени (временной характеристикой), описывающей реальный процесс, либо функцией частоты (спектром, или рядом гармонических колебаний). При этом оба представления равносильны и взаимно дополняют друг друга, а переход от одного к другому осуществляется с помощью прямого и обратного преобразования Фурье или Лапласа.

Выбор того или иного способа описания (временного или частотного) определяется исключительно назначением устройства. При этом меняется лишь точка зрения на предмет, но не сам предмет, который представляет собой объективную реальность, независимую от способа ее описания.

Кроме рассмотренных общих характеристик, различные виды сигналов характеризуются рядом дополнительных, детализирующих их параметров. У постоянного напряжения – это амплитуда, у переменного напряжения – амплитуда, частота, фаза, среднее и действующее значения. Импульсные сигналы более сложны по форме, поэтому опишем их более детально.

(лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша-рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Амплитуда колебаний измеряется в единицах длины — метрах , санти-метрах и т. д. На графике колебаний амплитуда определяется как макси-мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша-ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т ) — это время, за которое совершается одно полное ко-лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

За полный период колебаний, таким образом, тело проходит путь, равный четы-рем амплитудам. Период колебаний измеряется в единицах времени — секундах , минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей-ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес-ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю-щихся величин, например, для затухающих колебаний .

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с .

Единица частоты в СИ названа герцем (Гц ) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v ) равна 1 Гц , то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

В теории колебаний пользуются также понятием циклической , или круговой частоты ω . Она связана с обычной частотой v и периодом колебаний Т соотношениями:

.

Циклическая частота — это число колебаний, совершаемых за секунд.

В монохроматической световой волне электрическое поле и магнитное поле изменяются с постоянной частотой (циклическая частота), каждая проекция векторов и пропорциональна величине cos(t +). Здесь t - время, (t +) - фаза колебаний, - начальная фаза, зависящая от пространственных координат. Разные проекции векторов и могут иметь различающиеся начальные фазы.

Поверхность с определенным значением фазы (поверхность равных фаз) перемещается в направлении волнового вектора по нормали к поверхности со скоростью c/n (фазовая скорость света), где c - скорость света в вакууме, n - показатель преломления среды. Длина волнового вектора называется волновым числом и по определению равна

здесь л - длина волны света.

В бегущей монохроматической световой волне векторы и в каждый момент времени перпендикулярны друг другу и равны по величине (в системе единиц СГС Гаусса). Направление движения световой волны перпендикулярно обоим векторам и, то есть световая волна - поперечная волна. Если векторы и в какой-то точке пространства в какой-то момент времени не перпендикулярны друг другу или не равны по длине, то через эту точку проходит не одна волна, а несколько волн в различных направлениях.

Пусть световая волна распространяется в направлении оси Z. Тогда вектор лежит в плоскости XY, так как перпендикулярен направлению распространения. Если вектор колеблется вдоль какой-то линии в этой плоскости, то световая волна называется линейно поляризованной. Если вектор произвольно меняется в плоскости XY, то в каждый момент времени его можно разложить на сумму двух векторов вдоль осей X и Y. Произвольную волну, распространяющуюся вдоль оси Z, можно представить, как сумму двух линейно поляризованных волн с колебанием вектора вдоль осей X и Y соответственно.

Если конец вектора вращается по окружности в плоскости XY, то такой свет называется циркулярно поляризованным или светом с круговой поляризацией. Свет поляризован по левому кругу, если в фиксированной точке при наблюдении навстречу свету вектор (как и вектор) вращается по левому кругу, то есть против часовой стрелки. Если конец вектора описывает эллипс, то волна называется эллиптически поляризованной. Если волна монохроматическая, то конец вектора описывает эллипс, окружность, либо вектор гармонически колеблется вдоль линии.

Интенсивностью световой волны I называют среднее значение модуля вектора Пойнтинга. Время усреднения либо считают равным времени регистрации света, либо равным постоянной времени приемника света. Поскольку для бегущей волны векторы и перпендикулярны, модуль вектора Пойнтинга можно найти по формуле

Если еще учесть, что E = H, то получим выражение

Следовательно, для интенсивности можно записать

где скобки <> означают среднее по времени значение. Эта формула приближенно верна и при сложении почти однонаправленных световых волн.

Пусть модуль напряженности электрического поля E световой волны в некоторой точке изменяется по закону

Поставим в соответствие этой вещественной функции E некоторую комплексную функцию, которую будем называть комплексной напряженностью поля световой волны

где i - мнимая единица, а знак минус перед i - вопрос соглашения. Назовем величину (t -) - комплексной амплитудой световой волны.

Вещественная (настоящая) напряженность поля световой волны E равна вещественной части придуманной нами комплексной напряженности.

Возникает вопрос, насколько однозначно это сопоставление.

Действительно, есть неоднозначность сопоставления комплексного числа вещественному, но для аналитической функции, например, гармонической (косинусоидальной) эта неоднозначность пропадает. Если вещественная функция в окрестности некоторой точки разлагается в ряд Тейлора, то эту функцию с помощью этого ряда однозначно можно продолжить на комплексную плоскость.