Как положительную отрицательную степень окисления. Как определить степень окисления атома химического элемента

Валентность -

- это способность атома образовывать определенное количество связей с другими атомами.

Правила определения валентности

1. В молекулах простых веществ: H 2 , F 2 , Cl 2 , Br 2 , I 2 равна единице.

2. В молекулах простых веществ: O 2 , S 8 равна двум.

3. В молекулах простых веществ: N 2 , P 4 и CO - оксиде углерода (II) - равна трем.

4. В молекулах простых веществ, которые образует углерод (алмаз, графит), а также в органических соединениях, которые он образует, валентность углерода равна четырем.

5. В составе сложных веществ водород одновалентен, кислород, в основном, двухвалентен. Для определения валентности атомов других элементов в составе сложных веществ надо знать строение этих веществ.

Степень окисления

– это условный заряд атомов химического элемента в соединении, вычисленный на основе предположения, что все соединения (с ионной и ковалентной полярной связью) состоят только из ионов.

Высшая степень окисления элемента равна номеру группы.

Исключения:

фтор высшая степень окисления ноль в простом веществе F 2 0

кислород высшая степень окисления +2 во фториде кислорода О +2 F 2

Низшая степень окисления элемента равна восемь минус номер группы (по числу электронов, которые атом элемента может принять до завершенного восьми электронного уровня)

Правила определения степени окисления (далее обозначим: ст.ок.)

Общее правило: Сумма всех степеней окисления элементов в молекуле с учетом количества атомов равна нулю (Молекула электронейтральна.) , в ионе - равна заряду иона.

I. Степень окисления простых веществ равна нулю: Са 0 , O 2 0 , Cl 2 0

II. ст.ок. в бинарных c оединениях:

Менее электроотрицательный элемент ставится на первое место. (Исключения: С -4 Н 4 + метан и N -3 H 3 + аммиак)

Нужно помнить, что

Ст.ок. металла всегда положительна

Ст.ок. металлов I , II , III групп главных подгрупп постоянна и равна номеру группы

Для остальных ст.ок. вычисляется по общему правилу.

Более электроотрицательный элемент ставится на второе место, его ст.ок. равна восемь минус номер группы (по числу электронов, которые он принимает до завершенного восьми электронного уровня).

Исключения: пероксиды, например, Н 2 +1 О 2 -1 , Ba +2 O 2 -1 и др. ; карбиды металлов I и II групп Ag 2 +1 C 2 -1 , Ca +2 C 2 -1 и др. (В школьном курсе встречается соединение FeS 2 - пирит. Это дисульфид железа. Степень окисления серы в нем (-1) Fe +2 S 2 -1 ). Это происходит потому, что в этих соединениях есть связи между одинаковыми атомами -О-О-, -S -S- , тройная связь в карбидах между атомами углерода. Степень окисления и валентность элементов в этих соединениях не совпадают: у углерода валентность IV , у кислорода и серы II .

III. Степень окисления в основаниях Ме + n (ОН) n равна количеству гидроксогрупп .

1. в гидроксогруппе ст.ок. кислорода -2, водорода +1, заряд гидроксогруппы 1-

2. ст.ок. металла равна количеству гидроксогрупп

IV. Степень окисления в кислотах:

1. ст.ок. водорода +1, кислорода -2

2. ст.ок. центрального атома вычисляется по общему правилу путем решения простого уравнения

Например, Н 3 +1 Р х О 4 -2

3∙(+1) + х + 4∙(-2) = 0

3 + х – 8 = 0

х = +5 (не забудьте знак +)

Можно запомнить , что у кислот с высшей ст.ок. центрального элемента, соответствующего номеру группы, название будет заканчиваться на –ная:

Н 2 СО 3 угольная Н 2 С +4 О 3

Н 2 Si О 3 кремниевая (искл.) Н 2 Si +4 О 3

НN О 3 азотная НN +5 О 3

Н 3 P О 4 фосфорная Н 3 P +5 О 4

Н 2 S О 4 серная Н 2 S +6 О 4

НСl О 4 хлорная НCl +7 О 4

Н Mn О 4 марганцовая НMn +7 О 4

Останется запомнить:

Н N О 2 азотистая НN +3 О 2

Н 2 S О 3 сернистая Н 2 S +4 О 3

НСl О 3 хлорноватая НCl +5 О 3

НСl О 2 хлористая НCl +3 О 2

НСl О хлорноватистая НCl +1 О

V. Степень окисления в солях

у центрального атома такая же, как в кислотном остатке. Достаточно помнить или определить ст.ок. элемента в кислоте.

VI. Степень окисления элемента в сложном ионе равна заряду иона.

Например, NH 4 + Cl - : записываем ион N х Н 4 +1

х + 4∙(+1) = +1

х= - 3;

ст.ок. азота -3

Наприме р, определить ст.ок. элементов в гексацианоферрате(III ) калия К 3

У калия +1: К 3 +1 , отсюда заряд иона 3-

У железа +3 (указано в названии) 3- , отсюда (CN ) 6 6-

У одной группы (CN ) -

Более электроотрицательный азот: у него -3, отсюда (C х N -3 ) -

х – 3 = - 1

х = +2

ст.ок. углерода +2

VII. Степень окисления углерода в органических соединениях разнообразна и вычисляется, исходя из учета того, что ст.ок. водорода равна +1, кислорода -2

Например, С 3 Н 6

3∙х + 6∙1 = 0

3х = -6

х = -2

ст.ок. углерода -2 (при этом валентность углерода равна IV)


Задание. Определить степень окисления и валентность фосфора в фосфорноватистой кислоте H 3 PO 2 .

Вычислим степень окисления фосфора.

Обозначим её за х. Подставим степень окисления водорода +1, а кислорода -2, умножив на соответствующее количество атомов: (+1) ∙ 3 + х + (-2) ∙ 2 = 0, отсюда х = +1.


Во многих школьных учебниках и пособиях учат составлять формулы по валентностям, даже для соединений с ионными связями. Для упрощения процедуры составления формул это, на наш взгляд, допустимо. Но нужно понимать, что это не совсем корректно ввиду вышеизложенной причины.

Более универсальным понятием является понятие о степени окисления. По значениям степеней окисления атомов так же как и по значениям валентности можно составлять химические формулы и записывать формульные единицы.

Степень окисления - это условный заряд атома в частице (молекуле, ионе, радикале), вычисленный в приближении того, что все связи в частице являются ионными.

Прежде чем определять степени окисления, необходимо сравнить электроотрицательности связуемых атомов. Атом с большим значением электроотрицательности имеет отрицательную степень окисления, а с меньшим положительную.


С целью объективного сравнения значений электроотрицательности атомов при расчёте степеней окисления, в 2013 году IUPAC дал рекомендацию использовать шкалу Аллена.

* Так, например, по шкале Аллена электроотрицательность азота 3,066, а хлора 2,869.

Проиллюстрируем данное выше определение на примерах. Составим структурную формулу молекулы воды.

Ковалентные полярные связи O-H обозначены синим цветом.

Представим, что обе связи являются не ковалентными, а ионными. Если бы они были ионными, то с каждого атома водорода на более электроотрицательный атом кислорода перешло бы по одному электрону. Обозначим эти переходы синими стрелками.

*В этом примере, стрелка служит для наглядной иллюстрации полного перехода электронов, а не для иллюстрации индуктивного эффекта.

Легко заметить, что число стрелок показывает количество перешедших электронов, а их направление - направление перехода электронов.

На атом кислорода направлено две стрелки, это значит, что к атому кислорода переходит два электрона: 0 + (-2) = -2. На атоме кислорода образуется заряд равный -2. Это и есть степень окисления кислорода в молекуле воды.

С каждого атома водорода уходит по одному электрону: 0 - (-1) = +1. Значит, атомы водорода имеют степень окисления равную +1.

Сумма степеней окисления всегда равняется общему заряду частицы.

Например, сумма степеней окисления в молекуле воды равна: +1(2) + (-2) = 0. Молекула - электронейтральная частица.

Если мы вычисляем степени окисления в ионе, то сумма степеней окисления, соответственно, равна его заряду.

Значение степени окисления принято указывать в верхнем правом углу от символа элемента. Причём, знак пишут впереди числа . Если знак стоит после числа - то это заряд иона.


Например, S -2 - атом серы в степени окисления -2, S 2- - анион серы с зарядом -2.

S +6 O -2 4 2- - значения степеней окисления атомов в сульфат-анионе (заряд иона выделен зелёным цветом).

Теперь рассмотрим случай, когда соединение имеет смешанные связи: Na 2 SO 4 . Связь между сульфат-анионом и катионами натрия - ионная, связи между атомом серы и атомами кислорода в сульфат-ионе - ковалентные полярные. Запишем графическую формулу сульфата натрия, а стрелками укажем направление перехода электронов.

*Структурная формула отображает порядок ковалентных связей в частице (молекуле, ионе, радикале). Структурные формулы применяют только для частиц с ковалентными связями. Для частиц с ионными связями понятие структурной формулы не имеет смысла. Если в частице имеются ионные связи, то применяют графическую формулу.

Видим, что от центрального атома серы уходит шесть электронов, значит степень окисления серы 0 - (-6) = +6.

Концевые атомы кислорода принимают по два электрона, значит их степени окисления 0 + (-2) = -2

Мостиковые атомы кислорода принимают по два электрона, их степень окисления равна -2.

Определить степени окисления возможно и по структурно-графической формуле, где черточками указывают ковалентные связи, а у ионов указывают заряд.

В этой формуле мостиковые атомы кислорода уже имеют единичные отрицательные заряды и к ним дополнительно приходит по электрону от атома серы -1 + (-1) = -2, значит их степени окисления равны -2.


Степень окисления ионов натрия равна их заряду, а т.е. +1.

Определим степени окисления элементов в надпероксиде (супероксиде) калия. Для этого составим графическую формулу супероксида калия, стрелочкой покажем перераспределение электронов. Связь O-O является ковалентной неполярной, поэтому в ней перераспределение электронов не указывается.

* Надпероксид-анион является ион-радикалом. Формальный заряд одного атома кислорода равен -1, а другого, с неспаренным электроном, 0.

Видим, что степень окисления калия равна +1. Степень окисления атома кислорода, записанного в формуле напротив калия, равна -1. Степень окисления второго атома кислорода равна 0.

Точно также можно определить степени окисления и по структурно-графической формуле.

В кружочках указаны формальные заряды иона калия и одного из атомов кислорода. При этом значения формальных зарядов совпадают со значениями степеней окисления.

Так как оба атома кислорода в надпероксид-анионе имеют разные значения степени окисления, то можно вычислить средне-арифметическую степень окисления кислорода.


Она будет равна / 2 = - 1/2 = -0,5.

Значения среднеарифметических степеней окисления обычно указывают в брутто-формулах или формульных единицах, чтобы показать что сумма степеней окисления равна общему заряду системы.

Для случая с надпероксидом: +1 + 2(-0,5) = 0

Легко определить степени окисления используя электронно-точечные формулы, в которых указывают точками неподеленные электронные пары и электроны ковалентных связей.

Кислород - элемент VIА - группы, следовательно в его атоме 6 валентных электронов. Представим, что в молекуле воды связи ионные, в этом случае атом кислорода получил бы октет электронов.

Степень окисления кислорода соответственно равна: 6 - 8 = -2.

А атомов водорода: 1 - 0 = +1

Умение определять степени окисления по графическим формулам бесценно для понимания сущности этого понятия, так же это умение потребуется в курсе органической химии. Если же мы имеем дело с неорганическими веществами, то необходимо уметь определять степени окисления по молекулярным формулам и формульным единицам.

Для этого прежде всего нужно понять, что степени окисления бывают постоянными и переменными. Элементы, проявляющие постоянную степень окисления необходимо запомнить.

Любой химический элемент характеризуется высшей и низшей степенями окисления.

Низшая степень окисления - это заряд, который приобретает атом в результате приёма максимального количества электронов на внешний электронный слой.


Ввиду этого, низшая степень окисления имеет отрицательное значение, за исключением металлов, атомы которых электроны никогда не принимают ввиду низких значений электроотрицательности. Металлы имеют низшую степень окисления равную 0.


Большинство неметаллов главных подгрупп старается заполнить свой внешний электронный слой до восьми электронов, после этого атом приобретает устойчивую конфигурацию (правило октета ). Поэтому, чтобы определить низшую степень окисления, необходимо понять сколько атому не хватает валентных электронов до октета.

Например, азот - элемент VА группы, это значит, что в атоме азота пять валентных электронов. До октета атому азота не хватает трёх электронов. Значит низшая степень окисления азота равна: 0 + (-3) = -3

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Степень окисления – это условный заряд атома в молекуле, он получает атом в результате полного принятия электронов, его вычисляют из предположения, что все связи представляют собой ионный характер. Как определить степень окисления?

Определение степени окисления

Существуют заряженные частицы ионы, положительный заряд которых равняется количеству электронов, получаемых от одного атома. Отрицательный заряд иона равняется числу электронов, принимаемых одним атомом химического элемента. К примеру, запись такого элемента как Ca2+ значит, что атомы элементов потеряли одного, двух или же трех элементов. Чтобы найти состав ионных соединений и соединений молекул нам необходимо знать, как определить степень окисления элементов. Степени окислений бывают отрицательными, положительными и нулевыми. Если учитывать числа атомов, то алгебраическая степень окисления в молекуле равна нулю.

Чтобы определить степень окисления элемента нужно руководствоваться определёнными знаниями. Например, в соединениях металлов степень окисления положительная. А высшая степень окисления соответствует номеру группы периодической системы, где и находится элемент. У металлов степени окисления могут быть положительными и отрицательными. Это будет зависеть от того фактора, каким именно атомом соединен металл. Например, если соединен с атомом металла, то тогда степень будет отрицательной, если же соединен с неметаллом, то степень будет положительная.

Отрицательную же высшую степень окисления металла определить можно вычитанием из цифры восемь номер группы, где находится необходимый элемент. Как правило, она бывает равна числу электронов, находящихся на внешнем слое. Число этих электронов тоже соответствует номеру группы.

Как рассчитать степень окисления

В большинстве случаев степень окисления атома конкретного элемента не совпадает с числом связей, которые он образует, то есть она не равна валентности этого элемента. Наглядно это можно увидеть на примере органических соединений.

Напомню, валентность углерода в органических соединениях равняется 4 (т.е образует 4 связи), но степень окисления углерода, например, в метаноле CH 3 OH равна -2, в CO 2 +4, в CH4 -4, в муравьиной кислоте HCOOH +2. Валентность измеряется числом ковалентных химических связей, включая те, которые возникли по донорно-акцепторному механизму.

При определении степени окисления атомов в молекулах, электроотрицательный атом, при смещении в свою сторону одной электронной пары, приобретает заряд -1, если же две электронные пары то -2 будет заряд. На степень окисления не влияет связь между одинаковыми атомами. Например:

  • Связь атомов C-C равняется их нулевой степени окисления.
  • Связь C-H – здесь, углероду как наиболее электроотрицательному атому будет соответствовать заряд -1.
  • Связь C-O заряд углерода, как менее электроотрицательный, будет равняться +1.

Примеры определения степени окисления

  1. В такой молекуле как CH 3Cl три связи C-HC). Таким образом, степень окисления атома углерода в данном соединении будет равна:-3+1=-2.
  2. Найдем степень окисления атомов углерода в молекуле уксусного альдегида Cˉ³H3-C¹O-H. В данном соединении три связи C-H будут давать общий заряд на атоме C, который равен (Cº+3e→Cˉ³)-3. Двойная же связь C=O (здесь кислород будет забирать электроны у атома углерода, т.к кислород более электроотрицательный) дает заряд на атоме C, он равен +2 (Cº-2e→C²), связь же C-H заряд -1, значит общий заряд на атоме C равняется: (2-1=1)+1.
  3. Теперь найдем степень окисления в молекуле этанола: Cˉ³H-Cˉ¹H2-OH. Здесь три связи C-H дадут общий заряд на атоме C, он равен (Cº+3e→Cˉ³)-3. Две связи C-H дадут заряд на атоме C, который будет равен -2, связь же C→O даст заряд +1, значит общий заряд на атоме C: (-2+1=-1)-1.

Теперь Вы знаете, как определить степень окисления элемента. Если Вы имеете хотя бы базовые знания по химии, то для Вас данная задача будет не проблемой.

В школе химия до сих пор занимает место одного из самых сложных предметов, который, ввиду того, что скрывает множество затруднений, вызывает у учеников (обычно это в период с 8 по 9 классы) больше ненависти и безразличия к изучению, чем интереса. Всё это снижает качество и количество знаний по предмету, хотя во многих сферах по сей день требуются специалисты в этой области. Да, сложных моментов и непонятных правил в химии иногда даже больше, чем кажется. Один из вопросов, которые волнуют большинство учеников, это что такое степень окисления и как определять степени окисления элементов.

Важное правило – правило расстановки, алгоритмы

Здесь много говорится о таких соединениях, как оксиды. Для начала, любой ученик должен выучить определение оксидов - это сложные соединения из двух элементов, в их составе находится кислород. К классу бинарных соединений оксиды относят по той причине, что в алгоритме кислород стоит вторым по очереди. При определении показателя важно знать правила расстановки и рассчитать алгоритм.

Алгоритмы для кислотных оксидов

Степени окисления - это численные выражения валентности элементов. К примеру, кислотные оксиды образованы по определённому алгоритму: сначала идут неметаллы или металлы (их валентность обычно от 4 до 7), а после идёт кислород, как и должно быть, вторым по порядку, его валентность равняется двум. Определяется она легко - по периодической таблице химических элементов Менделеева. Также важно знать то, что степень окисления элементов - это показатель, который предполагает либо положительное, либо отрицательное число .

В начале алгоритма, как правило, неметалл, и его степень окисления - положительная. Неметалл кислород в оксидных соединениях имеет стабильное значение, которое равняется -2. Чтобы определить верность расстановки всех значений, нужно умножить все имеющиеся цифры на индексы у одного конкретного элемента, если произведение с учётом всех минусов и плюсов равняется 0, то расстановка достоверна.

Расстановка в кислотах, содержащих кислород

Кислоты являются сложными веществами , они связаны с каким-либо кислотным остатком и содержат в себе один или несколько атомов водорода. Здесь, для вычисления степени, требуются навыки в математике, так как показатели, необходимые для вычисления, цифровые. У водорода или протона он всегда одинаков – +1. У отрицательного иона кислорода отрицательная степень окисления -2.

После проведения всех этих действий можно определить степень окисления и центрального элемента формулы. Выражение для её вычисления представляет собой формулу в виде уравнения. Например, для серной кислоты уравнение будет с одним неизвестным.

Основные термины в ОВР

ОВР – это восстановительно-окислительные реакции .

  • Степень окисления любого атома - характеризует способность этого атома присоединять или отдавать другим атомам электроны ионов (или атомов);
  • Принято считать окислителями либо заряженные атомы, либо незаряженные ионы;
  • Восстановителем в этом случае будут заряженные ионы или же, напротив, незаряженные атомы, которые теряют свои электроны в процессе химического взаимодействия;
  • Окисление заключается в отдаче электронов.

Как расставлять степень окисления в солях

Соли состоят из одного металла и одного или нескольких кислотных остатков. Методика определения такая же, как и в кислотосодержащих кислотах.

Металл, который непосредственно образует соль, располагается в главной подгруппе, его степень будет равна номеру его группы, то есть всегда будет оставаться стабильным, положительным показателем.

В качестве примера можно рассмотреть расстановку степеней окисления в нитрате натрия. Соль образуется с помощью элемента главной подгруппы 1 группы, соответственно, степень окисления будет являться положительной и равна единице. В нитратах кислород имеет одного значение – -2. Для того чтобы получить численное значение, для начала составляется уравнение с одним неизвестным, учитывая все минусы и плюсы у значений: +1+Х-6=0. Решив уравнение, можно прийти к тому факту, что численный показатель положителен и равен + 5. Это показатель азота. Важный ключ чтобы высчитать степень окисления – таблица .

Правило расстановки в основных оксидах

  • Оксиды типичных металлов в любых соединениях имеют стабильный показатель окисления, он всегда не больше +1, или в других случаях +2;
  • Цифровой показатель металла вычисляется при помощи периодической таблицы. Если элемент содержится в главной подгруппе 1 группы, то его значение будет +1;
  • Значение оксидов, учитывая и их индексы, после умножения суммировано должны быть равны нулю, т.к. молекула в них нейтральна, частица, лишённая заряда;
  • Металлы основной подгруппы 2 группы также имеют устойчивый положительный показатель, который равен +2.