Первый трофический уровень в экосистеме. Трофические уровни. Способы получения пищи

Энергия передается от организма к организму, создающих пищевую или трофическую (греч. trophe-пища) цепь от автотрофов, продуцентов (создателей) к гетеротрофам, консументам (пожирателям) и так 4-6 раз с одного трофического уровня на другой.

Трофический уровень - это место каждого звена в пищевой цепи. Первый трофический уровень - это продуценты, все остальные - консументы. Второй трофический уровень - это растительноядные консументы; третий - плотоядные консументы, питающиеся растительноядными формами; четвертый - консументы, потребляющие других плотоядных, и т.д. Следовательно, можно и консументов разделить по уровням: консументы первого, второго, третьего и т.д. порядков.

Четко распределяются по уровням лишь консументы, специализирующиеся на определенном виде пиши. Однако есть виды, которые питаются мясом и растительной пищей (человек, медведь и др.), которые могут включаться в пищевые цепи на любом уровне.

Пища, поглощаемая консументом, усваивается не полностью - от 12 до 20% у некоторых растительноядных, до 75% и более у плотоядных. Энергетические затраты связаны прежде всего с поддержанием метаболических процессов, траты на дыхание, оцениваемая общим количеством СО 2 , выделенного организмом. Значительно меньшая часть идет на образование тканей и некоторого запаса питательных веществ, т.е. на рост. Остальная часть пищи выделяется в виде экскрементов. Кроме того, значительная часть энергии рассеивается в виде тепла при химических реакциях в организме и особенно при активной мышечной работе. В конечном итоге вся Энергия, использованная на метаболизм, превращается в тепловую и рассеивается в окружающей среде.

Таким образом, большая часть энергии при переходе с одного трофического уровня на другой, более высокий, теряется. Приблизительно потери составляют около 90%. На каждый следующий уровень передается не более 10% энергии от предыдущего уровня. Так, если калорийность продуцента 1000 Дж, то при попадании в тело фитофага остается 100 Дж, в теле хищника уже 10 Дж, а если этот хищник будет съеден другим, то на его долю останется лишь 1 Дж, т.е. 0,1 % от калорийности растительной пищи.

Однако такая строгая картина перехода энергии с уровня на уровень не совсем реальна, поскольку трофические цепи экосистем сложно переплетаются, образуя трофические сети. Но конечный итог: рассеивание и потеря энергии, которая, чтобы существовала жизнь, должна возобновляться.

Нельзя забывать еще и мертвую органику, которой питается значительная часть гетеротрофов. Среди них есть и сапрофаги и сапрофиты (грибы), использующие энергию, заключенную в детрите. Поэтому различают два вида трофических цепей:

  1. Пастбищные (цепи выедания) — начинаются с продуцентов; для таких цепей при переходе с одного трофического уровня на другой характерно увеличение размеров особей при одновременном уменьшении плотности

ТРОФИЧЕСКИЙ УРОВЕНЬ , совокупность организмов, объединяемых типом питания. Представление о трофическом уровне позволяет понять динамику потока энергии и определяющую его трофическую структуру.

Автотрофные организмы (преимущественно зеленые растения) занимают первый трофический уровень (продуценты), растительноядные животные - второй (консументы первого порядка), хищники, питающиеся растительноядными животными, - третий (консументы второго порядка), вторичные хищники - четвертый (консументы третьего порядка). Организмы разных трофических цепей, но получающие пищу через равное число звеньев в трофической цепи, находятся на одном трофическом уровне. Так, питающиеся листьями люцерны корова и жук долгоносик рода ситона являются консументами первого порядка. Реальные взаимоотношения между трофическими уровнями в сообществе очень сложны. Популяции одного и того же вида, участвуя в различных трофических цепях, могут находиться на разных трофических уровнях, в зависимости от источника используемой энергии. На каждом трофическом уровне потребленная пища ассимилируется не полностью, т. к. значительная часть ее тратится на обмен. Поэтому продукция организмов каждого последующего трофического уровня всегда меньше продукции предыдущего трофического уровня, в среднем в 10 раз. Относительное количество энергии, передающейся от одного трофического уровня к другому, называется экологической эффективностью сообщества или эффективностью трофической цепи.

Соотношение различных трофических уровней (трофическую структуру) можно изобразить графически в виде экологической пирамиды , основанием которой служит первый уровень (уровень продуцентов).

Экологическая пирамида может быть трех типов:
1) пирамида чисел - отражает численность отдельных организмов на каждом уровне;
2) пирамида биомассы - общий сухой вес, энергосодержание или другая мера общего количества живого вещества;
3) пирамида энергии - величина потока энергии.

Основание в пирамидах чисел и биомассы может быть меньше, чем последующие уровни (в зависимости от соотношения размеров продуцентов и консументов). Пирамида энергии всегда суживается кверху. В наземных экосистемах уменьшение количества доступной энергии обычно сопровождается уменьшением биомассы и численности особей на каждом трофическом уровне.

Пирамида чисел (1) показывает, что если бы мальчик питался в течение одного года только телятиной, то для этого ему потребовалось бы 4,5 телёнка, а для пропитания телят необходимо засеять поле в 4 га люцерной (2x10 (7) растений). В пирамиде биомассы (2) число особей заменено величинами биомассы. В пирамиде энергии (3) учтена солнечная энергия Люцерна использует 0,24% солнечной энергии. Для накопления продукции телятами в течение года используется 8 % энергии, аккумулированной люцерной. На развитие и рост ребенка в течение года используется 0,7% энергии, аккумулированной телятами В результате чуть более одной миллионной доли солнечной энергии, падающей на поле в 4 га, используется для пропитания ребенка в течение одного года. (по Ю. Одуму)

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Владимирский государственный университет

имени Александра Григорьевича и Николая Григорьевича Столетовых»

(ВлГУ)

Кафедра «Экологии»

Практическая работа.

по дисциплине:

«Экология»

Выполнил:

Ст. гр. ВТ-110

Щегуров Р.Н.

Принял:

Забелина О.Н.

Владимир 2013

Теоретическая часть.

Понятие экосистемы

Экосистема - это любая совокупность взаимодействующих живых организмов и условий среды. Экосистемами являются, например, муравейник, участок леса, географический ландшафт или даже весь земной шар.

Экосистемы состоят из живого и неживого компонентов, называемых соответственно биотическим и абиотическим.Биотический компонент по типу питания подразделяют на автотрофные и гетеротрофные организмы.

Автотрофы синтезируют необходимые им органические вещества из неорганических. По источнику энергии для синтеза они разделяются на два типа: фотоавтотрофы и хемоавтотрофы.

Фотоавтотрофы для синтеза органических веществ используют солнечную энергию. Это зеленые растения, имеющие хлорофилл (и другие пигменты) и усваивающие солнечный свет. Процесс, при котором происходит его усвоение, называется фотосинтезом.

Хемоавтотрофы для синтеза органических веществ используют химическую энергию. Это серобактерии и железобактерии, получающие энергию при окислении соединений железа и серы. Хемоавтотрофы играют значительную роль только в экосистемах подземных вод. Их роль в наземных экосистемах сравнительно невелика.

Гетеротрофы используют органические вещества, которые синтезированы автотрофами, и вместе с этими веществами получают энергию. Гетеротрофы, таким образом, зависят в своем существовании от автотрофов и понимание этой зависимости необходимо для понимания экосистем.

Неживой, или абиотический, компонент экосистемы в основном включает, во-первых, почву или воду, во-вторых, климат.

Пищевые цепи и трофические уровни

Внутри экосистемы содержащие энергию органические вещества создаются автотрофными организмами и служат пищей (источником вещества и энергии) для гетеротрофов. Типичный пример: животное поедает растение. Это животное в свою очередь может быть съедено другим животным, и таким путем может происходить перенос энергии через ряд организмов - каждый последующий питается предыдущим, поставляя ему сырье и энергию. Такая последовательность называется пищевой цепью , а каждое ее звено -трофическим уровнем .

При каждом очередном переносе большая часть (80 - 90 %) потенциальной энергии теряется, переходя в тепло (правило 10 %). Поэтому, чем короче пищевая цепь, тем большее количество энергии доступно для популяции. С потерями энергии при переносе связано ограничение количества звеньев в трофической цепи, которое обычно не превышает 4 - 5, так как чем длиннее пищевая цепь, тем меньше продукция ее последнего звена по отношению к продукции начального.

Первый трофический уровень занимают продуценты ,являющиеся автотрофами, - этов основном зеленые растения. Некоторые прокариоты, а именно сине-зеленые водоросли и немногочисленные виды бактерий, тоже фотосинтезируют, но их вклад относительно невелик. Фотосинтетики превращают солнечную энергию в химическую, заключенную в органических молекулах, из которых построены их ткани. Небольшой вклад в продукцию органического вещества вносят и хемосинтезирующие бактерии.

Организмы второго трофического уровня называются первичными консументами , третьего -вторичными консументами . Все консументы относятся к гетеротрофам.

Существует два главных типа пищевых цепей - пастбищные и детритные. В пастбищных пищевых цепях первый трофический уровень занимают зеленые растения, второй - пастбищные животные и третий - хищники.

Однако, тела погибших животных и растений (детрит ) еще содержат энергию, так же как и прижизненные выделения, например, моча и фекалии. Эти органические материалы разлагаются редуцентами . Таким образом, детритная пищевая цепь начинается с отмерших органических остатков и идет далее к организмам ими питающимся. Например, мертвое животное ® личинка падальных мух® травяная лягушка.

В схемах пищевых цепей каждый организм бывает представлен как питающийся другими организмами одного типа. Однако реальные пищевые связи в экосистеме намного сложнее, так как животные могут питаться организмами разных типов из одной и той же или из разных пищевых цепей. Поэтому пищевые цепи не изолированы друг от друга, они тесно переплетаются и образуют пищевые сети .

Экологические пирамиды

Экологические пирамиды выражают трофическую структуру экосистемы в геометрической форме. Они строятся суперпозицией прямоугольников одинаковой ширины, но длина прямоугольников должна быть пропорциональна значению измеряемого параметра. Таким образом, можно получить пирамиды чисел, биомассы и энергии.

Эти пирамиды отражают две фундаментальные характеристики любого биоценоза, когда они показывают его трофическую структуру:

их высота пропорциональна длине рассматриваемой пищевой цепи, т.е. числу содержащихся в ней трофических уровней;

их форма более или менее отражает эффективность превращений энергии при переходе с одного уровня на другой.

Пирамиды чисел представляют собой наиболее простое приближение к изучению трофической структуры экосистемы. Установлено основное правило, согласно которому в любой среде при переходе с одного трофического уровня на другой численность особей уменьшается, а их размер увеличивается (рис.1.1).


Рис. 1.1. Экологическая пирамида чисел

В заключение отметим, что пирамида чисел отнюдь не идеально отражает трофические связи в сообществе, так как она совершенно не учитывает ни размеры, ни массу индивида.

Пирамида биомассы более полно отражает пищевые взаимоотношения в экосистеме, так как она показывает биомассу (сухая масса) в данный момент на каждом уровне пищевой цепи (рис. 1.2).

Рис. 1.2. Пирамиды биомассы. Тип А наиболее распространен.

Тип Б относится к перевернутым пирамидам (см. текст). Цифры означают

продукцию, выраженную в г/м 2

Важно понимать, что величина биомассы не содержит никакой информации о скорости ее образования или потребления.

Продуцентам небольших размеров, таким, как водоросли, свойственна высокая скорость размножения, которая уравновешивается интенсивным потреблением их в пищу другими видами и естественной гибелью. Таким образом, хотя биомасса их может быть малой по сравнению с крупными продуцентами (деревья), продуктивность при этом может быть не меньше, так как деревья накапливают биомассу в течение длительного времени. Одно из возможных следствий этого - перевернутая пирамида биомассы, показанная на рис.1.2, описывающая сообщество Ла-Манша. Зоопланктон обладает большей биомассой, чем фитопланктон, которым он питается.

Подобных неудобств можно избежать, применяя пирамиды энергии. Пирамиды энергии наиболее фундаментальным способом отражают связи между организмами на различных трофических уровнях. Каждая ступенька пирамиды энергии отражает количество энергии (на единицу площади или объема), прошедшей через определенный трофический уровень за определенный период (рис. 1.3).


Рис. 1.3. Пирамида энергии. Цифрами обозначено количество

энергии на каждом трофическом уровне в кДж/м 2 год

Пирамиды энергии позволяют сравнивать не только различные экосистемы, но и относительную значимость популяций внутри одной экосистемы, не получая при этом перевернутых пирамид.

Продуктивность экосистемы

Любая экосистема характеризуется определенной биомассой. Под биомассой подразумевают общую массу всего живого вещества, растительного и животного, имеющегося в данный конкретный момент в экосистеме или какой-либо ее части. Биомасса обычно выражается в единицах массы в пересчете на сухое вещество или энергии, заключенной в данной массе (Дж, кал). Биомасса, накопленная за определенный промежуток времени (обычно за год) называется биологической продуктивностью. Другими словами, продуктивность - это скорость накопления органического вещества (в нее включен весь прирост растительной ткани, т.е. корни, листья и прочее, а также увеличение массы животных тканей за данный период времени).

Продуктивность экосистемы разделяют на первичную и вторичную. Первичная продуктивность , или первичная продукция, - это скорость накопления органического вещества автотрофными организмами.

Первичная продуктивность подразделяется в свою очередь на валовую и чистую. Валовая первичная продукция - это общая масса органического вещества, синтезированного продуцентами за определенный период времени.

Часть синтезированного органического вещества растения или другие продуценты используют для поддержания собственной жизнедеятельности, т.е. расходуют в процессе дыхания. Если из валовой первичной продукции вычесть органическое вещество, израсходованное на дыхание продуцентов, то получим чистую первичную продукцию .Она доступна гетеротрофам (консументам и редуцентам), которые поедая органическое вещество синтезированное автотрофами, создают вторичную продукцию .

Устойчивые биогеохимические циклы вещества и энергии в биосфере нашей планеты формируются вследствие биологического разнообразия потребляемого организмами набора веществ и выделяемых в природную среду продуктов жизнедеятельности. Базу биологического круговорота веществ составляют трофические уровни , которые представлены конкретными видами живых организмов, делящимися на три основные группы: продуценты, консументы и редуценты. Трофический уровень составляют популяции организмов, выполняющих в экосистеме одинаковые трофические функции и имеющих различный видовой состав (от греч. trophe - «питание»).

Первый трофический уровень - уровень первичной продукции - образуют автотрофы. Это организмы, которые синтезируют органические вещества (углеводы, жиры, белки, нуклеиновые кислоты) из неорганических соединений, используя энергию Солнца. Первичная продукция - это биомасса растительных тканей. Первичные продуценты - растения, фотоавтотрофные бактерии и хемосинтезирующие бактерии (хемотрофы). Хемотрофы - микроорганизмы, синтезирующие органическое вещество за счет энергии окисления аммиака, сероводорода и других веществ, имеющихся в воде и почве.

Второй трофический уровень представляют консументы (гетеротрофы) :

1) первого порядка - фитофаги - используют в качестве пищи растения;

2) второго порядка - питаются животной пищей.

На третьем трофическом уровне - редуценты . Это организмы, разлагающие до минеральных веществ, диоксида углерода и воды отходы жизнедеятельности и отмершие организмы. Консументы также участвуют в минерализации органических веществ.

Все организмы используют в пищу биомассу предыдущих трофических уровней, теряя энергию с потерями на дыхание, обогрев тела, на различные формы деятельности, на выделение экскрементов.

Между видами разных трофических уровней существуют взаимоотношения, образующие систему трофических цепей (цепей питания). Использование ресурсов на каждом трофическом уровне зависит от видового разнообразия экосистемы.

Видовое разнообразие может снижаться в зонах загрязнения, вызывая упрощение трофической структуры.

Сегодня фиксируются нарушения структуры биоценозов вследствие загрязнения окружающей природной среды. Токсиканты передаются по цепям питания и способствуют гибели животных, птиц, гидробионтов, а также накапливаются в пищевых продуктах, потребляемых человеком.

Предыдущие материалы:

РАЗНОКАЧЕСТВЕННОСТЬ ФОРМ ЖИЗНИ И БИОГЕННЫЙ КРУГОВОРОТ

Устойчивое существование жизни возможно лишь при многообразии, разно качественности ее форм, специфика обмена, которых обеспечивает последовательное использование выделяемых в среду продуктов метаболизма, формирующие биогенный круговорот.

В простейшем виде такой комплиментарный набор качеств форм жизни представлен: продуцентами, консументами, редуцентами, совместная деятельность, которых обеспечивает извлечение веществ из внешней среды, их трансформацию на различных уровнях трофических цепей и минерализацию органических веществ до составляющих, доступных для очередного включения в круговорот.

Продуценты - это живые организмы, которые способны синтезировать органическое вещество из неорганических составляющих с использованием внешних источников энергии. В се продуценты по характеру источника энергии для синтеза органических веществ подразделяются на фотоавтотрофов и хемоавтотрофов.

Консументы - живые существа, не способные строить свое тело на базе использования неорганических веществ, требующих поступления органического вещества извне, в составе пищи. Организмы потребляющие органические вещества по ходу в потоке веществ круговорота они занимают уровень потребителей, облигатно обязанных с автотрофными организмами (консументы 1 порядка) или с другими гетеротрафами, которыми они питаются (консументы П порядка).

СОЛНЦЕ
КОНСУМЕНТЫ 1 ПОРЯДКА
ПРОДУЦЕНТЫ КОНСУМЕНТЫ П ПОРЯДКА
РЕДУЦЕНТЫ
МИНЕРАЛЬНЫЕ ВЕЩЕСТВА

Упрощенная схема переноса вещества и энергии в процессе биогенного круговорота (Никоноров и др.)

Значение консументов в круговороте веществ:

1. В процессе метаболизма гетеротрофы разлагают полученные в составе пищи органические вещества. Трансформация первично редуцируемых автотрофами веществ в организмах консументов ведет к увеличению разнообразия живого вещества, а это является необходимым условием устойчивости любой экосистемы (принцип Эшбина внешнего и внутреннего возмущения).

2. Животные, составляющие основную часть организмов консументов, подвижны, способны к активному перемещению в пространстве. Этим они способствуют миграции живого вещества, дисперсии его на поверхности планеты, что стимулирует пространственное расселение жизни и служит своеобразным гарантийным механизмом на случай уничтожения жизни в каком-то одном месте.

3. Важная роль консументов, особенно животных, как регуляторов интенсивности потока вещества и энергии.

Редуценты - организмы разлагающие вещества, частичная минерализация органического вещества идет у всех животных, так в процессе дыхания выделяется СО2 , выводится Н2О, минеральные соли, аммиак.

Истинными редуцентами, завершающими цикл разрушения органических веществ, можно считать лишь такие организмы, которые выводят во внешнею среду только неорганические вещества, готовые к вовлечению в новый круговорот. В категорию редуцентов входят многие виды бактерий и грибов. По характеру метаболизма - это организмы восстановители (N де нитрифицирующие бактерии, восстанавливают азот до элементарного состояния).

ТРОФИЧЕСКИЕ УРОВНИ И ИХ ХАРАКТЕРИСТИКА

Все организмы, выполняющие в экосистеме трофические функции составляют трофические уровни:

1. Трофический уровень образуют автотрофные организмы. Они создают уровень первичной продукции и являются первичными продуцентами. Именно они утилизируют внешнюю энергию солнца, создают массу органического вещества (биомассу), являются основой существования жизни вообще и биоценоза в частности.

Живые организмы рождаются, растут, развиваются, в ходе этих процессов меняется их биомасса. Биомассу выражают в единицах энергии или массы не единицу площади (N: ДЖ/м, или т/м). В сообществах основная доля биомассы приходится на растения (первичная продукция - автотрофы).

Количество создаваемой автотрофами продукции называется первичной продукцией, при этом общее количество биомассы называется валовой продукцией , а прирост биомассы - чистой продукцией.

Часть энергии идет на поддержание жизни и дыхания самих растений - это составляет 40-70% от валовой продукции. Разница между валовой продукцией и дыханием и есть чистая продукция.

Чистая продукция - это скорость наращивания биомассы доступной для потребления гетеротрофов.

Скорость образования первичной продукции называетсябиологической продуктивностью экосистемы. Выражается она в единицах энергии или вещества, отнесенных к площади за 1 сутки.

Животные, грибы, бактерии получают энергию, питаясь растениями (автотрофами) или другими организмами, которые тоже питаются растениями и по характеру питания являются гетеротрофами. Их относят к вторичным продуцентам.

Количество биомассы создаваемое вторичными продуцентами называется вторичной продукцией. Это группу объединяютво второй трофический уровень, который представлен консументами. Их называют трансформаторами-гетеротрофами.

Консументы выделяют различные биоактивные вещества, стимулирующие или угнетающие другие организмы. В этой группе выделяется несколько уровней:

n Консументы 1 порядка

n Консументы П порядка

n и другие.

Третья группа организмов образует в экосистеме функционирующего биоценоза - редуценты.

Различают следующие группы потребителей мертвых организмов:

1. Некрофаги (труппы животных);

2. Копрофаги (экскременты);

3. Сапрофаги (мертвые растительные остатки);

4. Детритофаги (потребители полуразрушенных органических веществ).

В общих чертах редуценты можно разделить на фитофаги, зоофаги, миксофаги (смешанные). Вклад каждой группы в функционирование экосистемы неравноценен.

N: для полного круговорота вещества в водоеме видовой состав продуцентов и редуцентов не имеет большого значения, а для промысловых организмов - решающее.

Организмы разных групп по-разному реагируют на антропогенные воздействия.

ТИПЫ ВЗАИМООТНОШЕНИЙ

Выделяют следующие типы взаимоотношений между популяциями:

n нейтрализм при котором ассоциация двух популяций не сказывается ни на одной из них;

n взаимное конкурентное подавление , при котором обе популяции активно подавляют друг друга;

n конкуренция из-за ресурсов, при которой каждая популяция неблагоприятно действует на другие при борьбе за пищевые ресурсы в условиях их недостатка;

n аменсализм, при которой одна популяция подавляет другую, но сама не испытывает отрицательного влияния;

n хищничество - одна популяция неблагоприятно воздействует на другую в результате прямого нападения, но тем не менее зависит от другой;

n комменсализм - одна популяция извлекает пользу из объединения, для другой это объединение безразлично;

n протокооперация - обе популяции используют преимущество от объединения, но их связь не облигатна (не обязательна);

n мутуализм - связь популяций благоприятна для роста и выживания обоих.

Ю.Одум подчеркивает 2 важных принципа:

1. В ходе эволюции и развития экосистем существует тенденция к уменьшению роли отрицательных взаимодействий за счет положительных, увеличивающих выживание взаимодействующих видов.

В рамках биосферы как целостности такого не происходит, так как опасности и преодоления их способствуют эволюции.

В природе нет ничего вредного для вида, так как, что вредно для индивида и популяции, полезно для вида с эволюции. Концепция ко эволюции хорошо объясняет эволюцию в системе "хищник-жертва" - постоянное совершенствование и того и другого компонента экосистемы.

Условием уменьшения отрицательного воздействия является стабильность экосистемы и то, что ее пространственная структура обеспечивает возможность взаимного приспособления популяций. Отрицательные и положительные отношения между популяциями в экосистеме, которые достигают стабильного состояния, в конце концов уравновешивают друг друга.