Получение, свойства и применение лантана. Знаешь как


Введение

1. Получение

2. Свойства

3. Применение

4. Биологическая роль

Заключение

Введение

Лантан, как химический элемент, не удавалось открыть на протяжении 36 лет. В 1803 г. 24-летний шведский химик Йёнс Якоб Берцелиус исследовал минерал, известный теперь под названием церита. В этом минерале была обнаружена иттриевая земля и ещё одна редкая земля, очень похожая на иттриевую. Её назвали цериевой. В 1826 г. Карл Мозандер исследовал цериевую землю и заключил, что она неоднородна, что в ней, помимо церия, содержится ещё один новый элемент. Доказать сложность цериевой земли Мозандеру удалось лишь в 1839 г. Он сумел выделить новый элемент, когда в его распоряжении оказалось большее количество церита.

1. Получение

Металлический лантан, разумеется, далеко не чистый, впервые был получен Мозандером при нагревании хлористого лантана с калием. В наше время в промышленных масштабах получают лантан чистотой более 99 %; преимущественно из монацита и бастнезита, как, впрочем, и церий, и все остальные элементы цериевой подгруппы.

Моцанит - тяжелый блестящий минерал, обычно желто-бурый, но иногда и других цветов, поскольку постоянством состава он не отличается. Точнее всего его состав описывает такая странная формула: (РЗЭ)РО4: это значит, что монацит - фосфат редкоземельных элементов (РЗЭ). Обычно в моналите 50-68% окислов РЗЭ и 22 - 31,5 % P2O5. А еще в нем до 7 % двуокиси циркония, 10% (в среднем) двуокиси тория и 0,1-0,3 % урана. Эти цифры со всей очевидностью показывают, почему в наше время тесно переплелись пути редкоземельной и атомной промышленности. Монацитовые россыпи распространены по берегам рек, озер и морей на всех континентах. В начале века (данные за 1909) 92 % мировой добычи редкоземельного сырья и прежде всего монацита приходилось на долю Бразилии. После 1950 г. в связи с развитием атомной промышленности гегемоном среди капиталистических стран в добычи и переработке редкоземельного сырья стали США.

Чтобы получить монацитовый концентрат чистотой 92 - 96 %, применяют комплекс гравитационных, магнитных и электростатических методов обогащения. В результате попутно получают ильменитовый, рутиловый, цирконовый и другие ценные концентраты.

Как и всякий минерал, монацит надо "вскрыть". Чаще всего монацитовый концентрат обрабатывают для этого концентрированной серной кислотой (широкое распространение приобрел также щелочной способ вскрытия монацита). Образующиеся сульфаты редкоземельных элементов и тория выщелачивают холодной водой. После того как они перейдут в раствор, в осадке остаются кремнезем и не отделившаяся на предыдущих стадиях часть циркона.

На следующей стадии отделяют короткоживущий мезоторий (радий - 228), а затем и сам торий - иногда вместе с церием, иногда по отдельности. После того как выделен церий, в растворе остается больше всего лантана, который получают обычно в виде хлорида LaCl3. Электролиз расплавленого хлорида дает лантан чистотой до 99.5 %. Еще более чистый лантан - 99.79 % и выше получают кальциетермическим способом. Такова классическая, традиционная технология. Как видим, получение элементарного лантана - дело сложное.

Разделение лантаноидов - от празеодима до лютеция - требует еще больших затрат сил и средств, и времени, разумеется. Поэтому в последнее десятилетие химики и технологи многих стран мира стремились создать новые, более совершенные методы разделения этих элементов. Такие методы - экстракционные и ионообменные - были созданы и внедрены в промышленность. Уже в начале шестидесятых годов на установках, работающих по принципу ионного обмена, достигли 95 % - ного выхода редкоземельных продуктов чистотой до 99.9 %.

2. Свойства

Физические свойства лантана

ЛАНТАН (от греч. lanthano - скрываюсь; лат. Lanthanum) La, хим. элемент III гр. периодич. системы, атомный номер 57, атомная масса 138,9055; относится к редкоземельным элементам. Природный лантан состоит из двух изотопов 139La (99,911 %) и радиоактивного 138La (0,089%).

Атомный номер

Внешний вид

мягкий, ковкий, вязкий металл серебристо-белого цвета

Свойства атома

Атомная масса (молярная масса)

138.9055 а. е. м. (г/моль)

Радиус атома

Энергия ионизации (первый электрон)

541.1 (5.61) кДж/моль (эВ)

Электронная конфигурация

Термодинамические свойства

Плотность

Удельная теплоёмкость

0.197 Дж/(K·моль)

Теплопроводность

13.4 Вт/(м·K)

Температура плавления

Теплота плавления

8.5 кДж/моль

Температура кипения

Теплота испарения

402 кДж/моль

Молярный объём

22.5 см3/моль

Химические свойства

Ковалентный радиус

Радиус иона

101.(+3e) 6 пм

Электроотрицательность

Электродный потенциал

Степени окисления

7, 6, 4, 3, 2, 0, -1

Кристаллическая решётка

Структура решётки

гексагональная

Период решётки

Отношение c/a

Температура Дебая

Химические свойства

По химическим свойствам лантан обыкновенен, но чрезвычайно тугоплавок. В сухом воздухе он не изменяется - окисная пленка надежно защищает от окисления в массе. Но если воздух влажен (а в обычных земных условиях он влажен почти всегда), металлический лантан постепенно окисляется до гидроокиси. В кислороде при нагревании до 450°C он сгорает ярким, пламенем (при этом выделяется довольно много тепла). Если же прокаливать его в атмосфере азота, образуется черный нитрид. В хлоре лантан загорается при комнатной температуре, а с бромом и иодом реагирует лишь при нагревании. Хорошо растворяется в минеральных кислотах, с растворами щелочей не реагирует. Во всех соединениях лантан проявляет валентность 3+.

Реакция водородом и лантаном начинается уже при комнатной температуре и идет с выделением тепла. Образуются гидриды переменного состава, поскольку одновременно лантан поглощает водород - тем интенсивнее, чем выше температура.

3. Применение

Производство стекла

Оксид лантана (от 5 до 40 %) применяется для варки оптического стекла (лантановое стекло), для изготовления линз и призм используемых в кино и фотоаппаратуре, а также для астрономических целей.

Производство керамических электронагревателей

Хромит лантана, легированный кальцием, стронцием, магнием, используется для производства высокотемпературных печных нагревателей (температура плавления Ї 2453 °C, раб.темп. -- около 1780 градусов в атмосфере кислорода). С ростом температуры электрическое сопротивление хромита лантана резко уменьшается. Коэффициент термического расширения хромита лантана очень низкий и это предопределяет долговечность электронагревателей.

Высокотемпературная сверхпроводимость

Оксид лантана применяется для синтеза высокотемпературных сверхпроводников на основе оксидов лантана, иттрия, бария, стронция, меди и др.

Металлотермия

Изредка лантан применяют в металлотермии для восстановления редких элементов.

Специальные покрытия стекла

На основе соединений лантана производятся покрытия для оконного стекла позволяющие понижать температуру в помещении на 5-7 градусов.

Термоэлектрические материалы

Монотеллурид лантана имеет очень высокую термо-э.д.с (834 мкВ/К) и применяется в термоэлектрогенераторах с высоким кпд.

Производство металлогидридных накопителей водорода

Лантан-никелевый гидрид широко употребляется как емкий аккумулятор водорода (металлогидридное хранение водорода) для автомобилей.

Ядерная энергетика

Совершенно исключительное значение металлический лантан высокой чистоты имеет в атомной промышленности, и конкретно в технологии переработки ядерного топлива с целью извлечения плутония. В расплавленный металлический уран, имеющий в качестве примеси металлический плутоний, вмешивают расплавленный лантан. Расплавленный лантан полностью извлекает изотопы плутония из основной массы урана в сплав и всплывает над ураном, не смешиваясь с ним. Полученный сплав сливают и перерабатывают методами химической технологии. Можно утверждать, что лантан держит на своих "плечах" производство ядерного оружия.

Электроника

В последние годы в значительной степени возрос интерес к молибдату лантана, обладающему высокой проводимостью.

Электронная микроскопия

Применение катодов из LaB 6 (Гексаборид лантана) в электронных микроскопах позволило повысить разрешающую способность за счёт увеличения плотности тока в 6 раз и одновременно увеличить ресурс катода в 5 раз (до 500 часов) по сравнению с вольфрамовыми катодами.

Химические источники тока

Весьма значительный интерес промышленности и электроники вызывают производство и исследования в области аккумуляторов с твёрдым электролитом. В этой области очень большое значение приобрёл фторид лантана в качестве электролита и с металлическим лантаном в качестве анода, катодом обычно является фторид висмута, свинца или меди. Привлекательная сторона таких источников тока -- это очень высокая удельная энергоёмкость по объёму, длительный срок сохранности энергии, прочность, долговечность; в этой связи многие ведущие специалисты видят в них альтернативу любым другим видам аккумуляторов.

4. Биологическая роль

хлористый лантан металлический химический

В середине 30-х годов советский ученый А. А. Дробков исследовал влияние редкоземельных металлов на разные растения. Он экспериментировал с горохом, репой и другими культурами, вводил редкоземельные металлы вместе с бором, марганцем или без них. Результаты опытов говорили, что редкоземельные металлы нужны для нормального развития растений. Но прошла четверть века, прежде чем эти элементы стали относительно доступны. Окончательный ответ на вопрос о биологической роли лантана предстоит ещё дать.

В медицине карбонат лантана используется при гиперфосфатемии как препарат, препятствующий всасыванию фосфатов из пищи.

Заключение

В своем реферате я рассмотрела физические и химические свойства лантана, а также где применяется лантан, в каким промышленностях и в медицине.

Список используемой литературы

1. Арефьева "Экологическая химия", 2006г.

2. Гельфман "Химия", 2004г.

3. Некрасов "Общая химия", 2007г.

4. Князев "Неорганическая химия", 2004г.

5. http://ru.wikipedia.org/wiki/%D0%9B%D0%B0%D0%BD%D1%82%D0%B0%D0%BD

Подобные документы

    Семейство лантана и лантаноидов, особенности их физических и химических свойств. История открытия, способы получения, применение лантана и его соединений. Строение электронных оболочек атомов лантана и лантаноидов. Аномальные валентности лантаноидов.

    реферат , добавлен 18.01.2010

    Природа ионной проводимости в твердых телах. Виды твердых оксидных электролитов, их применение в разных устройствах. Структура и свойства оксида висмута, его совместное химическое осаждение с оксидом лантана. Анализ синтезированного твердого электролита.

    курсовая работа , добавлен 06.12.2013

    Металлический барий и его распространенность в природе. Получение металлического бария. Электролиз хлорида бария. Термическое разложение гидрида. Химические и физические свойства. Применение. Соединения (общие свойства). Неорганические соединения.

    Акриламид: физические и химические свойства, растворимость. Получение и определение, токсичность акриламида. Особенности применения акриламида и производных. Применение и получение полимеров акриламида. Характеристика химических свойств полиакриламида.

    курсовая работа , добавлен 19.06.2010

    Физические и химические свойства 2-метилбутадиен-1,3. Анализ видов опасного воздействия, токсичности, класса опасности. Применение в промышленности. Методы получения, химизм и технология процессов. Получение изопрена на основе изобутилена и формальдегида.

    курсовая работа , добавлен 09.03.2015

    Элемент главной подгруппы второй группы, четвертого периода периодической системы химических элементов Д. И. Менделеева. История и происхождение названия. Нахождение кальция в природе. Физические и химические свойства. Применение металлического кальция.

    реферат , добавлен 01.12.2012

    Физические свойства пероксида водорода - бесцветной прозрачной жидкости со слабым своеобразным запахом. Получение вещества в лабораторных и промышленных условиях. Восстановительные и окислительные свойства пероксида водорода, его бактерицидные свойства.

    презентация , добавлен 23.09.2014

    История открытия стронция. Нахождение в природе. Получение стронция алюминотермическим методом и его хранение. Физические свойства. Механические свойства. Атомные характеристики. Химические свойства. Технологические свойства. Области применения.

    реферат , добавлен 30.09.2008

    Физические и физико-химические свойства ферритов. Структура нормальной и обращенной шпинели. Обзор метода спекания и горячего прессования. Магнитные кристаллы с гексагональной структурой. Применение ферритов в радиоэлектронике и вычислительной технике.

    курсовая работа , добавлен 12.12.2016

    Хлорид кальция: физико-химические свойства. применение и сырье. Получение плавленого хлорида кальция из дистиллерной жидкости содового производства. Получение хлорида кальция и гидроксилохлорида из маточного щелока. Безводный кальций из соляной кислоты.

Лантан — 57

Лантан (La) редкоземельный металл , атомный номер 57, атомная масса 138, 91, температура плавления 920оС и плотность 6, 16 г/см3.
Его долго не могли открыть, за что он получил своё название («лантан», по гречески « скрываюсь»). Длительное время, лантан был труднодоступен для получения в лаборатории и, тем более, в промышленности. В чистом виде, он и его соединения, были получены только в 1903 году, с помощью хроматографии. Сначала были выделены соли лантана, а затем и сам лантан, в чистом виде. Металлический лантан очень похож на металл кальций. Его твёрдость сопоставима с твёрдостью олова, он разлагает воду, реагирует с кислотами, а при нагревании-с хлором и серой. На открытом сухом воздухе он окисляется и, тонкая плёнка окисла, защищает от окисления тело металла.

ПОЛУЧЕНИЕ ЛАНТАНА.

редкоземельный металл — ЛАНТАН

В природе, лантан содержится, в основном, в минералах называемых монацит и бастнезит. Также он присутствует в минералах лопарите и апатите. В этих же минералах содержатся и другие РЗМ, что затрудняет выделение лантана в чистом виде. В промышленности, как товарный продукт, производят лантан с чистотой до 99%, который, затем, доводится до более высокой чистоты.
Монацит-тяжёлый минерал, в природе встречается различных расцветок, из-за своего непостоянного химического состава. В нём присутствуют до 68% окислов различных РЗМ, до 7% циркония, до 10% двуокиси тория, доли процентов урана. Монацит, обычно в виде россыпей, находится на берегах морей, озёр и рек различных континентов. После добычи минералов, необходимо получить концентрат чистотой до 92-96%. Для этого применяется процесс крупного дробления, мелкого дробления и затем обогащения, гравитационным, магнитным и электростатическим методом. При этом получаются и другие концентраты (ильменитовый, рутиловый, циркониевый).
Затем, полученный монацитовый концентрат, обрабатывают серной кислотой (иногда щёлочью). Полученные сульфаты РЗМ выщелачиваются водой, они переходят в раствор, а в осадке остаются кремнезём и часть циркона. На следующей стадии обработки, отделяются радий 228 и торий с церием. После отделения церия в растворе остаётся лантан в виде хлорида LaCl3. Затем, он подвергается электролизу в расплаве, где выделяется с чистотой до 99,5%. Для получения более чистого лантана до 99,8% применяется кальциетермический способ переработки. Существуют и другие способы разделения РЗМ-экстракционный и ионообменный, при применении которых достигается чистота полученного лантана до 99,9%.
Ещё совсем недавно, лантан получали совместно с церием. В этой смеси они находились в соотношении 1:1 и смесь эта обладала пирофорными свойствами, что нашло применение в производстве трассирующих снарядов. Лантан можно получать при производстве суперфосфатов и апатитов, запасы которых в нашей стране-неисчерпаемы.

ПРИМЕНЕНИЕ ЛАНТАНА.

При создании новых материалов, в современном мире, трудно переоценить значение РЗМ и, в том числе, лантана.
Энергетика. Ядерная энергетика потребляет большое количество лантана, как добавку в ядерное топливо. Применяется он и для получения плутония. В ветровой энергетике применяются мощные магниты, созданные с применением лантана, для генераторов ветряных установок.
Нефтяная отрасль. Лантан используется как катализатор в процессе крекинга нефти.
Люминофоры. Лантан используется в производстве люменисцентных ламп, при производстве плоских экранов и мониторов, для приборов на электронно-лучевых трубках. В настоящее время, производство люминофоров становится крупнейшей в мире отраслью потребления РЗМ и лантана в частности, в виде высокоочищенного металла и комплексных соединений, таких как LaCeT, LaP.
Электроника. Производство микрочипов и устройств памяти для компьютеров, производство LED-дисплеев.
Сплавы и керамика. Для легирования и рафинирования сплавов в металлургии используется т.н. миш-металл (сплав церия 45-50%, лантана 22-35%, неодима15-17% и других РЗМ с железом до 5% и кремнием 0,1-0,3%), очень важный компонент для получения чистых металлов, как лигатуры для получения жаропрочных и химостойких сплавов. Смесь лантана с церием, введённая в состав хромоникелевых сталей значительно увеличивает их пластичность, что облегчает прокатку в десятки раз и значительно уменьшает потери металла. Получение высокочистых тугоплавких металлов невозможно, без введения в их сплавы лантана и его смеси с церием. Добавки лантана и его смеси с церием в алюминий и магний значительно повышают их механические и химические свойства. Производство электротехнической и электронной керамики, с применением лантана, становится важной отраслью на рынках развитых индустриальных стран.
Космос и авиация. Производство конструкционных материалов для корпусов спутников и космических кораблей. Эти материалы выдерживают огромные нагрузки, перепады температур и давлений. Для газотурбинных двигателей самолётов применяется микролегирование сплавами РЗМ, в составе которых есть лантан.
Автопром. Производство катализаторов для горючего, создание аккумуляторов нового поколения, производство двигателей для гибридных автомобилей.
Лазеры и оптоэлектроника. Производство оптических линз.
Прочие. Создание приборов диагностики в медицине, создание новых видов удобрений для сельского хозяйства. Создание фильтров для экологически чистых производств.

«Популярная библиотека химических элементов» содержит сведения обо всех элементах, известных человечеству. Сегодня их 107, причем некоторые получены искусственно.

Как неодинаковы свойства каждого из «кирпичей мироздания», так же неодинаковы их истории и судьбы. Одни элементы, такие, как медь, железо, сера, углерод, известны с доисторических времен. Возраст других измеряется только веками, несмотря на то, что ими, еще не открытыми, человечество пользовалось в незапамятные времена. Достаточно вспомнить о кислороде, открытом лишь в XVIII веке. Третьи открыты 100 - 200 лет назад, но лишь в паше время приобрели первостепенную важность. Это уран, алюминий, бор, литий бериллий. У четвертых, таких, как, например, европий и скандий, рабочая биография только начинается. Пятые получены искусственно методами ядерно-физического синтеза: технеций, плутоний, менделевий, курчатовий… Словом, сколько элементов, столько индивидуальностей, столько историй, столько неповторимых сочетаний свойств.

В первую книгу вошли материалы о 46 первых, по порядку атомных номеров, элементах, во вторую обо всех остальных

Книга:

<<< Назад
Вперед >>>

Как пи грустно сознавать, герой нашего рассказа - личность вполне заурядная. Это металл, обыкновенный по внешнему виду (серебристо-белый, покрытый сероватой окисной пленкой) и по физическим свойствам: температура плавления 920, кипения 3469°C; по прочности, твердости, электропроводности и прочим характеристикам металл лантан всегда оказывается в середине таблиц. Обыкновенен лантан и по химическим свойствам. В сухом воздухе он не изменяется - окисная пленка надежно защищает от окисления в массе. Но если воздух влажен (а в обычных земных условиях он влажен почти всегда), металлический лантан постепенно окисляется до гидроокиси. La(OH) 3 - основание средней силы, что опять-таки характерно для металла-«середнячка».

Что еще можно сказать о химических свойствах лантана? В кислороде при нагревании до 450°C он сгорает ярким пламенем (при этом выделяется довольно много тепла). Если же прокаливать его в атмосфере азота, образуется черный нитрид. В хлоре лантан загорается при комнатной температуре, а с бромом и иодом реагирует лишь при нагревании. Хорошо растворяется в минеральных кислотах, с растворами щелочей не реагирует. Во всех соединениях лантан проявляет валентность 3+. Словом, металл как металл - и по физическим свойствам, и по химическим.

Единственная, пожалуй, отличительная черта лантана - характер его взаимодействия с водородом. Реакция между ними начинается уже при комнатной температуре и идет с выделением тепла. Образуются гидриды переменного состава, поскольку одновременно лантан поглощает водород - тем интенсивнее, чем выше температура.

Так же взаимодействуют с водородом и лантаноиды. Один из них - церий - даже используют как газопоглотитель в электровакуумной промышленности и в металлургии.

Здесь мы подошли к одной из важных частей нашего рассказа, к теме «Лантан и церий», и в связи с ней - к истории лантана.

По распространенности в природе, по масштабам производства, по широте использования лантан уступает своему ближайшему аналогу - первому из лантаноидов. «Родоначальник» и - вечно второй, таково положение лантана в его семействе. И когда редкоземельные элементы по совокупности свойств стали делить на две подгруппы, лантан был отнесен в подгруппу, название которой дали в честь церия… И открыт лантан был после церия, как примесь к церию, в минерале церите. Вот эта история, история об учителях и учениках.


Карл Густав Мозандер (1707–1858) - шведский химик, первооткрыватель лантана и дидима, оказавшегося смесью двух редкоземельных элементов - празеодима и неодима

В 1803 г. 24-летнин шведский химик Йене Якоб Берцелиус вместе со своим учителем Хизингером исследовал минерал, известный теперь под названием церита. В этом минерале была обнаружена открытая Гадолином в 1794 г. иттриевая земля и еще одна редкая земля, очень похожая на иттриевую. Ее назвали цериевой. Почти одновременно с Берцелиусом цериевую землю открыл знаменитый немецкий химик Мартин Клапрот.

К работе с этим веществом Берцелиус вернулся через много лет, будучи уже именитым ученым. В 1826 г. Карл Мозандер - ученик, ассистент и один из близких друзей Берцелиуса - исследовал цериевую землю и заключил, что она неоднородна, что в ней, помимо церия, содержится еще один, а может быть и не один, новый элемент. Но, чтобы проверить это предположение, нужно было много церита. Доказать сложность цериевой земли Мозандеру удалось лишь в 1839 г.

Интересно, что годом раньше неизвестный среди химиков студент Эрдманн нашел в Норвегии новый минерал и назвал его в честь своего учителя Мозандера - мозандеритом. Из этого минерала также были выделены две редкие земли - цериевая и новая.

Новый элемент, обнаруженный в церите и моландерите, по предложению Берцелиуса назвали лантаном. Название с намеком: оно происходит от греческого????????? - скрываться, забываться. Лантан, содержащийся в церите, успешно скрывался от химиков в течение 36 лет!

Долгое время считали, что лантан двухвалентен, что он - аналог кальция и других щелочноземельных металлов, а его атомный вес равен 90–94. В правильности этих цифр не сомневались до 1869 г. Менделеев же увидел, что во II группе периодической системы редкоземельным элементам нет места и поставил их в III группу, приписав лантану атомный вес 138–139. Но правомерность такого перемещения еще надо было доказать. Менделеев предпринял исследование теплоемкости лантана. Полученная им величина прямо указывала на то, что этот элемент должен быть трехвалентным…

Металлический лантан, разумеется, далеко не чистый, впервые был получен Мозандером при нагревании хлористого лантана с калием.

В наше время в промышленных масштабах получают лантан чистотой более 99%. Проследим, как это делается, но прежде познакомимся с главными минералами лантана и первыми стадиями сложнейшего процесса разделения редкоземельных элементов.

Уже упоминалось, что в минералах лантан и лантаноиды неизменно сопутствуют друг другу. Есть минералы селективные, в которых доля того или иного редкоземельного элемента больше, чем обычно. Но нет минералов чисто лантановых или чисто цериевых, не говоря уже о других лантаноидах. Примером селективного лантанового минерала может служить давидит, в котором до 8,3% La 2 O 3 и лишь 1,3% окиси церия. Но получают лантан преимущественно из монацита и бастиезита, как, впрочем, и церий, и все остальные элементы цериевой подгруппы.

Монацит - тяжелый блестящий минерал, обычно желто-бурый, но иногда и других цветов, поскольку постоянством состава он не отличается. Точнее всего его состав описывает такая странная формула: (РЗЭ)PO 4 . Она означает, что монацит - фосфат редкоземельных элементов (РЗЭ). Обычно в монаците 50–68% окислов РЗЭ и 22–31,5% P 2 O 5 . А еще в нем до 7% двуокиси циркония, 10% (в среднем) двуокиси тория и 0,1–0,3% урана. Эти цифры со всей очевидностью показывают, почему так тесно переплелись пути редкоземельной и атомной промышленности.

Смешанный металл редких земель - мишметалл - и смесь их окислов начали применять в конце прошлого века, а в начале нынешнего в связи с ними был продемонстрирован выдающийся образец международного воровства. Немецкие суда, доставлявшие грузы в Бразилию, собираясь в обратный путь, заполняли трюмы песком с пляжей Атлантического побережья этой страны, причем из определенных мест. Капитаны заявляли, что песок - это просто балласт, необходимый для большей устойчивости судна. В действительности же они, выполняя заказы германских промышленников, крали ценное минеральное сырье - прибрежные пески штата Эспприту-Санту, богатые монацитом…

Монацитовые россыпи распространены по берегам рек, озер и морей на всех континентах. В начале века (данные за 1909 г.) 92% мировой добычи редкоземельного сырья, и прежде всего монацита, приходилось на долю Бразилии. Спустя десять лет центр тяжести переместился на тысячи километров к востоку (или к западу, смотря как считать) - в Индию. А в 1980 г., как утверждал американский «Engineering and Mining Journal» (т. 182, № 3), «концентраты монацитовых руд, производимых в основном в Австралии, покрыли почти полностью мировую потребность в редкоземельных элементах». Очевидно, под мировой потребностью авторы имели в виду потребности капиталистических стран.

Советский Союз создал свою развитую промышленность редкоземельных металлов, и сырьевой базой для нее служат, разумеется, не монацитовые россыпи Австралии.

Проследим же в общих чертах путь от монацитового песка до лантана.

Хотя песок и называют монацитовым, монацита в нем немного - доли процента. К примеру, в известных монацитовых россыпях Айдахо (США) тонна песка содержит лишь 330 г монацита. Поэтому прежде всего получают монацитовый концентрат.

Первая стадия концентрирования происходит уже на драге. Плотность монацита 4,9–5,3, а обычного песка в среднем 2,7 г/см 3 . При такой разнице в весе гравитационное разделение не представляет особого груда. Но, кроме монацита, в тех же песках есть другие тяжелые минералы. Поэтому, чтобы получить монацитовый концентрат чистотой 92–96%, применяют комплекс гравитационных, магнитных и электростатических методов обогащения.

В результате попутно получают ильменитовый, рутиловый, цирконовый и другие ценные концентраты.

Как и всякий минерал, монацит надо «вскрыть». Чаще всего монацитовый концентрат обрабатывают для этого концентрированной серной кислотой . Образующиеся сульфаты редкоземельных элементов и тория выщелачивают обычной водой. После того как они перейдут в раствор, в осадке остаются кремнезем и не отделившаяся па предыдущих стадиях часть циркона.

На следующей стадии разделения извлекают короткоживущий мезоторий (радий-228), а затем и сам торий - иногда вместе с церием, иногда отдельно. Отделение церия от лантана и смеси лантаноидов не особенно сложно: в отличие от них, он способен проявлять валентность 4+ и в виде гидроокиси Ce(OH) 4 переходить в осадок, тогда как его трехвалентные аналоги остаются в растворе. Отметим только, что операция отделения церия, как, впрочем, и предыдущие, проводится многократно - чтобы как можно полнее «выжать» дорогой редкоземельный концентрат.

После того как выделен церий, в растворе больше всего лантана (в виде нитрата La(NO 3)3 , так как на одной из промежуточных стадий серная кислота была заменена азотной, чтобы облегчить дальнейшее разделение). Из этого раствора и получают лантан, добавляя аммиак, нитраты аммония и кадмия. В присутствии Cd(NO 3)2 разделение более полно. С помощью этих веществ все лантаноиды переходят в осадок, в фильтрате же остаются лишь кадмий и лантан. Кадмий осаждают сероводородом, отделяют осадок, а раствор нитрата лантана еще несколько раз очищают дробной кристаллизацией от примесей лантаноидов.

В конечном счете обычно получают хлорид лантана LaCl 3 . Электролиз расплавленного хлорида дает лантан чистотой до 99,5%. Еще более чистый лантан (99,79% и выше) получают кальцие-термическим способом. Такова классическая традиционная технология.

Как видим, получение элементного лантана - дело сложное.

Разделение лантаноидов - от празеодима до лютеция - требует еще больших затрат сил и средств, и времени разумеется. Поэтому в последние десятилетия химики и технологи многих стран мира стремились создать новые более совершенные методы разделения этих элементов. Такие методы - экстракционные и ионообменные - были созданы и внедрены в промышленность. Уже в начале 60-х годов на установках, работающих по принципу ионного обмена, достигли 95%-ного выхода редкоземельных продуктов чистотой до 99,9%.

К 1905 г. внешнеторговые организации нашей страны могли предложить покупателям все лантаноиды в виде металлов чистотой выше 99%. Кроме прометия, разумеется, хотя радиоактивные препараты этого элемента - продукты ядерного распада урана - тоже стали вполне доступны.

Сейчас в нашей стране производится несколько сотен химически чистых и особо чистых соединений лантана и лантаноидов. Это свидетельство высокого уровня развития советской редкоземельной промышленности.

Но вернемся к лантану.

<<< Назад
Вперед >>>

(Lanthanum; - скрываюсь, остаюсь незамеченным), La - редкоземельный хим. элемент III группы периодической системы элементов; ат. н. 57, ат. м. 138,055. Серебристо-белый металл. В соединениях проявляет степень окисления + 3. Природная смесь состоит из стабильного 139La (99,911%) и радиоактивного 138La(0,089%) изотопов. Изотоп 138La распадается путем К-захвата с периодом полураспада 1 1011 лет. Изотоп 139La образуется при делении урана (6,3% массы всех осколков) и является «реакторным ядом». Получены радиоактивные с массовыми числами 127-137 и 140- 144. Макс. период полураспада (6 104 лет) - у изотопа 137La. Лантан открыл в 1839 швед, химик К. Мозандер, доказавший неоднородность открытой ранее «цериевой земли».

По распространенности лантан занимает среди редкоземельных элементов третье место после церия и неодима. Содержание Л. в земной коре 1,8 х 10-3 %. Л. и остальные элементы цериевой подгруппы получают преим. из минералов монацита и бастнезита. В монаците содержится 17% La203, в бастнезите 24% La203. Кристаллическая решетка Л. при комнатной т-ре гексагональная плотноупако-ванная (типа альфа-лантан) с периодами а = 3,770 ± 0,002А, с =12,159 ± 0,008А и плотностью 6,162 г/см3. Имеет три аллотропические модификации. Т-ры превращений: альфа → бета 310 ± 5°С, бета гамма 864° С. Бета-лантан имеет гранецентрированную кубическую решетку с периодом а = 5,304 ± 0,003А и плотностью 6,190 г/см3, гамма-лантан - объемноцентриро-ванную кубическую решетку с периодом а = 4,26 ± 0,01 А и плотностью 5,97 г/см3. Т-ра плавления 920 ± 5° С; т-ра кипения 3470° С. Теплота плавления 1,6 ккал/г-атом; теплота испарения 93,8 ± 0,9 ккал/г-атом. Атомная теплоемкость (кал/г-тервале т-р 0-310° С) сp = 6,27 +4- 2,6 10 г. Коэфф. теплопроводности альфа-лантана (в интервале т-р 25-30° С) 0,033 ± 0,003 кал/см x сек град. Коэфф. термического расширения альфа-лантана 4,9 X 10-6 (т-ра 25° С), бета-лантана 9,6 10-6 (среднее значение в интервале т-р 325 - 775° С). Удельное электрическое сопротивление (ом см) альфа-лантана 56,8 10 (т-ра 25° С), бета-лантана 98 10-б (т-ра 560° С), гамма-лантана 126 х10-6 (т-ра 890° С). Температурный коэфф. электр. сопротивления альфа-лантана (т-ра 0° С) 2,18 х10 град. Т-ра перехода в сверхпроводящее состояние альфа-лантана 4,90 ± 10 К, бета-лантана 5,85 ± 0,11 К. Работа выхода электронов 3,3 эв. Металл парамагнитен. Поперечное сечение поглощения тепловых нейтронов атомом изотопа 139La составляет 9 барн. При комнатной т-ре модуль норм, упругости 3915, по другим данным 7031- 7734 кгс/мм2; модуль сдвига 1518 кгс/мм2; коэфф. Пуассона 0,288. У литого образца (т-ра 20° С) предел текучести 12,8 кгс/мм2; предел прочности 13,3 кгс/мм2; относительное удлинение 8%. Твердость Л. по Виккер-су (т-ра 20° С): литого 50, отожженного 37, кованого 120-178 кгс/мм2. При комнатной т-ре достаточно чистый Л. поддается ковке и прессованию, но не обладает достаточной вязкостью. Возможно изготовление листов из чистого Л. ковкой при комнатной т-ре. Лантан как и другие редкоземельные , обладает большой хим. активностью.

В сухом воздухе покрывается окисной пленкой голубоватого цвета, предохраняющей металл от дальнейшего окисления. Во влажном воздухе постепенно превращается в гидрат окиси белого цвета. При т-ре 450° С в среде кислорода Л. воспламеняется. С азотом Л. в раскаленном состоянии образует нитрид белого цвета. При т-ре 240° С в среде водорода образует гидрид черного цвета, однако поглощение водорода металлом происходит и при комнатной т-ре. Лантан образует также весьма прочные , реагирует с большинством др. хим. элементов. Легко растворяется В соляной, серной и азотной к-тах. Соли Л. белого цвета. Сплавляется со многими металлами. Плавку ведут в инертной среде или в вакууме. Металлический Л. чистотой до 99,48% получают электролитическим способом. В пром-сти наиболее широко распространен безводного хлорида в расплаве. Металл поставляют в виде слитков трапецоидальной или круглой формы массой 2-5 кг. Лантановый миш-металл применяют для улучшения св-в коррозионностойкой, быстрорежущей и жаропрочной стали. Кроме того, лантан служит компонентом алюминиевых и др. легких сплавов. Окись Л. входит в состав керамических глазурей, оптического стекла, используется в реагентах, утяжеляющих натуральный и искусственный шелк. Изотоп 140La (с периодом полураспада 40,22 ч) - радиоактивный индикатор при изучении процессов разделения Л. и лантаноидов.

Лантан в природе

Встречается в виде устойчивого изотоп 89 La (99,91%) . В литосфере содержится лантана 2 ⋅ 10 ⁻ ⁴ в. Встречаются достаточно богатые этим элементом, однако эти настолько рассеяны, что переработка связана с концентрированием (отделением больших количеств пустой породы) , что связано с большими энергозатратами.

Поскольку лантан имеет отрицательное значение стандартных электронных потенциалов, получают его электролизом расплавленных хлоридов или нитратов, а для понижения температур плавления добавляют соли других металлов.

Помимо электролиза его получают восстанавливая при высоких температурах из их хлоридов или фторидов наиболее активными металлами (калием и кальцием) :

LaCl 3 + 3K = La + 3KCl

Физические и химические свойства

Лантан — серебристо — белый металл, существующий в двух кристаллических видоизменениях с различными типами и параметрами решеток.

В химических реакциях атом иттрия теряет по три электрона и ведёт себя как сильный восстановитель.

При обычных температурах поверхность его окисляется кислородом с образованием защитных плёнок. Но при нагревании в кислороде горит и образуются оксиды La 2 O 3 .

С водой лантан взаимодействует медленно, образующиеся при этом гидроксиды покрывают его защитной плёнкой:

2La + 6H 2 O = 2La(OH) 3 ↓ + 3H 2

2La + 3H 2 SO 4 = La 2 (SO 4 ) 3 + 3H 2

и растворяется в кислотах.

Соединения лантана

Проявляет степень окисления +3 , их ионы имеют на внешнем уровне по 8 электронов, большой заряд этих ионов Э ³ ⁺ обусловливается склонность скандия к комплексообразованию.

Его оксиды отвечают формуле La 2 O 3 , бесцветны, тугоплавки, получаются разложением нитратов:

4La(NO 3 ) 3 = 2LaO 3 + 12NO 2 + 3O 2

Он обладает основным характером, энергично реагировать с водой, образуя гидроксиды:

La 2 O 3 + 3H 2 O = 2La(OH) 3

Он мало растворим в воде, но легко растворяется в кислотах, гидроксид скандия La(OH) 3 проявляет признаки амфотерности.

Соли лантана из воды кристаллизуются в виде аквасоединений. , нитраты и ацетаты растворимы в воде и гидролизуются в незначительной степени.

Мало растворимые в воде фториды, и оксалаты лантана переходят в раствор под действием избытка осадителя с образованием комплексных соединений.

Положительные ионы лантана имеют координационные числа от 3 до 6 . Важнейшие лиганды в комплексе металла — это фторид — , карбонат — , сульфат — , оксалат- ионы. Ион лантана La ³ ⁺ образует с фторид — ионами комплексные соединения: