Способы задания график функции. Защита персональной информации. Параметрическое задание функции

Аналитическое задание функции

Функция %%y = f(x), x \in X%% задана явным аналитическим способом , если дана формула, указывающая последовательность математических действий, которые надо выполнить с аргументом %%x%%, чтобы получить значение %%f(x)%% этой функции.

Пример

  • %% y = 2 x^2 + 3x + 5, x \in \mathbb{R}%%;
  • %% y = \frac{1}{x - 5}, x \neq 5%%;
  • %% y = \sqrt{x}, x \geq 0%%.

Так, например, в физике при равноускоренном прямолинейном движении скорость тела определяется формулой %%v = v_0 + a t%%, а формула для перемещения %%s%% тела при равномерно ускоренном движении на промежутке времени от %%0%% до %%t%% записывается в виде: %% s = s_0 + v_0 t + \frac{a t^2}{2} %%.

Кусочно-заданные функции

Иногда рассматриваемая функция может быть задана несколькими формулами, действующими на различных участках области ее определения, в которой изменяется аргумент функции. Например: $$ y = \begin{cases} x ^ 2,~ если~x < 0, \\ \sqrt{x},~ если~x \geq 0. \end{cases} $$

Функции такого вида иногда называют составными или кусочно-заданными . Примером такой функции является %%y = |x|%%

Область определения функции

Если функция задана явным аналитическим способом с помощью формулы, но область определения функции в виде множества %%D%% не указана, то под %%D%% будем всегда подразумевать множество значений аргумента %%x%%, при которых данная формула имеет смысл. Так для функции %%y = x^2%% областью определения служит множество %%D = \mathbb{R} = (-\infty, +\infty)%%, поскольку аргумент %%x%% может принимать любые значения на числовой прямой . А для функции %%y = \frac{1}{\sqrt{1 - x^2}}%% областью определения будет множество значений %%x%% удовлетворяющих неравенству %%1 - x^2 > 0%%, т.е. %%D = (-1, 1)%%.

Преимущества явного аналитического задания функции

Отметим, что явный аналитический способ задания функции достаточно компактен (формула, как правило, занимает немного места), легко воспроизводим (формулу нетрудно записать) и наиболее приспособлен к выполнению над функциями математических действий и преобразований.

Некоторые из этих действий - алгебраические (сложение, умножение и др.) - хорошо известны из школьного курса математики, другие (дифференцирование, интегрирование) будем изучать в дальнейшем. Однако этот способ не всегда нагляден, так как не всегда четок характер зависимости функции от аргумента, а для нахождения значений функции (если они необходимы) требуются иногда громоздкие вычисления.

Неявное задание функции

Функция %%y = f(x)%% задана неявным аналитическим способом , если дано соотношение $$F(x,y) = 0, ~~~~~~~~~~(1)$$ связывающее значения функции %%y%% и аргумента %%x%%. Если задавать значения аргумента, то для нахождения значения %%y%%, соответствующего конкретному значению %%x%%, необходимо решить уравнение %%(1)%% относительно %%y%% при этом конкретном значении %%x%%.

При заданном значении %%x%% уравнение %%(1)%% может не иметь решения или иметь более одного решения. В первом случае заданное значение %%x%% не принадлежит области определения неявно заданной функции, а во втором случае задает многозначную функцию , имеющую при данном значении аргумента более одного значения.

Отметим, что если уравнение %%(1)%% удается явно разрешить относительно %%y = f(x)%%, то получаем ту же функцию, но уже заданную явным аналитическим способом. Так, уравнение %%x + y^5 - 1 = 0%%

и равенство %%y = \sqrt{1 - x}%% определяют одну и ту же функцию.

Параметрическое задание функции

Когда зависимость %%y%% от %%x%% не задана непосредственно, а вместо этого даны зависимости обоих переменных %%x%% и %%y%% от некоторой третьей вспомогательной переменной %%t%% в виде

$$ \begin{cases} x = \varphi(t),\\ y = \psi(t), \end{cases} ~~~t \in T \subseteq \mathbb{R}, ~~~~~~~~~~(2) $$то говорят о параметрическом способе задания функции;

тогда вспомогательную переменную %%t%% называют параметром.

Если из уравнений %%(2)%% удается исключить параметр %%t%%, то приходят к функции, заданной явной или неявной аналитической зависимостью %%y%% от %%x%%. Например, из соотношений $$ \begin{cases} x = 2 t + 5, \\ y = 4 t + 12, \end{cases}, ~~~t \in \mathbb{R}, $$ исключением параметра %%t%% получим зависимость %%y = 2 x + 2%%, которая задает в плоскости %%xOy%% прямую.

Графический способ

Пример графического задания функции

Приведенные выше примеры показывают, что аналитическому способу задания функции соответствует ее графическое изображение , которое можно рассматривать как удобную и наглядную форму описания функции. Иногда используют графический способ задания функции, когда зависимость %%y%% от %%x%% задают линией на плоскости %%xOy%%. Однако при всей наглядности он проигрывает в точности, поскольку значения аргумента и соответствующие им значения функции можно получить из графика лишь приближенно. Возникающая при этом погрешность зависит от масштаба и точности измерения абсциссы и ординаты отдельных точек графика. В дальнейшем графику функции отведем роль только иллюстрации поведения функции и поэтому будем ограничиваться построением «эскизов» графиков, отражающих основные особенности функций.

Табличный способ

Отметим табличный способ задания функции, когда некоторые значения аргумента и соответствующие им значения функции в определенном порядке размещаются в таблице. Так построены известные таблицы тригонометрических функций, таблицы логарифмов и т.п. В виде таблицы обычно представляют зависимость между величинами, измеряемыми при экспериментальных исследованиях, наблюдениях, испытаниях.

Недостаток этого способа состоит в невозможности непосредственного определения значений функции для значений аргумента, не входящих в таблицу. Если есть уверенность, что непредставленные в таблице значения аргумента принадлежат области определения рассматриваемой функции, то соответствующие им значения функции могут быть вычислены приближенно при помощи интерполяции и экстраполяции.

Пример

x 3 5.1 10 12.5
y 9 23 80 110

Алгоритмический и словесный способы задания функций

Функцию можно задать алгоритмическим (или программным ) способом, который широко используют при вычислениях на ЭВМ.

Наконец, можно отметить описательный (или словесный ) способ задания функции, когда правило соответствия значений функции значениям аргумента выражено словами.

Например, функцию %%[x] = m~\forall {x \in обозначают наибольшее из целых чисел, которое не превышает x. Иными словами, если x = r + q, где r - целое число (может быть и отрицательным) и q принадлежит интервалу = r. Функция E(x) = [x] постоянна на промежутке = r.

Пример 2: функция y = {x} - дробная часть числа. Точнее y ={x} = x - [x], где [x] - целая часть числа x. Эта функция определена для всех x. Если x - произвольное число, то представив его в виде x = r + q (r = [x]), где r - целое число и q лежит в интервале . Однако, и это важно подчеркнуть, к их числу по мере развития наших сведений по анализу будут присоединяться и другие операции, в первую голову - предельный переход, с которым читатель уже знаком из главы I.

Таким образом, полное содержание термина «аналитическое выражение» или «формула» будет раскрываться лишь постепенно.

2° Второе замечание относится к области определения функции аналитическим выражением или формулой.

Каждое аналитическое выражение, содержащее аргумент х, имеет, так сказать, естественную область применения: это множество всех тех значений х, для которых оно сохраняет смысл, т. е. имеет вполне определенное, конечное, вещественное значение. Разъясним это на простейших примерах.

Так, для выражения такой областью будет все множество вещественных чисел. Для выражения эта область сведется к замкнутому промежутку за пределами которого значение его перестает быть вещественным. Напротив, выражению придется в качестве естественной области применения отнести открытый промежуток ибо на концах его знаменатель обращается в 0. Иногда область значений, для которых выражение сохраняет смысл, состоит из разрозненных промежутков: для это будут промежутки для - промежутки и т. д.

В качестве последнего примера рассмотрим сумму бесконечной геометрической прогрессии

Если то, как мы знаем , этот предел существует и имеет значение . При предел либо равен либо вовсе не существует. Таким образом, для приведенного аналитического выражения естественной областью применения будет открытый промежуток

В последующем изложении нам придется рассматривать как более сложные, так и более общие аналитические выражения, и мы не раз будем заниматься исследованием свойств функций, задаваемых подобным выражением во всей области, где оно сохраняет смысл, т. е. изучением самого аналитического аппарата.

Однако возможно и другое положение вещей, на что мы считаем нужным заранее обратить внимание читателя. Представим себе, что какой-либо конкретный вопрос, в котором переменная х по существу дела ограничена областью изменения X, привел к рассмотрению функции допускающей аналитическое выражение. Хотя может случиться, что это выражение имеет смысл и вне области X, выходить за ее пределы, разумеется, все же нельзя. Здесь аналитическое выражение играет подчиненную, вспомогательную роль.

Например, если, исследуя свободное падение тяжелой точки с высоты над поверхностью земли, мы прибегнем к формуле

То нелепо было бы рассматривать отрицательные значения t или значения большие, чем ибо, как легко видеть, при точка уже упадет на землю. И это несмотря на то, что само выражение - сохраняет смысл для всех вещественных .

3° Может случиться, что функция определяется не одной и той же формулой для всех значений аргумента, но для одних - одной формулой, а для других - другой. Примером такой функции в промежутке может служить функция, определяемая следующими тремя формулами:

и, наконец, если .

Упомянем еще о функции Дирихле (P. G. Lejeune-Dinchlet), которая определяется так:

Наконец, вместе с Кронекером (L. Kroneckcf) рассмотрим функцию, которую он назвал «сигнум и обозначил через

Что означают слова "задать функцию"? Они означают: объяснить всем желающим, о какой конкретной функции идёт речь. Причём, объяснить чётко и однозначно!

Как это можно сделать? Как задать функцию?

Можно написать формулу. Можно нарисовать график. Можно составить табличку. Любой способ - это какое-то правило, по которому можно узнать значение игрека для выбранного нами значения икса. Т.е. "задать функцию" , это значит - показать закон, правило, по которому икс превращается в игрек.

Обычно, в самых различных заданиях присутствуют уже готовые функции. Они нам уже заданы. Решай себе, да решай.) Но... Чаще всего школьники (да и студенты) работают с формулами. Привыкают, понимаешь... Так привыкают, что любой элементарный вопрос, относящийся к другому способу задания функции, тотчас огорчает человека...)

Во избежание подобных случаев, имеет смысл разобраться с разными способами задания функций. Ну и, конечно, применить эти знания к "хитрым" вопросам. Это достаточно просто. Если знаете, что такое функция...)

Поехали?)

Аналитический способ задания функции.

Самый универсальный и могучий способ. Функция, заданная аналитически, это функция, которая задана формулами. Собственно, это и есть всё объяснение.) Знакомые всем (хочется верить!)) функции, например: y = 2x, или y = x 2 и т.д. и т.п. заданы именно аналитически.

К слову сказать, не всякая формула может задавать функцию. Не в каждой формуле соблюдается жёсткое условие из определения функции. А именно - на каждый икс может быть только один игрек. Например, в формуле у = ±х , для одного значения х=2, получается два значения у: +2 и -2. Нельзя этой формулой задать однозначную функцию. А с многозначными функциями в этом разделе математики, в матанализе, не работают, как правило.

Чем хорош аналитический способ задания функции? Тем, что если у вас есть формула - вы знаете про функцию всё! Вы можете составить табличку. Построить график. Исследовать эту функцию по полной программе. Точно предсказать, где и как будет вести себя эта функция. Весь матанализ стоит именно на таком способе задания функций. Скажем, взять производную от таблицы крайне затруднительно...)

Аналитический способ достаточно привычен и проблем не создаёт. Разве что некоторые разновидности этого способа, с которыми сталкиваются студенты. Я про параметрическое и неявное задание функций.) Но такие функции - в специальном уроке.

Переходим к менее привычным способам задания функции.

Табличный способ задания функции.

Как следует из названия, этот способ представляет собой простую табличку. В этой таблице каждому иксу соответствует (ставится в соответствие ) какое-то значение игрека. В первой строчке - значения аргумента. Во второй строчке - соответствующие им значения функции, например:

Таблица 1.

x - 3 - 1 0 2 3 4
y 5 2 - 4 - 1 6 5

Прошу обратить внимание! В данном примере игрек зависит от икса как попало. Я специально так придумал.) Нет никакой закономерности. Ничего страшного, так бывает. Значит, именно так я задал эту конкретную функцию. Именно так я установил правило, по которому икс превращается в игрек.

Можно составить другую табличку, в которой будет закономерность. Этой табличкой будет задана другая функция, например:

Таблица 2.

x - 3 - 1 0 2 3 4
y - 6 - 2 0 4 6 8

Уловили закономерность? Здесь все значения игрека получаются умножением икса на двойку. Вот и первый "хитрый" вопрос: можно ли функцию, заданную с помощью Таблицы 2, считать функцией у = 2х ? Подумайте пока, ответ будет ниже, в графическом способе. Там это всё очень наглядно.)

Чем хорош табличный способ задания функции? Да тем, что считать ничего не надо. Всё уже посчитано и написано в таблице.) А более ничего хорошего нет. Мы не знаем значения функции для иксов, которых нет в таблице. В этом способе такие значения икса просто не существуют. Кстати, это подсказка к хитрому вопросу.) Мы не можем узнать, как ведёт себя функция за пределами таблицы. Ничего не можем. Да и наглядность в этом способе оставляет желать лучшего... Для наглядности хорош графический способ.

Графический способ задания функции.

В данном способе функция представлена графиком. По оси абсцисс откладывается аргумент (х), а по оси ординат - значение функции (у). По графику тоже можно выбрать любой х и найти соответствующее ему значение у . График может быть любой, но... не какой попало.) Мы работаем только с однозначными функциями. В определении такой функции чётко сказано: каждому х ставится в соответствие единственный у . Один игрек, а не два, или три... Для примера, посмотрим на график окружности:

Окружность, как окружность... Почему бы ей не быть графиком функции? А давайте найдем, какой игрек будет соответствовать значению икса, например, 6? Наводим курсор на график (или касаемся рисунка на планшете), и... видим, что этому иксу соответствует два значения игрека: у=2 и у=6.

Два и шесть! Стало быть, такой график не будет графическим заданием функции. На один икс приходится два игрека. Не соответствует этот график определению функции.

Но если условие однозначности выполнено, график может быть совершенно любым. Например:

Эта самая кривулина - и есть закон, по которому можно перевести икс в игрек. Однозначный. Захотелось нам узнать значение функции для х = 4, например. Надо найти четвёрку на оси иксов и посмотреть, какой игрек соответствует этому иксу. Наводим мышку на рисунок и видим, что значение функции у для х=4 равно пяти. Какой формулой задано такое превращение икса в игрек - мы не знаем. И не надо. Графиком всё задано.

Теперь можно вернуться к "хитрому" вопросу про у=2х. Построим график этой функции. Вот он:

Разумеется, при рисовании этого графика мы не брали бесконечное множество значений х. Взяли несколько значений, посчитали у, составили табличку - и всё готово! Самые грамотные вообще всего два значения икса взяли! И правильно. Для прямой больше и не надо. Зачем лишняя работа?

Но мы совершенно точно знали, что икс может быть любым. Целым, дробным, отрицательным... Любым. Это по формуле у=2х видно. Поэтому смело соединили точки на графике сплошной линией.

Если же функция будет нам задана Таблицей 2, то значения икса нам придётся брать только из таблицы. Ибо другие иксы (и игреки) нам не даны, и взять их негде. Нет их, этих значений, в данной функции. График получится из точек. Наводим мышку на рисунок и видим график функции, заданной Таблицей 2. Значения икс-игрек на осях я не писал, разберётесь, поди, по клеточкам?)

Вот и ответ на "хитрый" вопрос. Функция, заданная Таблицей 2 и функция у=2х - разные.

Графический способ хорош своей наглядностью. Сразу видно, как ведёт себя функция, где возрастает. где убывает. По графику сразу можно узнать некоторые важные характеристики функции. А уж в теме с производной, задания с графиками - сплошь и рядом!

Вообще, аналитический и графический способы задания функции идут рука об руку. Работа с формулой помогает построить график. А график частенько подсказывает решения, которые в формуле и не заметишь... Мы с графиками дружить будем.)

Почти любой ученик знает три способа задания функции, которые мы только что рассмотрели. Но на вопрос: "А четвёртый!?" - зависает основательно.)

Такой способ есть.

Словесное описание функции.

Да-да! Функцию можно вполне однозначно задать словами. Великий и могучий русский язык на многое способен!) Скажем, функцию у=2х можно задать следующим словесным описанием: каждому действительному значению аргумента х ставится в соответствие его удвоенное значение. Вот так! Правило установлено, функция задана.

Более того, словесно можно задать функцию, которую формулой задать крайне затруднительно, а то и невозможно. Например: каждому значению натурального аргумента х ставится в соответствие сумма цифр, из которых состоит значение х. Например, если х=3, то у=3. Если х=257, то у=2+5+7=14. И так далее. Формулой это записать проблематично. А вот табличку легко составить. И график построить. Кстати, график забавный получается...) Попробуйте.

Способ словесного описания - способ достаточно экзотичный. Но иногда встречается. Здесь же я его привёл, чтобы придать вам уверенности в неожиданных и нестандартных ситуациях. Нужно просто понимать смысл слов "функция задана..." Вот он, этот смысл:

Если есть закон однозначного соответствия между х и у - значит, есть функция. Какой закон, в какой форме он выражен - формулой, табличкой, графиком, словами, песнями, плясками - сути дела не меняет. Этот закон позволяет по значению икса определить соответствующее значение игрека. Всё.

Сейчас мы применим эти глубокие знания к некоторым нестандартным заданиям.) Как и обещано в начале урока.

Задание 1:

Функция у = f(x) задана Таблицей 1:

Таблица 1.

Найти значение функции p(4), если p(х)= f(x) - g(x)

Если вы вообще не можете понять, что к чему - прочитайте предыдущий урок "Что такое функция?" Там про такие буковки и скобочки очень понятно написано.) А если вас смущает только табличная форма, то разбираемся здесь.

Из предыдущего урока ясно, что, если, p(х) = f(x) - g(x) , то p(4) = f(4) - g(4) . Буквы f и g означают правила, по которым каждому иксу ставится в соответствие свой игрек. Для каждой буквы (f и g ) - своё правило. Которое задано соответствующей таблицей.

Значение функции f(4) определяем по Таблице 1. Это будет 5. Значение функции g(4) определяем по Таблице 2. Это будет 8. Остаётся самое трудное.)

p(4) = 5 - 8 = -3

Это правильный ответ.

Решить неравенство f(x) > 2

Вот-те раз! Надо решить неравенство, которое (в привычной форме) блистательно отсутствует! Остаётся либо бросать задание, либо включить голову. Выбираем второе и рассуждаем.)

Что значит решить неравенство? Это значит, найти все значения икса, при которых выполняется данное нам условие f(x) > 2 . Т.е. все значения функции (у ) должны быть больше двойки. А у нас на графике игрек всякий есть... И больше двойки есть, и меньше... А давайте, для наглядности, по этой двойке границу проведём! Наводим курсор на рисунок и видим эту границу.

Строго говоря, эта граница есть график фукции у=2, но это не суть важно. Важно то, что сейчас на графике очень хорошо видно, где, при каких иксах, значения функции, т.е. у, больше двойки. Они больше при х> 3. При х> 3 вся наша функция проходит выше границы у=2. Вот и всё решение. Но выключать голову ещё рано!) Надо ещё ответ записать...

На графике видно, что наша функция не простирается влево и вправо на бесконечность. Об этом точки на концах графика говорят. Кончается там функция. Стало быть, в нашем неравенстве все иксы, которые уходят за пределы функции смысла не имеют. Для функции этих иксов не существует. А мы, вообще-то, неравенство для функции решаем...

Правильный ответ будет:

3 < х 6

Или, в другой форме:

х(3; 6]

Теперь всё, как надо. Тройка не включается в ответ, т.к. исходное неравенство строгое. А шестёрка включается, т.к. и функция при шестёрке существует, и условие неравенства выполняется. Мы успешно решили неравенство, которого (в привычной форме) нету...

Вот так некоторые знания и элементарная логика спасают в нестандартных случаях.)

Понятие функции Способы задания функции Примеры функций Аналитическое задание функции Графический способ задания функции Предел функции в точке Табличный способ задания функции теоремы о пределах единственность предела ограниченность функции, имеющей предел переход к пределу в неравенстве Предел функции в бесконечности Бесконечно малые функции Свойства бесконечно малых функций


Понятие функции является основным и первоначальным, как и понятие множества. Пусть X - некоторое множество действительных чисел х. Если каждому х € X по некоторому закону поставлено в соответствие определенное действительное число у, то говорят, что на множестве X задана функция и пишут Введенную таким образом функцию называют числовой. При этом множество X называют областью onределения функции, а независимую переменную х - аргументом. Для указания функции иногда используют только символ, которым обозначен закон соответствия, т. е. вместо f(x) п и шут просто /. Таким образом, функция задана, если указаны 1) область определения 2) правило /, которое каждому значению а: € X ставит в соответствие определенное число у = /(х) - значение функции, отвечающее этому значению аргумента х. Функции / и g называют равными, если их области определения совпадают и равенство f(x) = g(x) верно для любого значения аргумента х из их обшей области определения. Так, функции у, не являются равными; они равны только на отрезке [О, I]. Примеры функций. 1. Последовательность {о„} есть функция целочисленного аргумента, определенная на множестве натуральных чисел, такая, что /(п) = ап (п = 1,2,...). 2. Функция у = п? (читается «эн-факториал»). Задана на множестве натуральных чисел: каждому натуральному числу п ставится в соответствие произведение всех натуральных чисел от 1 до п включительно: причем условно полагают 0! = 1. Обозначение sign происходит от латинского слова signum - знак. Эта функция определена на всей числовой прямой множество ее значений состоит из трех чисел -1,0, I (рис. 1). у = |х), где (х) обозначает целую часть действительного числа х, т. е. [х| - наибольшее целое число, не превосходящее Читается: -игрек равно антье икс» (фр. entier). Эта функция задана на всей числовой оси, а множество всех ее значений состоит из целых чисел (рис. 2). Способы задания функции Аналитическое задание функции Функция у = f(x) называется заданной аналитически, если она определяется с помощью формулы, указывающей, какие действия надо произвести над каждым значением х, чтобы получить соответствующее значение у. Например, функция задана аналитически. При этом под областью определения функции (если она заранее не указана) понимается множество всех действительных значений аргумента х, при которых аналитическое выражение, определяющее функцию, принимает лишь действительные и конечные значения. В этом смысле область определения функции называют также ее областью существования. Для функции областью определения является отрезок Для функции у - sin х область определения - вся числовая ось. Заметим, что не всякая формула определяет функцию. Например, формула никакую функцию не определяет, так как нет ни одного действительного значения х, при котором имели б ы действительные значения оба написанных выше корня. Аналитическое задание функции может выглядеть достаточно сложно. В частности, функция может быть задана различными формулами на различных частях своей области определения. Например, функция может быть определена так: 1.2. Графический способ задания функции Функция у = f(x) называется заданной графически, если задан ее график, т.е. множество точек (ху/(х)) на плоскости хОу, абсциссы которых принадлежат области определения функции, а ординаты равны соответствующим значениям функции (рис.4). Не для каждой функции ее график можно изобразить на рисунке. Например, функция Дирихле если х - рациональное, если х - иррациональное, ZX \о, не допускает такого изображения. Функция Я(х) задана на всей числовой оси, а множество ее значений состоит из двух чисел 0 и 1. 1.3. Табличный способ задания функции Функция называется заданной таблично, если приведена таблица, в которой указаны численные значения функции для некоторых значений аргумента. При табличном задании функции ее область определения состоит только из значений x\t x2i..., хп, перечисленных в таблице. §2. Предел функции в точке Понятие предела функции является центральным в математическом анализе. Пусть функция f(x) определена в некоторой окрестности Q точки xq, кроме, быть может, самой точки доопределение (Коши). Число А называется пределом функции f(x) в точке хо, если для любого числа е > 0. которое может быть как угодно малым, существует число <5 > 0, такое, что для всех iGH.i^ ж0, удовлетворяющих условию верно неравенство Понятие функции Способы задания функции Примеры функций Аналитическое задание функции Графический способ задания функции Предел функции в точке Табличный способ задания функции теоремы о пределах единственность предела ограниченность функции, имеющей предел переход к пределу в неравенстве Предел функции в бесконечности Бесконечно малые функции Свойства бесконечно малых функций Обозначение: С помощьюлогическихсимволов это определение выражается следующим образом Примеры. 1. Пользуясь определением предела функции в точке, показать, что Функция определена всюду, включая точку zo = 1: /(1) = 5. Возьмем любое. Для того, чтобы неравенство |(2х + 3) - 5| имело место, необходимо выполнение следующих неравенств Следовательно, если взять будем иметь. Это означает, что число 5 есть предел функции: в точке 2. Пользуясь определением предела функции, показать, что Функция не определена в точке хо = 2. Рассмотрим /(х) в некоторой окрестности точки-Xq = 2, например, на интервале (1, 5), не содержащем точку х = 0, в которой функция /(х) также не определена. Возьмем произвольное число с > 0 и преобразуем выражение |/(х) - 2| при х ф 2 следующим образом Для х б (1, 5) получаем неравенство Отсюда видно, что если взять 6 = с, то для всех х € (1,5), подчиненных условию будет верно неравенство Это означает, что число Л - 2 является пределом данной функции в точке Дадим геометрическое пояснение понятия предела функции в точке, обратившись к ее графику (рис. 5). При х значения функции /(х) определяются ординатами точек кривой М\М,при х > хо - ординатами точек кривой ММ2. Значение /(х0) определяется ординатой точки N. График данной функции получается, если взять «хорошую» кривую М\ММг и точку М(х0, А) на кривой заменитьточкой jV. Покажем, что в точке хо функция /(х) имеет предел, равный числу А (ординате точки М). Возьмем любое (как угодно малое) число е > 0. Отметим на оси Оу точки с ординатами А, А - е, А + е. Обозначим через Р и Q точки пересечения графика функции у = /(х) с прямыми у = А- епу = А + е. Пусть абсциссы этих точек есть х0 - Ль х0 + hi соответственно (ht > 0, /12 > 0). Из рисунка видно, что для любого х Ф х0 из интервала (х0 - h\, х0 + hi) значение функции /(х) заключено между. для всех х ^ хо, удовлетворя ющих условию верно неравенство Положим Тогда интервал будет содержаться в интервале и, следовательно, неравенство или, что тоже, будет выполнено для всех х, удовлетворяющих условию Это доказывает, что Таким образом, функция у = /(х) имеетпредел А вточкехо, если, какой быузкой ни была е-полоска между прямыми у = А- ену = А + е, найдется такое «5 > 0, что для всех х из проколотой окрестности точки х0 точки графика функции у = /(х) оказываются внутри указанной е-полоски. Замечание 1. Величина б зависитот е: 6 = 6(e). Замечание 2. В определении предела функции в точке Xq сама точка хо из рассмотрения исключается. Таким образом, значение функции в точке Хо нс влияет на предел функции в этой точке. Более того, функция может быть даже не определена в точке Xq. Поэтому две функции, равные в окрестности точки Xq, исключая, быть может, саму точку хо (в ней они могут иметь разные значения, одна из них или обе вместе могут быть не определены), имеют при х - Xq один и тот же предел или обе не имеют предела. Отсюда, в частности, следует, чтодля отыскания вточке хо предела дроби законно сокращать эту дробь на равные выражения, обращающиеся в нуль при х = Xq. Пример 1. Найти Функция /(х) = j для всех х Ф 0 равна единице, а в точке х = 0 не определена. Заменив /(х) на равную ей при х 0 функцию д(х) = 1, получаем Понятие функции Способы задания функции Примеры функций Аналитическое задание функции Графический способ задания функции Предел функции в точке Табличный способ задания функции теоремы о пределах единственность предела ограниченность функции, имеющей предел переход к пределу в неравенстве Предел функции в бесконечности Бесконечно малые функции Свойства бесконечно малых функций Пример 2. Найти lim /(х), где Функция, совпадает с функцией /(х) всюду, исключая точку х = 0, и имеет в точке х = 0 предел, равный нулю: lim д(х) = 0 (покажите это!). Поэтому lim /(х) = 0. Задача. Сформулировать с помощью неравенств (на языке е -6), что означает Пусть функция /(я) определена в некоторой окрестности П точки х0, кроме, быть может, самой точки х0. Определение (Гейне). Число А называется пределом функции /(х) в точке х0, если для любой последовательности {хп} значений аргумента х 6 П, z„ / х0), сходящейся к точке х0, соответствующая последовательность значений функции {/(х„)} сходится к числу А. Приведенным определением удобно пользоваться, когда надо установить, что функция /(х) не имеет предела в точке х0. Для этого достаточно найти какую-нибудь последовательность {/(хп)}, не имеющую предела, или же указать две последовательности {/(хп)} и {/(х"п)}, имеющие различные пределы. Покажем, например, чтофунк-иия /(х) = sin j (рис.7), определенная ВСЮДУ, Кроме ТОЧКИ X = О, Рис.7 н е имеет предела в точке х = 0. Рассмотрим две последовательности {, сходящиеся к точке х = 0. Соответствующие последовательности значений функции /(х) сходятся к разным пределам: последовательность {sinnTr} сходится к нулю, а последовательность {sin(5 + - к единице. Это означает, что функция /(х) = sin j в точке х = 0 предела не имеет. Замечание. Оба определения предела функии» в точке (определение Коши и определение Гейне) равносильны. §3. Теоремы о пределах Теорема 1 (единственность предела). Если функция f(x) имеет предел в точке хо, то этот предел единственный. А Пусть lim /(х) = А. Покажем, что никакое число В ф А не может быть пределом х-х0 функции /(х) вточкех0. Тотфакт,что lim /(х) ф Вспомощьюлогическихсимволов ХО формулируется так: Воспользовавшись неравенством получаем, Возьмем е = > 0. Поскольку lim /(х) = А, для выбранного е > 0 найдется 6 > 0 такое, что Из соотношения (1) для указанных значений х имеем Итак, нашлось такое, что каким бы малым ни было существуют х Ф xQ, такие, что и вместе с тем ^ е. Отсюда В Определение. Функция /(х) называется ограниченной в окрестности точки х0> если существуют числа М > 0 и 6 > 0 такие, что Теорема 2 (ограниченность функции, имеющей предел). Если функция f{x) определена в окрестности точки х0 и имеет в точке х0 конечный предел, то она ограничена в некоторой окрестности этой точки. м Пусть Тогда для любого например, для е = 1, найдется такое 6 > О, что для всех х Ф х0, удовлетворяющих условию будет верно неравенство Замечая, что всегда получим Положим. Тогда в каждой точке х интервала будем иметь Это означает, согласно определению, что функция /(х) ограничена в окрестности Напротив, из ограниченности функции /(х) в окрестности точки х0 не следует существования предела функции /(х) в точке х0. Например, функция /(х) = sin офаничена в окрестности точки но не имеет предела в точке х = 0. Сформулируем еще две теоремы, геометрический смысл которыхдостаточноясен. Теорема 3 (переход к пределу в неравенстве). Если /(х) ^ ip(x) для всех х из некоторой окрестности точки х0, кроме, быть может, самой точки х0, и каждая из функций /(х) и ip(x) в точке х0 имеет предел, то Заметим, что из строгого неравенства для функций не обязательно следует строгое неравенство для их пределов. Если эти пределы существуют, то мы можем утверждать лишь, что Так, например, для функций выполнено неравенство в то время как Теорема 4 (предел промежуточной функции). Если для всех х в некоторой окрестности точки Xq, кроме, быть может, самой точки х0 (рис.9), и функции f{x) и ip(x) в точке хо имеют один и тот же предел А, то и функция f(x) в точке х0 имеет предел, равный этому же чиыу А. § 4. Предел функции в бесконечности Пусть функция /(х) определена либо на всей числовой оси, либо по крайней мерс для всех х, удовлетворяющих условию jx| > К при некотором К > 0. Определение. Число А называют пределом функции f(x) при х, стремящемся к бесконечности, и пишут если для любого е > 0 существует число jV > 0 такое, что для всех х, удовлетворяющих условию |х| > Лг, верно неравенство Заменив в этом определении условие соответственно, получим определения Из этих определений следует, что тогда и только тогда, когда одновременно Тот факт, геометрически означает следующее: какой бы узкой ни была е-полоска между прямыми у = А- еиу = А + е, найдется такая прямая х = N >0, что правее нес график функции у = /(ж) целиком содержится в указанной е-полоске (рис. 10). В этом случае говорят, что при х +оо график функции у = /(ж) асимптотически приближается к прямой у = А. Пример, Функция /(х) = jtjj- определена на всей числовой оси и представляет собой дробь, у которой числитель постоянен, а знаменатель неограниченно возрастает при |х| +оо. Естественно ожидать, что lim /(х)=0. Покажем это. М Возьмем любое е > 0, подчиненное условию Чтобы имело место соотношение должно выполняться неравенство с или, что то же, откуда Таким образом. если взять будем иметь. Это означает, что число есть предел данной функции при Заметим, что подкоренное выражение лишь для t ^ 1. В случае, когда, неравенство с выполняется автоматически для всех График четной функции у = - асимптотически приближается к прямой Задача. Сформулировать с помощью неравенств, что означает §5. Бесконечно малые функции Пусть функция а(х) определена в некоторой окрестности точки хо, кроме, быть может, самой точки х0. Определение. Функция а(х) называется бесконечно малой функцией (сокращенно б. м. ф.) при х, стремящемся к хо, если Понятие функции Способы задания функции Примеры функций Аналитическое задание функции Графический способ задания функции Предел функции в точке Табличный способ задания функции теоремы о пределах единственность предела ограниченность функции, имеющей предел переход к пределу в неравенстве Предел функции в бесконечности Бесконечно малые функции Свойства бесконечно малых функций Например, функция а(х) = х - 1 является б. м. ф. при х 1,таккак lim(x-l) = 0. График функции у = х-1 1-1 изображен на рис. II. Вообще, функция а(х)=х-х0 является простейшим примером б. м. ф. при х-»хо. Принимая во внимание определение предела функции вточке, определение б. м. ф. можно сформулировать так. Определение. Функция а(х) называется бесконечно малой при х -* хо, если для любого £ > 0 существует такое «5 > 0, что для всех х, удовлетворяющих условию, верно неравенство Наряду с понятием бесконечно малой функции при х хо вводится понятие бесконечно малой функции при Определение. Функция а(х) называется бесконечно малой при х -» оо, если то функция а(х) называется бесконечно малой соответственно при или при Например, функция является бесконечно малой при х -» оо, поскольку lim j = 0. Функция а(х) = е~х естьбесконечно малая функция при х-* +оо, так как В дальнейшем все понятия и теоремы, связанные с пределами функций, мы будем, как правило, рассматривать только применительнок случаю предела функции в точке, предоставляя читателю самому сформулировать соответствующие понятия и доказать аналогичные теоремы дня случаев, когда Свойства бесконечно малых функций Теорема 5. Если а{х) и Р(х) - б. м. ф. при х -* хо, то их сумма а(х) + Р(х) есть также б.м. ф. при х -» хо. 4 Возьмем любое е > 0. Так как а(х) - б.м.ф. при х -* хо, то найдется «51 > 0 такое, что для всех х Ф хо, удовлетворяющих условию верно неравенство По условию Р{х) также б.м.ф. при х хо, поэтому найдется такое, что для всех х Ф хо, удовлетворяющих условию верно неравенство Положим 6 = min{«5j, 62}. Тогда для всех х Ф хо, удовлетворяющих условию будут одновременно верны неравенства (1) и (2). Поэтому Это означает, что сумма а(х) +/3(х) есть б.м.ф. при х xq. Замечание. Теорема остается справедливой для суммы любого конечного числа функций, б. м. при х zo. Теорема б (произведение б. м. ф. на ограниченную функцию). Если функция а(х) является б. м. ф. при х -* х0, а функция f(x) ограничена в окрестности точки Хо, то произведение а(х)/(х) есть б. м. ф. при х -» х0. По условию функция /(х) ограничена в окрестности точки х0. Это означает, что существуют такие числа 0 и М > 0, что Возьмем любое е > 0. Так как по условию, то найдется такое 62 > 0, что для всех х ф х0, удовлетворяющих условию |х - xol , будет верно неравенство Положим я всех х ф х0, удовлетворяющих условию |х - х0|, будут одновременно верны неравенства Поэтому Это означает, что произведение а(х)/(х) есть б. м.ф. при Пример. Функцию у = xsin - (рис.12) можно рассматривать как произведение функций a(ar) = х и f(x) = sin j. Функция а(аг) есть б. м. ф. при х - 0, а функция f}