Средние величины. Сущность средних величин, их виды. Средние величины, их сущность и значение. Виды средних величин


Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования "Уральский Государственный Экономический Университет"

Центр дистанционного образования

КОНТРОЛЬНАЯ РАБОТА

по дисциплине: "Статистика "

Исполнитель:

студент группы: ЭТр-09 СР

Трошева Наталья Юрьевна

г. Екатеринбург

2009г.

Введение

1.1 Виды средних величин и способы расчета

1.2 Структурные средние величины

2. Практическое задание

Заключение

Список литературы

Введение

Данная контрольная работа состоит из двух частей – теоретической и практической.

В теоретической части будет подробно рассмотрена такая важная статистическая категория как средняя величина с целью выявления её сущности и условий применения, а также выделения видов средних и способов их расчёта.

Практическая часть посвящена расчету и анализу важнейших показателей работы любого предприятия – планового уровня развития явления и общего индекса цен с целью выделения основных факторов, влияющих на изменение этих показателей.

1. Среднее величины: виды, свойства, область применения

Средняя величина – это обобщающая величина изучаемого признака в исследуемой совокупности, которая отражает его типичный уровень в расчете на единицу совокупности в конкретных условиях места и времени.

Средние величины относятся к обобщающим статистическим показателям, которые дают сводную характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений варьирующего признака.

Средняя величина отражает то общее, что характерно для всех единиц изучаемой совокупности. В то же время она уравновешивает влияние всех факторов, действующих на величину признака отдельных единиц совокупности, как бы взаимно погашая их. Уровень любого общественного явления обусловлен действием двух групп факторов. Одни из них являются общими и главными, постоянно действующими, тесно связанными с природой изучаемого явления или процесса, и формируют то типичное для всех единиц изучаемой совокупности, которое и отражается в средней величине. Другие являются индивидуальными, их действие выражено слабее и носит эпизодический, случайный характер. Отсюда средняя величина выступает как "обезличенная", которая может отклоняться от индивидуальных значений признаков, не совпадая количественно ни с одним из них. Средняя величина отражает общее, характерное и типичное для всей совокупности благодаря взаимопогашению в ней случайных, нетипичных различий между признаками отдельных ее единиц, так как ее величина определяется как бы общей равнодействующей из всех причин.

Для того, чтобы средняя величина отражала наиболее типичное значение признака, она должна определяться только для совокупностей, состоящих из качественно однородных единиц. Это требование является основным условием научно обоснованного применения средних величин и предполагает тесную связь метода средних величин и метода группировок в анализе социально-экономических явлений.

Необходимо подчеркнуть, что правильное исчисление любой средней величины предполагает выполнение следующих требований:

    качественная однородность совокупности, по которой вычислена средняя величина.

    исключение влияния на вычисление средней величины случайных, сугубо индивидуальных причин и факторов

    при вычислении средней величины важно установить цель ее расчета и так называемый определяющий показатель, на который она должна быть ориентирована.

Средняя величина, рассчитанная в целом по совокупности, называется общей средней - отражает общие черты изучаемого явления; средние величины, рассчитанные для каждой группы групповыми средними - дают характеристику явления, складывающуюся в конкретных условиях данной группы.

1.1 Способы расчета могут быть разные, поэтому в статистике различают несколько видов средней величины

Средние величины делятся на 2 больших вида:

степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая и др.). Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Если рассчитывать все виды степенных средних для одних и тех же данных, то их значения окажутся одинаковыми. Тогда действует правило мажорантности средних: с увеличением показателя степени средних увеличивается и сама средняя величина ().

структурные средние (мода, медиана). Мода и медиана определяются лишь структурой распределения. Поэтому их именуют "структурными позиционными средними". Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

Для наглядности наиболее часто применяемые в практических исследованиях формулы вычисления различных видов степенных средних величин представлены в Таблице 1.

Таблица 1 Виды степенных средних

Вид степенной средней

Показатель степени

Формула расчета

Взвешенная

1. Гармоническая

, где

2. Геометрическая

3. Арифметическая

Средняя арифметическая величина представляет собой такое среднее значение признака, при вычислении которого общий объем признака в совокупности сохраняется неизменным. Для того чтобы исчислить среднюю арифметическую, необходимо сумму всех значений признаков разделить на их число. Она применяется в тех случаях, когда объем варьирующего признака для всей совокупности является суммой значений признаков отдельных ее единиц. Примером средней арифметической может служить общий фонд заработной платы.

Средняя арифметическая простая величина равна простой сумме отдельных значений осредняемого признака, деленной на общее число этих значений. Она применяется в тех случаях, когда имеются несгруппированные индивидуальные значения признака.

Средняя арифметическая взвешенная – это средняя их вариант, которые повторяются различное число раз или имеют различный вес.

Основные свойства средней арифметической:

    Если индивидуальные значения признака, т.е. варианты, уменьшить или увеличить в i раз, то среднее значение нового признака соответственно уменьшится или увеличится в i раз.

    Если все варианты осредняемого признака уменьшить или увеличить на число А, то средняя арифметическая соответственно уменьшится или увеличится на это же число.

    Если веса всех осредняемых вариантов уменьшить или увеличить в k раз, то средняя арифметическая не изменится.

    Сумма отклонений отдельных значений признака (вариант) от средней арифметической равна нулю.

Прежде чем выполнять расчет средней величины необходимо преобразовать интервальный ряд в дискретный. Для этого находят середину интервала в каждой группе. Ее определяют делением суммы верхней и нижней границы пополам.

Формула средней гармонической взвешенной величины применяется когда информация не содержит частот по отдельным вариантам x совокупности, а представлена как произведение
. Для того чтобы исчислить среднюю, необходимо обозначить
, откуда
. Теперь преобразуем формулу средней арифметической таким образом, чтобы по имеющимся данным x и m можно было исчислить среднюю. В формулу средней арифметической взвешенной вместо подставим m, а вместо f – отношение , и таким образом получим формулу средней гармонической взвешенной.

Средняя гармоническая простая величина применяется в тех случаях, когда вес каждого варианта равен единице, т.е.
,

Средняя геометрическая величина применяется в тех случаях, когда индивидуальные значения признака представляют собой относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики, т.е. характеризует средний коэффициент роста.

Наиболее распространенной формой статистических показателей, используемой в экономических исследованиях, является средняя величина, представляющая собой обоб­щенную количественную характеристику признака в статистической совокупности в кон­кретных условиях места и времени. Показатель в форме средней величины выражает ти­пичные черты и дает обобщающую характеристику однотипных явлений по одному из варьирующих признаков. Он отражает уровень этого признака, отнесенный к единице совокупности. Широкое применение средних объясняется тем, что они имеют ряд положи­тельных свойств, делающих их незаменимым инструментом анализа явлений и процессов в экономике.

Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности. Значения признака от­дельных единиц совокупности колеблются в ту или иную сторону под влиянием множест­ва факторов, среди которых могут быть как основные, так и случайные. Например, курс акций корпорации в основном определяется финансовыми результатами ее деятельности. В то же время, в отдельные дни и на отдельных биржах эти акции в силу сложившихся обстоятельств могут продаваться по более высокому или заниженному курсу. Сущность средней величины в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учи­тываются изменения, вызванные действием факторов основных. Это позволяет средней величине отражать типичный уровень признака и абстрагироваться от индивидуальных особенно­стей, присущих отдельным единицам.

В статистике используются различные виды средних величин. Наиболее часто применяются средняя арифметическая, гармоническая, геометрическая и квадратическая. Выбор той или иной средней зависит от содержания осредняемого признака и конкретных данных, по которым ее приходится вычислять.

Указанные средние величины могут быть вычислены либо когда каждый вариант совокупности встречается только один раз (при этом средняя называется простой или невзвешенной ), либо когда варианты повторяются различное число раз (при этом число повторений вариантов называется частотой или статистическим весом , а средняя, вычисленная с учетом весов, – средней взвешенной ).

Средняя арифметическая простая – самый распространенный вид средней величины, рассчитывается по формуле

Средняя арифметическая взвешенная

где х i – вариант, а f i – частота или статистический вес.

Пример. Обследование пяти кабинетов первого этажа офиса показало, что в них работает 1, 2, 3, 4, 5 человек. Рассчитаем среднюю арифметическую простую:

т.е. в среднем на один кабинет первого этажа приходится 3 человека.

Результаты обследования всех кабинетов этого же здания приведены в таблице 8.2.

Таблица 8.2

Результаты обследования офисного здания

Вычислим среднее число сотрудников, работающих в данном здании:

Т.е. в среднем на 2 кабинета в этом здании приходится 7 сотрудников.

Среднеарифметическая – всегда обобщающая количественная характеристика варьирующего признака совокупности.

Средняя гармоническая вычисляется в тех случаях, когда приходится суммировать не сами варианты, а обратные им величины.

Формула вычисления средней гармонической простой следующая:

Средняя гармоническая взвешенная определяется по формуле

где x i – вариант, n – количество вариантов, V i – веса для обратных значений x i .

Пример. Средняя гармоническая невзвешенная (эта форма средней, используемая значи­тельно реже, чем взвешенная). Для иллюстрации области ее применения воспользуемся упрощенным условным примером. Предположим, в фирме, специализирующейся на торговле по почте на основе предварительных заказов, упаковкой и отправкой товаров занимаются два работника. Первый из них на обработку одного заказа затрачивает 5 мин., второй – 15 мин. Каковы средние затраты времени на 1 заказ, если общая продолжительность рабочего времени у работников одинакова?

На первый взгляд, ответ на этот вопрос заключается в осреднении индивидуальных значений затрат времени на 1 заказ, т.е. (5 + 15) : 2 = 10, мин. Проверим обоснованность тако­го подхода на примере одного часа работы. За этот час первый работник обрабатывает 12 заказов (60:5), второй – 4 заказа (60:15), что в сумме составляет 16 заказов. Если же заме­нить индивидуальные значения их предполагаемым средним значением, то общее число обработанных обоими работниками заказов в данном случае уменьшится:

Подойдем к решению через исходное соотношение средней. Для определения средних затрат времени необходимо общие затраты времени за любой интервал (на­пример, за час) разделить на общее число обработанных за этот интервал двумя ра­ботниками заказов:

Если теперь мы заменим индивидуальные значения их средней величиной, то об­щее количество обработанных за час заказов не изменится:

Заказов.

Подведем итог: средняя гармоническая невзвешенная может использоваться вместо взвешенной в тех случаях, когда значения Wj для единиц совокупности равны (в рассмот­ренном примере рабочий день у сотрудников одинаковый).

Пример. Средняя гармоническая взвешенная . В ходе торгов на валютной бирже за первый час работы заключено пять сделок. Данные о сумме продажи рублей и курсе рубля по отношению к доллару США приведены в таблице 8.3.

Таблица 8.3

Данные о ходе торгов на валютной бирже

Для того, чтобы определить средний курс рубля по отношению к доллару, нужно найти соотношение между суммой продажи рублей, которые затрачены на покупку долларов в ходе всех сделок, и суммой приобретенных в результате этих сделок долларов.

Т.е. средний курс за один доллар составил 25,48 руб.

Если бы для расчета среднего курса была использована средняя арифметическая, т.е. руб. за один доллар, то по данному курсу на покупку 29 млн дол. нужно было бы затратить 739,5 млн руб., что не соответствует действительности.

Средняя геометрическая используется для анализа динамики явлений и позволяет определить средний коэффициент роста. При расчете средней геометрической индивидуальные значения признака обычно представляют собой относительные показатели динамики, построенные в виде цепных величин как отношение каждого уровня ряда к предыдущему уровню.

Средняя геометрическая простая рассчитывается по формуле

Если используем частоты m , получим формулу средней геометрической взвешенной

Средняя квадратическая применяется, когда изучается вариация признака. В качестве вариантов используются отклонения фактических значений признака либо от средней арифметической, либо от заданной нормы.

Для несгруппированных данных используют формулу средней квадратической простой

Для сгруппированных данных используют формулу средней квадратической взвешенной

Средние арифметическая, гармоническая, геометрическая и квадратическая, рассчитанные для одного и того же ряда вариантов, отличаются друг от друга. Их численное значение возрастает с ростом показателя степени в формуле степенной средней, т.е. – правило мажорантности средних А.Я. Боярского.

Структурные средние

Наиболее часто используемыми в экономической практике структурными средними являются мода и медиана .

Мода – это величина признака (варианта), который наиболее часто встречается в данной совокупности, т.e. это варианта, имеющая наибольшую частоту. В дискретном ряду мода определяется в соответствии с определением, т.е. это одна из вариант признака, которая в ряду распределения имеет наибольшую частоту. Для интервального ряда моду находим по формуле (8.16), сначала по наибольшей частоте определив модальный интервал:

где х 0 – начальная (нижняя) граница модального интервала;

h – величина интервала;

f Мо – частота модального интервала;

f Мо-1 – частота интервала, предшествующая модальному;

f Мо+1 – частота интервала следующая за модальным.

Медианой называется такое значение признака, которое приходится на середину ранжированного ряда, т.е. в ранжированном ряду распределения одна половина ряда имеет значение признака больше медианы, другая – меньше медианы.

В дискретном ряду медиана находится непосредственно по накопленной частоте, соответствующей номеру медианы.

В случае интервального вариационного ряда медиану определяют по формуле

где х о – нижняя граница медианного интервала;

N Ме – порядковый номер медианы (Σf/2);

S Me -1 – накопленная частота до медианного интервала;

f Me – частота медианного интервала.

Пример. Рассчитаем моду и медиану по данным табл. 8.4.

Таблица 8.4

Распределение семей города по размеру
среднедушевого дохода в январе 2008 г.

Найдем моду по формуле (8.16):

Рассчитаем медиану по формуле (8.17):

сначала находится N медианы: N Ме = Σf i /2 = 5000. По накопленным частотам определим, что 5000 находится в интервале (7000 – 8000), ее значение определим по формуле:

Вывод: по моде – наиболее часто встречается среднедушевой доход в размере 7730 руб., по медиане – половина семей города имеет среднедушевой доход ниже 7800 руб., остальные семьи – более 7800 руб.

Соотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить его асимметрию. Если М 0 <М е <Х – имеет место правосторонняя асимметрия, при Х<М е <М 0 следует сделать вы­вод о левосторонней асимметрии ряда.

Контрольные задания

1. Какова роль относительных величин в статистике?

2. Какие существуют формы выражения относительных величин?

3. Каково значение средних величин в статистике?

4. Какие виды средних величин применяются в статистике?

5. В каких случаях применяются средняя гармоническая, квадратическая, геометрическая?

6. По данным таблицы 8.5 определить моду и медиану.

Таблица 8.5

Распределение торговых предприятий города
по уровню розничных цен на товар А

7. По данным таблицы 8.6 определить средний возраст персонала.

Таблица 8.6

Распределение сотрудников предприятия по возрасту

8. По таблице 8.7 определить средний стаж работы: а) рабочих; б) служащих.

Таблица 8.7

Распределение работников по стажу работы

В данной главе описывается назначение средних величин, рассматриваются их основные виды и формы, методика расчета. При изучении представленного материала необходимо усвоить требования к построению средних величин, так как их соблюдение позволяет использовать эти величины как типические характеристики значений признака по совокупности однородных единиц.

Формы и виды средних величин

Средняя величина представляет собой обобщенную характеристику уровня значений признака, которая получена в расчете на единицу совокупности. В отличие от относительной величины, которая является мерой соотношения показателей, средняя величина служит мерой признака на единицу совокупности.

Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности.

Значения признака отдельных единиц совокупности колеблются в ту или иную сторону под влиянием множества факторов, среди которых могут быть существенные и случайные. Например, ставки процента по банковским ссудам определяются исходными для всех кредитных организаций факторами (уровень резервных требований и базовая ставка процента gо ссудам, предоставляемым коммерческим банкам центральным банком, и др.), а также особенностями каждой конкретной сделки в зависимости от риска, присущего данной ссуде, ее размера и срока погашения, издержек по оформлению ссуды и контролю за ее погашением и др.

В средней величине обобщаются индивидуальные значения признака и отражается влияние общих условий, наиболее характерных для данной совокупности в конкретных условиях места и времени. Сущность средней в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием факторов основных. Средняя величина будет отражать типичный уровень признака в данной совокупности единиц, когда она рассчитана по качественно однородной совокупности. В связи с этим метод средних используют в сочетании с методом группировок.

Средние величины, характеризующие совокупность в целом, называют общими, а средние, отражающие особенность группы или подгруппы, – групповыми.

Сочетание общих и групповых средних позволяет проводить сравнения во времени и пространстве, существенно расширяет границы статистического анализа. Например, при подведении итогов переписи 2002 г. было установлено, что для России, как и для большинства европейских стран, характерно старение населения. По сравнению с переписью 1989 г. средний возраст жителей страны увеличился на три года и составил 37,7 года, мужчин – 35,2 года, женщин – 40,0 лет (по данным 1989 г. эти показатели соответственно были 34,7, 31,9 и 37,2 лет). По данным Росстата, ожидаемая продолжительность жизни при рождении в 2011 г. мужчин – 63 года, женщин – 75,6 лет.

Каждая средняя отражает особенность изучаемой совокупности по какому-то одному признаку. Для принятия практических решений, как правило, необходима характеристика совокупности по нескольким признакам. В этом случае используют систему средних величин.

Например, для достижения должного уровня доходности операций при приемлемом уровне риска банковской деятельности средние ставки процента по выданным кредитам устанавливают с учетом средних ставок процента по депозитам и другим финансовым инструментам.

Форма, вид и методика расчета средней величины зависят от поставленной цели исследования, вида и взаимосвязи изучаемых признаков, а также от характера исходных данных. Средние величины делятся на две основные категории:

  • 1) степенные средние;
  • 2) структурные средние.

Формула средней определяется значением степени применяемой средней. С увеличением показателя степени k возрастает соответственно средняя величина.

В статистике средней величиной называют обобщающий показатель совокупности однородных общественных или природных явлений, который показывает типичный уровень варьирующего признака в расчете на единицу совокупности в конкретный момент времени.

Нахождение среднего - один из распространенных приемов обобщения. Средняя величина отражает то общее, что типично (характерно) для всех единиц изучаемой совокупности, но в то же время она игнорирует различия отдельных единиц. Мы уже говорили, что при неограниченном увеличении количества наблюдений (п -» оо) средняя величина, согласно закону больших чисел, будет неограниченно приближаться к его математическому ожиданию, т. е. при п -> оо можно записать х ~ М[Х], здесь х - средняя величина. То есть средняя величина - это оценка математического ожидания.

Сделаем небольшое отступление и приведем краткие сведения об оценках параметров, полученных в результате п опытов. Предположим, что надо определить по результатам п опытов некоторый параметр d. Приближенное значение этого параметра будем называть его оценкой и обозначим d. Оценка d должна удовлетворять ряду требований, чтобы в каком-то смысле быть оценкой “доброкачественной”.

Оценка d при увеличении числа опытов должна сходиться по вероятности к искомому параметру, т. е.

Оценка, обладающая таким свойством, называется состоятельной.

Кроме того, пользуясь оценкой d вместо самого параметра d, желательно не делать систематической ошибки, т. е. математическое ожидание оценки должно быть равным самому параметру:

Оценка, которая обладает данным свойством, называется несмещенной.

Было бы хорошо, если бы выбранная несмещенная оценка d была как можно менее случайной, т. е. обладала по сравнению с другими минимальной дисперсией:

Оценка, которая обладает данным свойством, называется эффективной.

В реальных условиях не всегда удается удовлетворить всем перечисленным требованиям. Тем не менее при выборе оценки любого параметра желательно эту оценку рассмотреть со всех перечисленных точек зрения.

Вернемся к средним величинам. При их вычислении при большом количестве наблюдений случайности взаимопога- шаются (это следует из закона больших чисел), следовательно, можно абстрагироваться от несущественных особенностей изучаемого явления и от количественных значений признака в каждом конкретном опыте.

Крупный вклад в обоснование и развитие теории средних величин внес А. Кетле. Согласно его учению массовые процессы формируются под влиянием двух групп причин. К первой группе общих для всех единиц массовой совокупности причин относятся те из них, которые определяют состояние массового процесса. Они формируют типичный уровень для единиц данной однородной совокупности.

Вторая группа причин формирует специфические особенности отдельных единиц массовой совокупности и, следовательно, их разброс от типичного уровня.

Эти причины не связаны с природой изучаемого явления, поэтому их называют случайными причинами.

Средняя величина, полученная по всей совокупности, называется общей, а средние величины, вычисленные по каждой группе, называются групповыми средними. Есть два вида средних величин: степенные средние (средняя арифметическая и др.), структурные средние (мода, медиана).

Рассмотрим степенные средние. Степенные средние определяются исходя из формулы

где х - среднее значение;

х { - текущее значение изучаемого признака;

т - показатель степени средней;

п - количество признаков (вариант).

В зависимости от показателя т степени средней получаем следующие виды степенных средних:

  • - среднюю гармоническую х гар, если т = -1;
  • - среднюю геометрическую эс геом, если т = 0;
  • - среднюю арифметическую х ар, если т = 1;
  • - среднюю квадратическую х квад, если т = 2;
  • - среднюю кубическую х куб., если т = 3,
  • - ИТ. д.

При использовании одних и тех же данных чем больше т в формуле (6.4), тем больше значение средней, т. е.

Приведем конкретные формулы для вычисления некоторых видов степенных средних.

При т = -1 получаем среднюю гармоническую:

В том случае, если исходные данные сгруппированы, используются взвешенные средние. В качестве веса может использоваться частота р (количество опытов, в которых появилось интересующее нас событие) или относительная частота

Запишем формулы для взвешенной средней гармонической:

При т = 0 получаем среднюю геометрическую:

т. е. получили неопределенность.

Для ее раскрытия прологарифмируем обе части формулы (6.4.)

затем подставляем т = 0 и получаем

т. е. имеем неопределенность вида Для раскрытия этой неопределенности применяем правило Лопиталя. Полученный результат потенцируется, и окончательно получаем

Широкое применение средняя геометрическая получила для нахождения средних темпов изменения в рядах динамики и в рядах распределения.

Запишем формулы для взвешенной средней геометрической.

Приведем конкретный пример нахождения средней геометрической взвешенной по формуле (6.11).

Пример 6.1

Исходные данные наблюдений приведены в табл. 6.1.

Таблица 6.1

В табл. 6.1 х. - результаты, принятые некоторой случайной величиной X в г-м опыте; р. - частота события - показывает, сколько раз в результате всех опытов появилось интересующее нас событие. Например, х = 2 появилось в 24 опытах 5 раз.

Относительная частота события (частость).

По формуле (6.11) получаем:

По формуле (6.12) имеем

При т = 1 получаем среднюю арифметическую:

Средняя арифметическая - наиболее распределенный вид среди всех видов степенных средних. Она используется в тех случаях, когда объем варьирующего признака для всей совокупности является суммой значений признаков отдельных единиц.

Приведем формулы для нахождения средней арифметической взвешенной:

При большом количестве наблюдений, согласно закону больших чисел, формула (6.15) определяет оценку математического ожидания т. е.

При т = 2 получаем среднюю квадратическую:

Она используется для вычисления среднего размера признака, выраженного в квадратных единицах.

Формулы для нахождения средней квадратической взвешенной имеют вид:

При га = 3 получаем среднюю кубическую:

Она применяется для нахождения среднего размера признака, выраженного в кубических единицах.

Формулы для вычисления средней кубической взвешенной имеют вид:

Теперь рассмотрим структурные средние: моду и медиану. В статистике, в отличие от теории вероятностей, имеем дело с оценками этих величин. Мы будем обозначать их теми же буквами, что и в главе 2, но с тильдой.

Мода в статистике (Мо) - значение случайной величины, которое встречается в статистическом ряду распределения чаще всего, т. е. имеет наибольшую частоту или относительную частоту (частость).

Например, в табл. 6.1 наибольшая относительная частота / = 0,33, поэтому мода равна Мо = 5.

Если мы имеем группированный ряд распределения с равными интервалами, то моду можно найти по формуле

где Мо нижн - нижняя граница модального интервала;

г Мо - длина модального интервала;

Рмо - частота модального интервала;

М-мо_, - частота интервала, предшествующего модальному;

М-мо +1 -- частота интервала, следующего за модальным.

Заметим, что для расчета можно использовать и относительные частоты.

Медиана в статистике - варианта, которая находится в середине ранжированного ряда распределения, т. е. значение медианы находиться по ее порядковому номеру.

Если ряд распределения имеет нечетное число элементов, номер медианы находиться по формуле

Например, в табл. 6.2 приведены величины окладов профессорско-преподавательского состава кафедры высшей математики.

Таблица 6.2

Количество элементов ряда равно 5, поэтому по формуле (6.23) находим номер медианы , следовательно, меди

ана в данном случае равна

Если ряд содержит четное число элементов, то варианта находится как средняя из двух вариант, находящихся в середине ряда.

В группированном ряду распределения медиана (так как она делит всю совокупность на две равные части) находится в каком-то из интервалов.

Кумулятивная (накопленная) частота (или относительная частота) равна или превышает полусумму всех частот ряда (для относительных частот она равна 1/2 или превышает 1/2).

В этом случае значение медианы вычисляется по формуле

где - нижняя граница медианного интервала;

Длина медианного интервала;

Полусумма частот;

Сумма частот, накопленная до начала медианного интервала;

Частота медианного интервала.

Средние величины и общие принципы их вычисления.

Средние величины относятся к обобщающим статистическим показателям, которые дают сводную (итоговую) характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений варьирующего признака. Для выяснения сущности средней величины необходимо рассмотреть особенности формирования значений признаков тех явлений, по данным которых исчисляют среднюю величину.

Известно, что единицы каждого массового явления обладают многочисленными признаками. Какой бы из этих признаков мы ни взяли, его значения у отдельных единиц будут различными, они изменяются, или, как говорят в статистике, варьируют от одной единицы к другой. Так, например, заработная плата работника определяется его квалификацией, характером труда, стажем работы и целым рядом других факторов, поэтому изменяется в весьма широких пределах. Совокупное влияние всех факторов определяет размер заработка каждого работника, тем не менее, можно говорить о среднемесячной заработной плате работников разных отраслей экономики. Здесь мы оперируем типичным, характерным значением варьирующего признака, отнесенным к единице многочисленной совокупности.

Средняя величина отражает то общее, что характерно для всех единиц изучаемой совокупности. В то же время она уравновешивает влияние всех факторов, действующих на величину признака отдельных единиц совокупности, как бы взаимно погашая их. Уровень (или размер) любого общественного явления обусловлен действием двух групп факторов. Одни из них являются общими и главными, постоянно действующими, тесно связанными с природой изучаемого явления или процесса, и формируют то типичное для всех единиц изучаемой совокупности, которое и отражается в средней величине. Другие являются индивидуальными, их действие выражено слабее и носит эпизодический, случайный характер. Они действуют в обратном направлении, обусловливают различия между количественными признаками отдельных единиц совокупности, стремясь изменить постоянную величину изучаемых признаков. Действие индивидуальных признаков погашается в средней величине. В совокупном влиянии типичных и индивидуальных факторов, которое уравновешивается и взаимно погашается в обобщающих характеристиках, проявляется в общем виде известный из математической статистики фундаментальный закон больших чисел.

В совокупности индивидуальные значения признаков сливаются в общую массу и как бы растворяются. Отсюда и средняя величина выступает как «обезличенная», которая может отклоняться от индивидуальных значений признаков, не совпадая количественно ни с одним из них. Средняя величина отражает общее, характерное и типичное для всей совокупности благодаря взаимо погашению в ней случайных, нетипичных различий между признаками отдельных ее единиц, так как ее величина определяется как бы общей равнодействующей из всех причин.

Однако для того, чтобы средняя величина отражала наиболее типичное значение признака, она должна определяться не для любых совокупностей, а только для совокупностей, состоящих из качественно однородных единиц. Это требование является основным условием научно обоснованного применения средних величин и предполагает тесную связь метода средних величин и метода группировок в анализе социально-экономических явлений. Следовательно, средняя величина – это обобщающий показатель, характеризующий типичный уровень варьирующего признака в расчете на единицу однородной совокупности в конкретных условиях места и времени.

Определяя, таким образом, сущность средних величин, необходимо подчеркнуть, что правильное определение любой средней величины предполагает выполнение следующих требований:

Качественная однородность совокупности, по которой вычислена средняя величина. Это означает, что определение средних величин должно основываться на методе группировок, обеспечивающем выделение однородных, однотипных явлений;

Исключение влияния на вычисление средней величины случайных, сугубо индивидуальных причин и факторов. Это достигается в том случае, когда вычисление средней основывается на достаточно массовом материале, в котором проявляется действие закона больших чисел, и все случайности взаимно погашаются;

При вычислении средней величины важно установить цель ее расчета и так называемый определяющий показатель (свойство), на который она должна быть ориентирована. Определяющий показатель может выступать в виде суммы значений усредняемого признака, суммы его обратных значений, произведения его значений и т. п. Связь между определяющим показателем и средней величиной выражается в следующем: если все значения усредняемого признака заменить средним значением, то их сумма или произведение в этом случае не изменит определяющего показателя. На основе этой связи определяющего показателя со средней величиной строят исходное количественное отношение для непосредственного расчета средней величины. Способность средних величин сохранять свойства статистических совокупностей называют определяющим свойством.

Средняя величина, рассчитанная в целом по совокупности, называется общей средней; средние величины, рассчитанные для каждой группы, – групповыми средними. Общая средняя величина отражает общие черты изучаемого явления, групповая средняя дает характеристику явления, складывающуюся в конкретных условиях данной группы.

Средние величины могут быть как абсолютными, так и относительными (средняя заработная плата, средний процент выполнения плана).

Средняя величина всегда именованная, она имеет ту же размерность, что и признак у отдельных единиц совокупности.

Объективность и типичность статистической средней могут быть обеспечены лишь при определенных условиях. Первое условие состоит в том, что средняя должна вычисляться для качественно однородной совокупности. Второе условие – для исчисления средней должны быть использованы не единичные, а массовые данные, ибо только тогда взаимно погашаются возможные случайные отклонения.

Способы расчета могут быть разные, поэтому в статистике различают несколько видов средней величины, основными из которых являются средняя арифметическая, средняя гармоническая и средняя геометрическая.

В экономическом анализе использование средних величин является основным инструментом для оценки результатов научно-технического прогресса, социальных мероприятий, поиска резервов развития экономики. В то же время следует помнить о том, что чрезмерное увлечение средними показателями может привести к необъективным выводам при проведении экономико-статистического анализа. Это связано с тем, что средние величины, будучи обобщающими показателями, погашают, игнорируют те различия в количественных признаках отдельных единиц совокупности, которые реально существуют и могут представлять самостоятельный интерес.