Светимость звезды. Изменяется ли светимость Солнца

Светимость Солнца или мощность светового излучения нашей Звезды огромна.

Ответ на вопрос какова светимость Солнца или сколько энергии оно излучает за счет своей внутренней может дать простой эксперимент.

Эксперимент по светимости нашей звезды

В солнечный полдень включим мощную электролампу, светимость или мощность которой нам известна. Закрыв глаза, мы поочередно «смотрим» то на Солнце, то на лампу. Если нам кажется, что лампа ярче, отодвинемся от нее. Если же нам кажется, что ярче наше светило, приблизимся к лампе. Когда же она покажется нам при закрытых глазах столь же яркой, как и Солнце, надо измерить расстояние от нас до лампы. Это расстояние (в метрах) зависит от светимости лампы. Расстояние до звезды известно: 150 млн. метров.

Для того, чтобы определить точное количество излучения, которое наша звезда отдает каждую секунду, необходимо измерить сначала солнечную постоянную. Это количество солнечного излучения, попадающее за 1 секунду на поставленную перпендикулярно к солнечным лучам площадку в 1 м 2 , расположенную на среднем расстоянии Земли от своей звезды.

Солнечную постоянную удалось определить с помощью большого количества точных измерений. Она равна 1353 Вт/м 2 . Это средняя величина, так как расстояние между Землей и Солнцем в течение года изменяется. Земля вращается вокруг звезды по эллиптической орбите и поэтому зимой, именно зимой, на нее попадает больше излучения (например, 1 января 1438 Вт/м 2), а летом, наоборот, меньше (1 июля лишь 1345 Вт/м 2). Мы имеем в виду зиму и лето в северном полушарии и площадь 1 м 2 над атмосферой Земли. Земная атмосфера поглощает и отражает значительную часть солнечного излучения, но определенная часть остается и дает нам жизнь

Теперь можно точно рассчитать светимость Солнца. Представьте себе большой шар, в центре которого находится Солнце; радиус шара равен расстоянию от Земли до светила (150 000 000 000 м). На 1 м 2 попадает 1353 вт (солнечная постоянная).

Это и есть мощность нашей Звезды или солнечная светимость.

Разумеется, это громадная величина, и все же существуют звезды, светимость которых больше в миллион раз. Рядом с подобной звездой наше светило выглядело бы совсем незаметным. Но у слабых белых карликов светимость в тысячу раз слабее, чем у Солнца.

Солнце - это желтый карлик спектрального класса G2 V, принадлежащий главной последовательности на диаграмме Герцшпрунга-Рессела. Основные характеристики Солнца приведены в табл. 1. Заметим, что хотя Солнце газовое вплоть до самого центра, его средняя плотность (1,4 г/см3) превышает плотность воды, а в центре Солнца она значительно выше, чем даже у золота или платины, имеющих плотность ок. 20 г/см3. Поверхность Солнца при температуре 5800 К излучает 6,5 кВт/см2.

Характеристики Солнца

Таблица 3.1 Характеристики Солнца(по Школовскому И.С,1984 г.)

Внутреннее строение солнца

Солнце - это звезда, основными элементами которой являются водород (75%), гелий (около 25 %), углерод, кислород, азот и некоторые другие элементы в очень незначительных количествах. Солнце состоит из нескольких сферических слоев. Такими слоями являются ядро, область лучевого переноса энергии, конвективная зона и атмосфера. В атмосфере исследователи выделяют несколько областей: фотосферу, хромосферу и корону.

Ядро. Ученые достоверно не знают, что находится в солнечном ядре. Достоверно известно одно - в центральной части звезды протекают термоядерные реакции, в результате которых высвобождается огромное количество энергии. Энергия представляет собой излучение в виде волн сверхкороткой частоты. В ядре Солнца очень высокие температуры и огромное давление. Область лучистого переноса энергии. Эта область представляет собой оболочку из невидимого газа, температура которого огромна. Газ практически неподвижен. Он обволакивает ядро. Электромагнитная энергия из солнечного ядра поступает в область лучистого переноса энергии. При этом коротковолновое гамма-излучение превращается в рентгеновское излучение с большей длиной волны. По мере удаления от ядра температура газа понижается. Конвективная область. Это сферическая оболочка, которая наслаивается на область лучистого переноса энергии. Она состоит из газа высокой температуры. Толщина этой оболочки Солнца составляет 1/10 часть радиуса звезды. Газ конвективной области подвижен, т.к. конвективная область находится между областью лучистого переноса энергии и атмосферой Солнца и оказывается как бы зажатой между областями с разными температурами и давлением.

Когда волновая энергия солнечного ядра достигает его атмосферы, она начинает светиться. На этом участке солнца возникает солнечный свет.

Атмосфера солнца

Таблица 3.3 Строение атмосферы Солнца

Фотосфера. Выше слои Солнца, образующие солнечную атмосферу. Современная гелиофизика различает три таких отличающихся друг от друга слоя, физические условия в которых различны. Нижние, сравнительно плотные непрозрачные слои образуют фотосферу, более разреженные и протяженные - хромосферу и корону .

Излучение, приходящее к нам от Солнца, возникает в очень тонком поверхностном слое - фотосфере (слое света), толщина которого по солнечным масштабам ничтожна, всего около 400 км. Нижний уровень фотосферы соответствует резкому видимому краю солнечного диска.

Фотосфера не только испускает, но и поглощает свет, приходящий из более глубоких слоев Солнца. Их мы уже не видим потому, что свет от них полностью поглощается фотосферой. (Фотосферу составляет сильно разреженный газ с плотностью 1-3*10-8г/см3, температура в среднем оценивается в 5780 К. Температура в фотосфере по мере подъема уменьшается, а, следовательно, уменьшается и интенсивность свечения газов. Поскольку газы фотосферы непрозрачны, при косом, расположении слоев атмосферы относительно луча зрения будут видны только внешние более холодные слои. Этим объясняется любопытный факт: по мере приближения к краю диска Солнце кажется темнее.).На рисунке 3.3.1 показано строение фотосферы Солнца. (по Марленскому А.Д, 1970 г.)

В фотосфере образуются наблюдаемые в спектре Солнца многочисленные темные линии. Появление этих линий, называемых по имени впервые описавшего их ученого фраунгоферовыми, вызывается особым процессом рассеяния.

Рисунок 3.3.1 Фотосфера Солнца

Хромосфера - это слой атмосферы Солнца, который находится над фотосферой. Этот слой имеет красновато-фиолетовый цвет. Хромосферу можно наблюдать во время солнечных затмений. Огненные языки, которые видны вокруг лунного диска, закрывающего Солнце, и есть хромосфера.

Хромосфера состоит из разряженных газов. Толщина хромосферы 10 - 15 тысяч километров, а температура огненных языков в десятки раз больше температуры в фотосфере. На рисунке 3.3.2 изображена хромосфера Солнца (по Марленскому А.Д, 1970 г.)

Звезды выбрасывают в открытый космос громадное количество , почти полностью представленной разными видами лучей. Суммарная энергия излучения светила, испускаемая за отрезок времени - это и есть светимость звезды. Показатель светимости очень важен для изучения светил, поскольку зависит от всех характеристик звезды.

Первое, что стоит отметить, говоря о светимости звезды - ее легко спутать с другими параметрами светила. Но в деле все очень просто - надо только знать, за что отвечает каждая характеристика.

Светимость звезды (L) отражает в первую очередь количество энергии, излучаемой звездой - и потому измеряется в ваттах, как и любая другая количественная характеристика энергии. Это объективная величина: она не меняется при перемещении наблюдателя. У этот параметр составляет 3,82 × 10 26 Вт. Показатель яркости нашего светила часто используется для измерения светимости других звезд, что куда удобнее для сопоставления - тогда он отмечается как L ☉ , (☉- это графический символ Солнца.)


Очевидно, что наиболее информативной и универсальной характеристикой среди вышеперечисленных является светимость. Так как этот параметр отображает интенсивность излучения звезды наиболее подробно, с его помощью можно узнать многие характеристики звезды - от размера и массы до интенсивности .

Светимость от А до Я

Источник излучения в звезде искать долго не приходится. Вся энергия, которая может покинуть светило, создается в процессе термоядерных реакций синтеза в . Атомы водорода, сливаясь под давлением гравитации в гелий, высвобождают громадное количество энергии. А в звездах помассивнее «горит» не только водород, но и гелий - порой даже более массивные элементы, вплоть до железа. Энергии тогда получается в разы больше.

Количество энергии, выделяемой во время ядерной реакции, напрямую зависит от - чем она больше, тем сильнее гравитация сжимает ядро светила, и тем больше водорода одновременно превращается в гелий. Но не одна ядерная энергия определяет светимость звезды - ведь ее надо еще излучать наружу.

И тут вступает в игру площадь излучения. Ее влияние в процессе передачи энергии очень велико, что легко проверяется даже в быту. Лампа накаливания, нить которой нагревается до 2800 °C, за 8 часов работы существенно не изменит температуру в помещении - а обычная батарея температурой в 50–80 °C сумеет прогреть комнату до ощутимой духоты. Разницу в эффективности обуславливают отличия в количестве поверхности, излучающей энергию.

Соотношение площади ядра звезды и ее часто бывает соизмеримо с пропорциями нити лампочки и батареи - поперечник ядра может составлять всего одну десятитысячную общего диаметра звезды. Таким образом, на светимость звезды серьезно влияет площадь ее излучающей поверхности - то есть поверхности самой звезды. Температура тут оказывается не столь существенной. Накал поверхности звезды на 40% меньше температуры фотосферы Солнца - но из-за больших размеров, ее светимость превышает солнечную в 150 раз.

Получается, в вычислениях светимости звезды роль размеров важнее и энергии ядра? На самом деле нет. Голубые гиганты с высокой светимостью и температурой обладают схожей светимостью с красными сверхгигантами, которые намного больше размерами. Кроме того, самая массивная и одна из наиболее горячих звезд, обладает самой высокой яркостью среди всех известных звезд. До открытия нового рекордсмена, это ставит точку в дискуссии о наиболее важном для светимости параметре.

Использование светимости в астрономии

Таким образом, светимость достаточно точно отражает как и энергию звезды, так и площадь ее поверхности - поэтому она задействована во многих классификационных диаграммах, используемых астрономами для сравнения звезд. Среди них стоить выделить диаграмму

Для представления светимости звёзд. Равна светимости Солнца , составляющей 3,827 × 10 26 Вт или 3,827 × 10 33 Эрг /с.

Расчёт константы

Вы можете рассчитать количество солнечной энергии, попадающей на Землю, путём сравнения площади сферы с радиусом, равным расстоянию Земли от Солнца (центр находится в звезде) и площади сечения, сделанного таким образом, чтобы ось вращения планеты принадлежала плоскости сечения.

  • Радиус Земли - 6.378 км.
  • Площадь сечения Земли: S Земля = π×радиус² = 128.000.000 км²
  • Среднее расстояние до Солнца: R Солнце = 150.000.000 км. (1 а.е.)
  • Площадь сферы: S Солнце = 4×π×R Солнце ² = 2,82×10 17 км².
  • Количество энергии в единицу времени, попадающей на Землю: P Земля = P Солнце × S Земля /S Солнце = 1,77×10 17 Вт.
    • Количество энергии (в единицу времени)на квадратный метр: P Земля /S Земля = 1387 Вт/м² (Солнечная постоянная)
    • Человечество примерно потребляет 12×10 12 Вт. Какая площадь необходима для обеспечения энергопотребления? Лучшие солнечные батареи имеют КПД около 33 %. Необходимая площадь составляет 12×10 12 /(1387×0,33) = 26×10 9 м² = 26000 км², или квадрат ~160×160 км. (На самом деле требуется бо́льшая площадь, так как солнце не всегда находится в зените и, к тому же, некоторая часть излучения рассеивается облаками и атмосферой .)

Ссылки

  • I.-J. Sackmann, A. I. Boothroyd (2003). "Our Sun. V. A Bright Young Sun Consistent with Helioseismology and Warm Temperatures on Ancient Earth and Mars ". The Astrophysical Journal 583 (2): 1024-1039.

Wikimedia Foundation . 2010 .

Смотреть что такое "Светимость Солнца" в других словарях:

    В астрономии полная энергия, излучаемая источником в единицу времени (в абсолютных единицах или в единицах светимости Солнца; светимость Солнца = 3,86·1033 эрг/с). Иногда говорят не о полной С., а о С. в некотором диапазоне длин волн. Напр., в… … Астрономический словарь

    Светимость термин, используемый для именования некоторых физических величин. Содержание 1 Фотометрическая светимость 2 Cветимость небесного тела … Википедия

    Светимость звезды, сила света звезды, т. е. величина излучаемого звездой светового потока, заключённого в единичном телесном угле. Термин «светимость звезды» не соответствует термину «светимость» общей фотометрии. С. звезды может относиться как к … Большая советская энциклопедия

    В точке поверхности. одна из световых величин, отношение светового потока, исходящего от элемента поверхности, к площади этого элемента. Единица С. (СИ) люмен с квадратного метра (лм/м2). Аналогичная величина в системе энергетич. величин наз.… … Физическая энциклопедия

    СВЕТИМОСТЬ, абсолютная яркость ЗВЕЗДЫ количество энергии, излучаемой ее поверхностью в секунду. Выражается в ваттах (джоулях в секунду) или в единицах измерения яркости Солнца. Болометрическая светимость измеряет общую мощность света звезды на… … Научно-технический энциклопедический словарь

    СВЕТИМОСТЬ, 1) в астрономии полное количество энергии, испускаемое космическим объектом в единицу времени. Иногда говорят о светимости в некотором диапазоне длин волн, например радиосветимость. Обычно измеряется в эрг/с, Вт или в единицах… … Современная энциклопедия Википедия

Ближайшая к нам звезда – это конечно Солнце. Расстояние от Земли до него по космическим параметрам совсем небольшое: от Солнца до Земли солнечный свет идет всего лишь 8 минут.

Солнце – это не обычный желтый карлик, как считали ранее. Это центральное тело солнечной системы, возле которой вертятся планеты, с большим количеством тяжелых элементов. Это звезда, образовавшаяся после нескольких взрывов сверхновых, около которой сформировалась планетная система. За счет расположения, близкого к идеальным условиям, на третьей планете Земля возникла жизнь. Возраст Солнца насчитывает уже пять миллиардов лет. Но давайте разберемся, почему же оно светит? Какое строение Солнца, и каковы его характеристики? Что ждет его в будущем? Насколько значительное влияние оно оказывает на Землю и ее обитателей? Солнце – это звезда, вокруг которой вращаются все 9 планет солнечной системы, в том числе и наша. 1 а.е. (астрономическая единица) = 150 млн. км – таким же является и среднее расстояние от Земли до Солнца. В Солнечную систему входят девять больших планет, около сотни спутников, множество комет, десятки тысяч астероидов (малых планет), метеорные тела и межпланетные газ и пыл. В центре всего этого и находится наше Солнце.

Солнце светит уже миллионы лет, что подтверждают современные биологические исследования, полученные из остатков сине-зелено-синих водорослей. Изменись температура поверхности Солнца хотя бы на 10 %, и на Земле, погибло бы все живое. Поэтому хорошо, что наша звезда равномерно излучает энергию, необходимую для процветания человечества и других существ на Земле. В религиях и мифах народов мира, Солнце постоянно занимало главное место. Почти у всех народов древности, Солнце было самым главным божеством: Гелиос – у древних греков, Ра – бог Солнца древних египтян и Ярило у славян. Солнце приносило тепло, урожай, все почитали его, потому что без него не было бы жизни на Земле. Размеры Солнца впечатляют. Например, масса Солнца в 330 000 раз больше массы Земли, а его радиус в 109 раз больше. Зато плотность нашего звездного светила небольшая – в 1,4 раза больше, чем плотность воды. Движение пятен на поверхности заметил еще сам Галилео Галилей, таким образом доказав, что Солнце не стоит на месте, а вращается.

Конвективная зона Солнца

Радиоактивная зона около 2/3 внутреннего диаметра Солнца, а радиус составляет около 140 тыс.км. Удаляясь от центра, фотоны теряют свою энергию под влиянием столкновения. Такое явление называют — феномен конвекции. Это напоминает процесс, происходящий в кипящем чайнике: энергии, поступающей от нагревательного элемента, намного больше того количества, которое отводится тепло проводимостью. Горячая вода, находящаяся в близости от огня, поднимается, а более холодная опускается вниз. Этот процесс называются конвенция. Смысл конвекции в том, что более плотный газ распределяется по поверхности, охлаждается и снова идет к центру. Процесс перемешивания в конвективной зоне Солнца осуществляется непрерывно. Глядя в телескоп на поверхность Солнца, можно увидеть ее зернистую структуру — грануляции. Ощущение такое, что оно состоит из гранул! Это связано с конвекцией, происходящей под фотосферой.

Фотосфера Солнца

Тонкий слой (400 км) — фотосфера Солнца, находится прямо за конвективной зоной и представляет собой видимую с Земли «настоящую солнечную поверхность». Впервые гранулы на фотосфере сфотографировал француз Янссен в 1885г. Среднестатистическая гранула имеет размер 1000 км, передвигается со скоростью 1км/сек и существует примерно 15 мин. Темные образования на фотосфере можно наблюдать в экваториальной части, а потом они сдвигаются. Сильнейшие магнитные поля, являются отличительно чертой таких пятен. А темный цвет получается вследствие более низкой температуры, относительно окружающей фотосферы.

Хромосфера Солнца

Хромосфера Солнца (цветная сфера) – плотный слой (10 000 км) солнечной атмосферы, который находится прямо за фотосферой. Хромосферу наблюдать достаточно проблематично, за счет ее близкого расположения к фотосфере. Лучше всего ее видно, когда Луна закрывает фотосферу, т.е. во время солнечных затмений.

Солнечные протуберанцы – это огромные выбросы водорода, напоминающие светящиеся длинные волокна. Протуберанцы поднимаются на огромные расстояние, достигающие диаметра Солнца (1.4 млм км), двигаются со скоростью около 300 км/сек, а температура при этом, достигает 10 000 градусов.

Солнечная корона – внешние и протяженные слои атмосферы Солнца, берущие начало над хромосферой. Длина солнечной короны является очень продолжительной и достигает значений в несколько диаметров Солнца. На вопрос где именно она заканчивается, ученые пока не получили однозначного ответа.

Состав солнечной короны – это разряженная, высоко ионизированная плазма. В ней содержатся тяжелые ионы, электроны с ядром из гелия и протоны. Температура короны достигает от 1 до 2ух млн градусов К, относительно поверхности Солнца.

Солнечный ветер – это непрерывное истечение вещества (плазмы) из внешней оболочки солнечной атмосферы. В его состав входят протоны, атомные ядра и электроны. Скорость солнечного ветра может меняться от 300 км/сек до 1500 км/сек, в соответствии с процессами, происходящими на Солнце. Солнечный ветер, распространяется по всей солнечной системе и, взаимодействуя с магнитным полем Земли, вызывает различный явления, одним из которых, является северное сияние.

Характеристики Солнца

Масса Солнца: 2∙1030 кг (332 946 масс Земли)
Диаметр: 1 392 000 км
Радиус: 696 000 км
Средняя плотность: 1 400 кг/м3
Наклон оси: 7,25° (относительно плоскости эклиптики)
Температура поверхности: 5 780 К
Температура в центре Солнца: 15 млн градусов
Спектральный класс: G2 V
Среднее расстояние от Земли: 150 млн. км
Возраст: 5 млрд. лет
Период вращения: 25,380 суток
Светимость: 3,86∙1026 Вт
Видимая звездная величина: 26,75m