Значение перекрест хромосом в медицинских терминах

В каждой хромосоме находится несколько тысяч генов. В связи с этим возникает вопрос о том, как будут наследоваться признаки, гены которых находятся в одной хромосоме. В 1906 г. В. Бэтсон и Р. Пен- нет проводили опыты по скрещиванию двух различных рас душисто­го горошка, которые различались по двум парам признаков (по форме пыльцы и по окраске цветка).

Ученые ожидали получить в Р 2 расщеп­ление признаков в отношении 9:3:3:1, однако этого не случилось: признаки не дали независимого наследования, они оставались в ис­ходной комбинации, которая была у родительских форм. Это явление сначала было названо «притяжением», а позднее в работах американ­ского генетика Томаса Гента Моргана и его сотрудников получило название «сцепления генов». Благодаря работам Т. Моргана и было достигнуто понимание этого явления. Морган установил, что матери­альной основой сцепления является хромосома. Все гены, находящие­ся в одной хромосоме, связаны между собой («сцеплены») и образуют «группы сцепления». Сцепленные гены располагаются в линейном порядке и наследуются вместе. Число групп сцепления равно числу пар хромосом, то есть гаплоидному набору хромосом (у гомогамет- ных особей).

Закон сцепления (закон Моргана) может быть сформулирован так: гены, находящиеся в одной хромосоме, образуют группу сцепле­ния и наследуются вместе по схеме моногибридного скрещивания. Число групп сцепления равно гаплоидному набору хромосом.

Разобрать это явление можно на следующем примере: если два гена полностью сцеплены, то дигибрид будет давать только два сорта гамет - АВ и аЪ в отношении 1:1. Если же гены наследуются незави­симо (не сцепленно), то дигетерозигота дает 4 сорта гамет: АВ, АЪ, аВ, аЪ в равном соотношении. Проверить этот факт можно путем ана­лизирующего скрещивания (то есть скрещивания с гомозиготной ре­цессивной формой): расщепление в анализирующем скрещивании по­кажет исследователю, сцеплены гены или же наследуются независимо.

В случае если дигибрид образует только два сорта гамет (то есть гены сцеплены), в результате анализирующего скрещивания будет получено лишь две группы особей в отношении 1:1. Половина потомства будет иметь доминантные признаки, а вторая половина - рецессивные, то есть перекомбинации признаков наблюдаться не бу­дет. При независимом наследовании анализирующее скрещивание даст 4 группы особей в равном соотношении с перекомбинацией ис­ходных признаков.

Дальнейшие опыты Т. Моргана выявили, что сцепление не всегда бывает абсолютным. В экспериментах с плодовой мушкой дрозофи­лой Морган показал, что полное сцепление наблюдается только в 83% случаев (41,5% потомства имели серое тело и длинные крылья и 41,5% - черное тело и короткие крылья, то есть признаки родитель­ских форм). В 17% случаев наблюдалась перекомбинация признаков: 8,5% потомства имело серое тело и короткие крылья и 8,5% - черное тело и длинные крылья. Причиной нарушения сцепления генов стал кроссинговер - перекрест хромосом, который происходит в профазе I мейоза. Было доказано, что чем дальше друг от друга расположены гены в хромосоме, тем выше вероятность перекреста и тем больше образуется гамет с перекомбинацией генов. Таким образом, частота кроссинговера между генами пропорциональна расстоянию между ними. В результате кроссинговера увеличивается комбинативная из­менчивость, которая дает материал для естественного отбора. В этом и состоит биологическое значение кроссинговера.

С учетом процента кроссинговера составляются генетические карты хромосом. На таких картах нанесено относительное расстояние между генами, которое измеряется в морганидах. Одна морганида равна 1% кроссинговера.

Все, что до сих пор говорилось о перекресте хромосом, относится к процессам, происходящим в профазе I.

Перекрест хромосом, осуществляющийся в профазе мейоза, называют мейотическим перекрестом , или мейотическим кроссинговером .

Мейоз состоит из двух делений созревания. Первое из них мы называли также редукционным делением, поскольку в результате него диплоидное число хромосом уменьшается вдвое; причем в анафазе I гомологи каждой пары хромосом проводятся к полюсам независимо от других пар, что обеспечивает случайное комбинирование генов.

Второе деление созревания было названо эквационным, или сравнительным, поскольку в анафазе II расходятся к полюсам сестринские хромосомы. При этом полагали, что они абсолютно идентичны по своему генному составу, так как происходят из сестринских хроматид. В результате второго деления созревания гибрида из одного первичного сперматоцита (или ооцита) возникает всего два сорта гамет в отношении 1: 1 при моногибридном скрещивании и четыре сорта гамет в отношении 1: 1: 1: 1 при дигибридном скрещивании и т. д.

Теперь же, после ознакомления с процессом перекреста хроматид в профазе I мейоза, нельзя первое мейотическое деление во всех случаях считать редукционным, а второе деление - эквационным. Такое разделение применимо лишь к тем организмам, у которых не происходит перекреста. У тех же организмов, у которых осуществляется перекрест хроматид в профазе I мейоза, второе деление созревания не будет эквационным в отношении всего генного состава. Обмен участками между несестринскими хроматидами в мейозе у гетерозигот приводит к неравенству продуктов второго мейотического деления в отношении генов. Одна или обе сестринские хроматиды, претерпевшие обмен участками с несестринскими хроматидами, при втором делении созревания не будут идентичными. Поэтому термин «эквационное деление » следует употреблять лишь в тех случаях, где строго установлено отсутствие перекреста (например, у самцов дрозофилы и самок шелкопряда). Во всех остальных случаях правильнее говорить о втором делении созревания, или втором мейотическом делении.

Первое деление, названное редукционным, также не является чисто редукционным. Оно редукционно лишь по отношению к центромерам и участкам хромосомы от центромеры до первой хиазмы. Для участков, лежащих между двумя хиазмами, первое деление является эквационным. Второе деление для них оказывается редукционным, а для центромеры - эквационным.

Таким образом, при осуществлении перекреста хроматид в профазе мейоза первое и второе деления в генетическом отношении являются каждое и редукционным, и эквационным.

К сказанному следует еще добавить, что при перекресте происходит обмен не отдельными генами, а целыми блоками их. Поэтому неравенство кроссоверных гамет может быть значительно более глубоким, чем мы это принимали, оценивая рекомбинанты только по двум или трем генам.

Назовите тип и фазу деления клеток, изображённых на рисунках. Какие процессы они иллюстрируют? К чему приводят эти процессы?

Пояснение.

1) Тип и фаза деления: Мейоз - профаза1.

2) Процессы: кроссинговер, обмен гомологичными участками хромосом. Взаимный обмен участками между гомологичными (попарными) хромосомами.

3) Результат: новая комбинация аллелей генов, следовательно комбинативная изменчивость

Примечание:

в пункте 2 был указан процесс «конъюгация», убран из критериев, т.к.

Конъ­юга­ция хро­мо­сом - по­пар­ное вре­мен­ное сбли­же­ние го­мо­ло­гич­ных хро­мо­сом, во время ко­то­ро­го между ними может про­изой­ти обмен го­мо­ло­гич­ны­ми участ­ка­ми (а может и не произойти).

Пояснение от "пользователя" сайта Евгения Скляр - уточнения к пункту 2. Тоже засчитаются проверяющими «как верные»

2) Процессы: конъюгация (синапсис) - сближение и контакт гомологичных хромосом, кроссинговер - обмен гомологичными участками хромосом.

3) Результат: новая комбинация аллелей генов, следовательно повышение генетической разнородности хромосом и, как следствие, образующихся гамет (спор).

Без комбинативной изменчивости, т.к. об изменчивости можно говорить только судя по новому поколению организмов.

Си́напсис - конъюгация хромосом, попарное временное сближение гомологичных хромосом, во время которого между ними может произойти обмен гомологичными участками... (учебник для профильных классов под ред. Шумного)

Следовательно кроссинговер - есть часть конъюгации как минимум по временным рамкам.

Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Сибирь. Вариант 4., ЕГЭ- 2017

Гость 19.08.2015 17:20

В пояснении ошибка. На рисунке изображен процесс кроссинговера: 1. бивалент до кроссинговера, 2. бивалент после крассинговера.

КОНЪЮГАЦИИ НА РИСУНКЕ НЕТ.

Гульнара 01.06.2016 13:49

Кроссинговер это и есть обмен гомологичными участками хромосом, зачем отдельно через запятую писать кроссинговер, обмен участками гомологичный хромосом???

Наталья Евгеньевна Баштанник

нет, это три разных процесса:

конъюгация, кроссинговер, обмен гомологичными участками хромосом

Светлана Васильева 17.11.2016 02:56

Кроссинговер может произойти без конъюгации???? Конъюгация (сближение гомологичных хромосом) происходит всегда, а вот кроссинговер не всегда, только в 30%! Кроссинговер - это контакт гомологичных хромосом, после чего между их идентичными участками происходит обмен..... или не так?

Наталья Евгеньевна Баштанник

В чём суть вопроса?

Кроссинговер - это перекрест , взаимный обмен гомологичными участками гомологичных хромосом в результате разрыва и соединения в новом порядке их нитей - хроматид; приводит к новым комбинациям аллелей разных генов.

Почему 30%??? Вероятность кроссинговера разная , зависит от расстояния между генами. 1% кроссинговера=1М (Морганиде).

Если произошел кроссинговер - перекрест, это ещё не значит, что произойдет обмен.

см. Кроссинговер.


Смотреть значение Перекре́ст Хромосо́м в других словарях

Перекрест — перекреста, м. (разг. устар.). То же, что выкрест.
Толковый словарь Ушакова

Перекрест М. — 1. Действие по знач. глаг.: перекрещивать (1), перекрестить, перекрещиваться, перекреститься. 2. Место пересечения, перекрещивания чего-л.
Толковый словарь Ефремовой

Перекрест М. Устар. — 1. То же, что: перекрещенец.
Толковый словарь Ефремовой

Перекрест — -а; м. к Перекрестить (6-7 зн.) и Перекрести́ться (3-4 зн.). П. мышечных волокон.
Толковый словарь Кузнецова

Вернекинга Перекрест — (F. Ch. G. Werneking, 1798-1835, нем. анатом) см. Перекрест верхних мозжечковых ножек.
Большой медицинский словарь

Гаметический Набор Хромосом
Большой медицинский словарь

Гаплоидный Набор Хромосом — (син.: гаметический набор хромосом, одинарный набор хромосом) совокупность хромосом, присущая зрелой половой клетке, в которой из каждой пары характерных для данного........
Большой медицинский словарь

Двигательный Перекрест — см. Перекрест пирамид.
Большой медицинский словарь

Двойной Набор Хромосом
Большой медицинский словарь

Деконденсация Хромосом — (де- + конденсация) см. Деспирализация хромосом.
Большой медицинский словарь

Деспирализация Хромосом — (син. деконденсация хромосом) процесс раскручивания спирализованных хромосом в телофазе митоза и мейоза.
Большой медицинский словарь

Диминуция Хромосом — (син. диминуция хроматина) потеря одной или нескольких хромосом или отторжение концевых участков некоторых хромосом, наблюдающееся в мейозе или митозе.
Большой медицинский словарь

Диплоидный Набор Хромосом — (син.: двойной набор хромосом, зиготический набор хромосом, полный набор хромосом, соматический набор хромосом) совокупность хромосом, присущая соматическим клеткам,........
Большой медицинский словарь

Зиготический Набор Хромосом — см. Диплоидный набор хромосом.
Большой медицинский словарь

Зрительный Перекрест — (chiasma opticum, PNA, BNA; chiasma fasciculorumopticorum, JNA; син.: перекрест зрительных нервов, хиазма) место соединения зрительных нервов, в котором перекрещиваются волокна, идущие от медиальных........
Большой медицинский словарь

Конденсация Хромосом — (лат. condensatio уплотнение, сгущение) см. Контрактация хромосом.
Большой медицинский словарь

Контрактация Хромосом — (лат. contraho, contractum стягивать, сокращать: син.: конденсация хромосом, спирализация хромосом) уплотнение витков спирали хромосом, достигающее максимума в метафазе митоза и мейоза.
Большой медицинский словарь

Генетические Карты Хромосом — схемы относительного расположения генов вхромосомах, позволяющие предсказывать характер наследования изучаемыхпризнаков организмов.
Большой энциклопедический словарь

Мейнерта Перекрест — (Th. Meynert) см. Перекрест покрышки среднего мозга дорсальный.
Большой медицинский словарь

Нерасхождение Хромосом — нарушение процесса мейоза или митоза, заключающееся в отхождении гомологичных хромосом или хроматид во время анафазы к одному и тому же полюсу; может служить причиной хромосомных аберраций.
Большой медицинский словарь

Одинарный Набор Хромосом — см. Гаплоидный набор хромосом.
Большой медицинский словарь

Основное Число Хромосом — см. Гаплоидное число.
Большой медицинский словарь

Перекрест Блоковых Нервов — (d. nervorum trochlearium, PNA, BNA, JNA) П. волокон блоковых нервов в верхнем мозговом парусе перед выходом из мозга.
Большой медицинский словарь

1. Назначение пособия

Пособие предназначено для использования в качестве демонстрационного материала в средней общеобразовательной школе в курсе общей биологии. Также данное пособие можно использовать в ВУЗах, на занятиях по генетике. Модель предназначена для изучения процесса перекреста хромосом (кроссинговера).

2. Устройство пособия

Пособие включает в себя 18 карточек с изображениями мух-дрозофил, которые отличаются двумя признаками: цветом тела и величиной крыльев, изображениями хромосом, в которых присутствуют две пары генов, отвечающие за данные признаки и карточками, на которых обозначено процентное содержание особей с разными признаками в потомстве.

Все карточки покрыты матовой антибликовой ламинирующей пленкой и снабжены магнитным креплением, позволяющим монтировать приведенную ниже схему на магнитной доске или экране.

Комплектация

  • Карточки с изображениями мух дрозофил - 6 шт. (№ Е1-Е4)
  • Карточки с изображениями хромосом - 8 шт. (№ Е5-Е10)
  • Карточки с обозначением процентного содержания особей с различными признаками в потомстве - 4 шт. (Е11-Е12)
  • Схема сборки модели

    3. Методика работы с моделью

  • Объяснить учащимся понятие "сцепленные гены", объяснить форму записи.

  • Для выяснения закономерностей наследования сцепленных генов необходимо рассмотреть скрещивание на плодовой мушке дрозофиле. У дрозофилы сцеплены, т.е. находятся в одной хромосоме гены, определяющие цвет тела и длину крыльев.

    Введем обозначения для двух пар аллельных генов: доминантная аллель D - длинные крылья, рецессивная аллель d - короткие (зачаточные) крылья. Доминантная аллель G - светлое тело, рецессивная аллель g - темное тело.

    Запишем скрещивания:

    Самка: серое тело, длинные крылья Х самец: черное тело, короткие крылья

    Генотипы: DG// dg dg //dg гетерозиготны гомозиготны Группы сцепления: DG и dg dg

    Карточки монтируются поэтапно, сначала размещаются фенотипы и генотипы родителей, затем показывается, что в генотипе самки (изображенной слева) произошел перекрест хромосом, и в конце монтируются карточки, изображающие потомство.

  • Прикрепить к доске две карточки на одном горизонтальном уровне: серые мухи с длинными крыльями (самки) и черные мухи с короткими крыльями (самцы). Рядом с карточками с изображением мух разместить соответственно карточки с изображением хромосом (Е5 - рядом с карточкой самки, Е6 - рядом с карточкой самца). Обратить внимание на графическое изображение хромосом мух. У черного гомозиготного самца с короткими крыльями две одинаковые по цвету хромосомы. В каждой из них находится пара рецессивных сцепленных генов: dg и dg. У светлой гетерозиготной самки с длинными крыльями одна хромосома такая же, как у самца. В ней сцеплены гены dg. Вторая хромосома выделена красным цветом. В ней находится пара доминантных генов. Светлый цвет тела определяет ген G, длинные крылья - ген D, эти гены сцеплены DG. У самки гены DG и dg находятся в гомологичных хромосомах. В данной модели каждая хромосома на всех карточках показана в виде одной хроматиды. Это сделано для упрощения понимания процесса.

  • В мейозе в гомологичных хромосомах происходит кроссинговер. Иногда он может идти между генами, определяющими окраску тела и длину крыльев. У гетерозиготной самки этот процесс можно изобразить графически следующим образом. К доске рядом с генотипом самки прикрепляются еще две карточки, на которых изображен процесс кроссинговера: Е7 и Е8. Важно пояснить учащимся, что кроссинговер произошел при образовании не всех гамет самки, а только небольшой их части.

    Гомологичные хромосомы перекрещиваются, в месте перекреста происходит их разрыв и воссоединение заново (теоретическая часть). В результате кроссинговера группы сцепления меняются. Были DG и dg, стали Dg и dG. В кроссинговер вступают несестренские хроматиды гомологичных хромосом.

  • После завершения кроссинговера в анафазе мейоза гомологичные хромосомы расходятся к разным полюсам клетки.

    Если в процессе мейоза у самок не было кроссинговера между изучаемыми генами, то гаметы будут DG и dg. У самца будет только один тип гамет dg. Тогда при оплодотворении образуются особи двух фенотипов DG//dg (серое тело, длинные крылья) и dg//dg (черное тело, короткие крылья).

    Прикрепить к доске две карточки (Е1 и Е2) со светлой длиннокрылой и темной короткокрылой мухами. Таких мух большинство, 41,5% каждого типа. Рядом с карточкой со светлой длиннокрылой мухой поместить карточку Е5, на которой изображены хромосомы с соответствующими генами, отвечающими за светлый цвет тела (Gg) и длинные крылья (Dd). Группы сцепления генов DG и dg. Под карточкой с изображением черной мухи с короткими крыльями прикрепить карточку Е6. На этой карточке изображены хромосомы с рецессивными генами, отвечающими за темный цвет тела (gg) и короткие крылья (dd). Группа сцепления генов dg.

  • Если кроссинговер произойдет между изучаемыми генами, то хромосомы обменяются участками, как это разбиралось на схеме (Е5-Е8). Гаметы после этого будут Dg и dG. Гаметы самца останутся такими же.

    После оплодотворения образуются особи с генотипом dG//dg (светлое тело, короткие крылья) и Dg//dg (темное тело, длинные крылья).

    Прикрепить две карточки (Е3-Е4) с нестандартными мухами, по 8,5% каждого типа. Рядом с черными мухами с длинными крыльями поместить карточку Е10, на которой изображены хромосомы со сцеплением генов: Dg и dg. Черный цвет тела определяется генами (dd), длинные крылья - генами (Dg). Рядом с серыми мухами с короткими крыльями прикрепить карточку Е9. На ней изображены соответствующие хромосомы с генами, отвечающими за серый цвет тела (dG) и короткие крылья (gg). Группы сцепления dG и dg.

    Количество особей, образующихся в процессе кроссинговера, зависит от расстояния между генами. В данном случае расстояние между генами, определяющими цвет тела и форму крыльев, составляет 8,5 морганид. В общем виде эта закономерность состоит в том, что, чем дальше гены друг от друга, тем больше кроссоверных особей.

  • Какие гены называются сцепленными?
  • Между какими хромосомами происходит кроссинговер?
  • В каком клеточном делении происходит кроссинговер?
  • В какой фазе мейоза происходит перекрест хромосом и кроссинговер?
  • В чем значение кроссинговера?
  • На каком биологическом объекте был впервые изучен процесс кроссинговера?
  • Какой ученый впервые показал сущность этого явления?
  • Что такое кроссинговер?

4. Теория вопроса

Любой организм характеризуется большим количеством наследственных признаков. Число хромосом, где закодированы все признаки невелико. Следовательно, в каждой хромосоме должно находиться много генов, отвечающих за определенные признаки. Каковы же закономерности наследования генов, локализованных в одной хромосоме. Этот вопрос был изучен выдающимся американским генетиком Т. Морганом. Он впервые сформулировал хромосомную теорию наследственности.

Согласно этой теории, гены находятся в хромосомах и расположены в них линейно. Гены, локализованные в одной хромосоме, называются сцепленными и наследуются вместе.

Для обозначения сцепления гены, образующие группу сцепления, обычно подчеркивают. Например, особь гетерозиготна по двум генам, ее генотип DdGg, но гены D и G сцеплены между собой, т.е. находятся в одной хромосоме, тогда они обозначаются DG. В другой гомологичной хромосоме находятся в сцеплении гены dg. Генотип такой гетерозиготы с учетом сцепления генов следует записать: Dg или DG//dg.

В мейозе гомологичные хромосомы сначала объединяются попарно, затем расходятся к разным полюсам клетки. В одной гамете окажутся гены DG/, в другой - /dg, таким образом, получается два типа гамет.

В профазе мейоза после конъюгации гомологичных хромосом происходит кроссинговер - обмен участками между гомологичными хромосомами. Если кроссинговер происходит между генами D и G, то две гомологичные хромосомы перекрещиваются друг с другом так, что место перекреста находится между указанными генами. Затем в месте перекреста происходит разрыв хромосом и воссоединение их заново. Участок первой хромосомы с геном D соединяется с участком гомологичной хромосомы с геном g. После этого в первой хромосоме будут сцеплены гены Dg, а в другой хромосоме, гомологичной первой, после аналогичных перемещений группа сцепления будет- dG. В результате такого процесса, помимо обычных гамет DG и dg, образуются дополнительные гаметы за счет процесса кроссинговера Dg и dG. Количество гамет, образовавшихся в процессе кроссинговера, зависит от расстояния между генами. Чем дальше друг от друга расположены гены в хромосоме, тем чаще между ними может происходить кроссинговер и тем больше будет дополнительных кроссоверных гамет.

Указанные закономерности были открыты Морганом в опытах на плодовой мушке дрозофиле.

Для скрещивания были взяты мухи: гетерозиготная самка с серым телом и длинными крыльями и гомозиготный рецессивный самец с черным телом и зачаточными (очень маленькими) крыльями. Гены, отвечающие за цвет тела и длину крыльев, сцеплены между собой, т.е. находятся в одной хромосоме.

Введем обозначения:

Аллельные гены D - длинные крылья, а - зачаточныее крылья, другая пара аллельных генов G - светлое тело, g - темное тело. Самка гетерозиготна (DdGg), с учетом сцепления генов ее генотип будет DG//dg. Самец - рецессивная гомозигота (аавв), с учетом групп сцепления его генотип dg//dg.

Гаметы самки DG и dg, дополнительные гаметы, образующиеся за счет кроссинговера Dg и dG. У самца образуется один тип гамет dg, т.к. если кроссинговер и пройдет между этими генами, то гаметы не изменятся, по сочетанию генов они все будут одинаковые, поскольку особь гомозиготна. Составим решетку Пеннета:

Гаметы DG dg Dg dG
dg

Фенотипы

Серое тело

Черное тело Серое тело Черное тело Длинные крылья Зачаточные крылья Зачаточные крылья Длинные крылья

Фенотипические классы серое тело, длинные крылья и черное тело, зачаточные крылья - основные, они составили по 41,5% каждый.

Другие два фенотипических класса: серое тело, зачаточные крылья и черное тело, длинные крылья образованы за счет процесса кроссинговера, на их долю приходится по 8,5% особей.

За единицу расстояния между генами, находящимися в одной хромосоме, принят 1% кроссинговера. Такая единица в честь Т. Моргана получила название морганиды. Следовательно, расстояние между генами, отвечающими за цвет тела и форму крыльев в одной из хромосом у дрозофилы, составляет 8,5 морганид.

6. Правила хранения

Хранить коллекцию следует в сухом отапливаемом помещении.