Числовые неравенства и их свойства

На семинаре координаторов олимпиады "Кенгуру" Вячеслав Андреевич Ясинский прочёл лекцию о том, как можно доказывать олимпиадные симметричные неравенства с помощью собственного метода разностей переменных.

Действительно, на математических олимпиадах часто встречаются задания на доказательство неравенств, как, например, такое, с Международной олимпиады по математике 2001 года: $\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ac}}+\frac{c}{\sqrt{c^2+8ab}}\geq 1$ (для положительных a,b,c).

Обычно чтобы доказать олимпиадное неравенство, его нужно привести к одному из базовых: Коши, Коши-Буняковского, Йенсена, неравенству между средними и т.д. Причём часто приходится пробовать различные варианты базового неравенства до достижения успеха.

Однако часто у олимпиадных неравенств (как у приведённого выше) есть одна особенность. При перестановке переменных (например, замене a на b, b на c и c на a) они не изменятся.

Если функция нескольких переменных не меняется при любой их перестановке, то она называется симметрической. Для симметрической функции f от трёх переменных выполняется равенство:
f (x ,y ,z )= f (x ,z ,y )= f (y ,x ,z )= f (y ,z ,x )= f (z ,x ,y )= f (z ,y ,x )

Если же функция не меняется только при циклической перестановке переменных, она называется циклической.
f (x,y,z)= f (y,z,x)= f (z,x,y)

Для неравенств, которые строятся на основе симметрических функций, Вячеслав Андреевич разработал универсальный метод доказательства.
Метод состоит из следующих шагов.
1. Преобразовать неравенство так, чтобы слева оказался симметрический многочлен (обозначим его D), а справа 0.

2. Выразить симметрический многочлен D от переменных a, b, c через базовые симметрические многочлены.

Базовых симметрических многочленов от трёх переменных существует три. Это:
p = a+b+c - сумма;
q = ab+bc+ac - сумма попарных произведений;
r = abc - произведение.

Любой симметрический многочлен можно выразить через базовые.

3. Поскольку многочлен D симметрический, можно, не нарушая общности, считать, что переменные a, b, c упорядочены так: $a\geq b\geq c$

4. Вводим два неотрицательных числа х и у, таки, что x = a-b, y = b-c.

5. Снова преобразовываем многочлен D, выражая p, q и r через c и x, y. Учитываем, что
b = y+c
a = (x+y)+c

Тогда
p = a+b+c = (x+2y)+3c
q = ab+bc+ac = 3c 2 +2(x+2y)c+(x+y)y
r = abc = (x+y)yc + (x+2y)c 2 +c 3

Обратите внимание, что скобки в выражениях, содержащих x и y, мы не раскрываем.

6. Теперь рассматриваем многочлен D как многочен от с с коэффициентами, выражающимися через х и у. Учитывая неотрицательность коэффициентов оказывается несложно показать, что знак неравенства будет сохраняться для всех допустимых значений с.

Поясним этот метод на примерах.
Пример 1 . Доказать неравенство:
$(a+b+c)^2\geq 3(ab+bc+ac)$

Доказательство
Так как неравенство симметрическое (не меняется при любой перестановке переменных a, b, c), то представим его как
$(a+b+c)^2 - 3(ab+bc+ac)\geq 0$

Выразим многочлен в левой части через базовые симметрические:
$p^2 - 3q\geq 0$

Так как многочлен симметрический, можно считать, не ограничивая общности, что $a\geq b\geq c$ и $x = a-b\geq 0$, $y = b-c\geq 0$.


p 2 -3q = ((x+2y)+3c) 2 -3(3c 2 +2(x+2y)c+(x+y)y) = (x+2y) 2 +6(x+2y)c+9c 2 -9c 2 -6(x+2y)c-3(x+y)y

После приведения подобных получаем неравенство вообще не содержащее переменную с
$(x+2y)^2-3(x+y)y\geq 0$

Вот теперь можно раскрыть скобки
$x^2+4xy+4y^2-3xy-3y^2\geq 0$
$x^2+xy+y^2\geq 0$ - что является верным как для нотрицательных x, y, так и для любых.

Таким образом, неравенство доказано.

Пример 2 (с Британской математической олимпиады 1999 года)
Доказать, что $7(ab+bc+ac)\leq 2+9abc$ (для положительных чисел, если a+b+c = 1)

Доказательство
Прежде чем начать сводить всё в левую часть, обратим внимание, что степени частей неравенства у нас не сбалансированы. Если в примере 1 обе части неравенства были многосленами второй степени, то тут многочлен второй степени сравнивается с суммой многочленов нулевой и третьей. Использлуем то, что сумма a+b+c по условию равна 1 и домножим левую часть на единицу, а двойку из правой части - на единицу в кубе.

$7(ab+bc+ac)(a+b+c)\leq 2(a+b+c)^3+9abc$

Теперь перенесём всё влево и представим левую часть как симметричный многочkен от a, b, c:
$7(ab+bc+ac)(a+b+c)- 2(a+b+c)^3-9abc\leq 0$

Выразим левую чаcть через базовые симметрические многочлены:
$7qp- 2p^3-9r\leq 0$

Выразим левую часть через x, y и c, представив её как многочлен относительно с.
7qp- 2p 3 -9r = 7(3c 2 +2(x+2y)c+(x+y)y)((x+2y)+3c)-2((x+2y)+3c) 3 -9((x+y)yc + (x+2y)c 2 +c 3) = 7 (3(x+2y)c 2 +2(x+2y) 2 c+(x+2y)(x+y)y+9c 3 +6(x+2y)c 2 +3(x+y)yс) - 2 ((x+2y) 3 +9(x+2y) 2 c+27(x+2y)c 2 +27c 3) - 9((x+y)yc + (x+2y)c 2 +c 3) = 21(x+2y)c 2 +14(x+2y) 2 c +7(x+2y)(x+y)y+63c 3 +42(x+2y)c 2 +21(x+y)yс -2(x+2y) 3 -18(x+2y) 2 c -54(x+2y)c 2 -54c 3 -9(x+y)yc -9(x+2y)c 2 -9c 3

Главное - аккуратно и внимательно выполнять преобразования. Как сказал Вячеслав Андреевич, если он выполняет преобразования и его кто-то отвлекает, он выбрасывает листок с формулами и начинает заново.

Для удобства сведения подобных в заключительном многочлене они выделены разными цветами.

Все слагаемые с c 3 уничтожатся: 63c 3 -54c 3 -9c 3 = 0
Это же произойдёт и со второй степенью с: 21(x+2y)c 2 +42(x+2y)c 2 -54(x+2y)c 2 -9(x+2y)c 2 = 0

Преобразуем слагаемые с первой степенью с: 14(x+2y) 2 c+21(x+y)yс-18(x+2y) 2 c-9(x+y)yc = -4(x+2y) 2 c+12(x+y)yс = (12 (x+y)y - 4 (x+2y) 2 )c = (12xy+12y 2 - 4x 2 -16xy-16 y 2 )c = (- 4x 2 -4xy-4 y 2 )c = -4 (x 2 +xy+ y 2 )c - это выражение никогда не будет положительным.

И свободные члены: 7(x+2y)(x+y)y-2(x+2y) 3 = 7(x+2y)(xy+y 2) - 2(x+2y)(x 2 +4xy+4y 2) = (x+2y) (7xy+7y 2 -2x 2 -8xy-8y 2) = - (x+2y)(2x 2 +xy+y 2) - и это выражение тоже.

Таким образом, исходное неравенство будет выполняться всегда, а в равенство оно превратится только при условии равенства a=b=c.

На своей лекции Вячеслав Андреевич разобрал ещё много интересных примеров. Попробуйте и вы применить этот метод для доказательства олимпиадных неравенств. Возможно, он поможет добыть несокольо ценных баллов.

АЛГЕБРА
Уроки для 9 классов

УРОК № 2

Тема. Числовые неравенства. Доказательство числовых неравенств

Цель урока: добиться усвоения учащимися содержания: дополнительных неравенств для суммы взаимно обратных положительных чисел и среднего арифметического двух неотрицательных чисел (в сравнении с их средним геометрическим) и доведение этих неравенств; способа применения доказанных неравенств при доказательстве других числовых неравенств. Продолжить работу по выработке умений: воспроизводить содержание изученных понятий и алгоритмов и применять их для решения упражнений на сравнение числовых и буквенных выражений, а также упражнений на доказательство неравенств в простейших случаях и случаях, предусматривающих применение определения и преобразования разности левой и правой частей неравенства, которое надо доказать с использованием выделения квадрата двучлена.

Тип урока: закрепления знаний, выработки умений.

Наглядность и оборудование: опорный конспект № 2.

Ход урока

И. Организационный этап

Учитель проверяет готовность учащихся к уроку, настраивает их на работу.

II . Проверка домашнего задания

Выполнение упражнений домашней работы тщательно проверяется у учащихся, требующих дополнительного педагогического внимания (учитель собирает их тетради на проверку).

Фронтальную проверку качества выполнения упражнений домашней работы можно провести в форме игры «Найди ошибку».

III . Формулировка цели и задач урока.
Мотивация учебной деятельности учащихся

Созданию соответствующей мотивации на уроке может посодействовать выполнения учащимися такого задания.

Сравните два выражения, если известно, что а > 0, b > 0, а разность первого и второго выражений равен: 1) ; 2) .

После обсуждения результатов, полученных в ходе выполнения предложенного выше задачи, совместными усилиями приходим к выводу: сравнение выражений путем определения знака разности двух выражений и применения определение сравнения чисел можно проводить, даже когда разница является буквенным выражением, содержащим квадрат двучлена. Изучение этого вопроса и является основной дидактической целью урока. Задание на урок логически вытекающие из этой цели: сформулировать общее правило, а также научиться применять это правило для решения задач на доказательство неравенств.

IV . Актуализация опорных знаний и умений учащихся

Устные упражнения

1) а - b = -5 ;

2) а - b = 4,5;

3) а - b = -19,8;

4) b - а = -0,1;

5) а - b = 0.

2. Представьте в виде квадрата двучлена выражение:

1) х2 - 2х + 1;

2) m 2 + 10m + 25;

3) х2 - 6m + 9;

4) m 2 - mn + n 2 - mn ;

5) х - 2+ в (х > 0; в > 0).

3. Сравните с нулем значение выражения:

1) m 2;

2) m 2 + 1;

3) (m + 1)2;

4) m 2 + 2mn + n 2 + 1.

V . Формирование знаний

План изучения нового материала

1. Доведение неровности , а > 0, b > 0.

2. Доведение неровности , а ≥ 0, b ≥ 0.

3. Примеры применения доказанных неравенств.

Опорный конспект № 2

Доказательство неравенств

1. Доказать неравенство: , если а > 0; b > 0.

Поскольку а > 0, b > 0, ab > 0. Поскольку (a - b )2 ≥ 0, то , следовательно, неравенство доказано.

Сумма положительных взаимно обратных чисел не меньше 2.

Замечание: равенство имеет место при а = b .

2. Доказать неравенство: , если а ≥ 0; b ≥ 0.

Доведение. Найдем разность левой и правой частей неравенства:

. Поскольку (для всех а ≥ 0; b ≥ 0), то , т.е. неравенство доказана. Среднее арифметическое двух неотрицательных чисел не меньше их среднего геометрического.

Замечание: равенство имеет место только при а = b или а = b = 0.

Пример. Докажем неравенство .

Доведение. Представим выражение в виде . Следовательно, является средним арифметическим чисел b 2 + 4 и 1, b 2 + 4 1, поэтому при доказанной неравенством 2 эта величина больше за среднее геометрическое этих чисел, то есть , то есть .

Методический комментарий

Доказательства неравенств путем применения неравенств для среднего арифметического двух неотрицательных чисел и через сравнение с нулем выражения, равна разности левой и правой частей неравенства, с предварительным выделением квадрата двучлена из образованного выражения является одним из вопросов, которые предусмотрены программой по математике и имеют довольно широкое практическое применение. Именно поэтому уже на данном, втором, уроке, посвященном изучению способов доведения неровностей, рассматриваются вопросы:

· о доказательстве неравенств в случае, когда разность левой и правой частей неравенства является выражением, содержащим буквы;

· о применении для доказательства неравенств соотношений между средним арифметическим и средним геометрическим двух неотрицательных чисел и суммой двух взаимно обратных положительных чисел.

Для успешного восприятия материала урока на этапе актуализации опорных знаний и умений учащихся рекомендуется выполнить устные упражнения на сравнение с нулем буквенного выражения и на повторение формул сокращенного умножения, в частности квадрата двучлена (см. выше). После решения этих упражнений вполне логичным является доведение неравенства для суммы двух положительных взаимно обратных чисел и для среднего арифметического и среднего геометрического двух неотрицательных чисел (во время доведения акцентируем внимание учащихся на то, что при сравнения с нулем разности левой и правой частей неравенства выделяем квадрат двучлена). Также важно обратить внимание учащихся на то, что кроме иллюстрации общего способа доказательства неравенств (путем выделения квадрата двучлена в выражении, представленный как разность левой и правой частей данного неравенства) доказаны неравенства могут быть использованы как средство доказывания других неровностей. Для этого рассматривается пример, иллюстрирующий способ рассуждений при решении подобных примеров.

VI . Формирование умений

Устные упражнения

1. Сравните числа а и b , если:

1) а - b = m 2;

2) а - b = (m + 1)2;

3) а = ; b = ; m ≥ 0.

2. Выделите полный квадрат в выражении:

1) b 2 - 2b с + с2;

2) 4 b 2 - 4b с + с2;

3) -4b 2 + 4b с - с2;

4) -4b 2 + 4b - 2.

Письменные упражнения

Для реализации дидактической цели урока следует решить упражнения такого содержания:

1) доказать неравенства (с использованием выделения квадрата двучлена из выражения, равную разности левой и правой частей данного неравенства);

2) доказать неравенства (с использованием доказанных опорных неравенств).

Методический комментарий

Согласно цели урока проводится работа для выработки умений доказывать неравенства с использованием обозначения (см. алгоритм, составленный на предыдущем уроке), а также умение применять доказанные неравенства для доказательства неравенств (поскольку этот материал требует от учащихся достаточного и высокого уровней знаний и умений, то обязательным он является только для учащихся соответствующего уровня учебных достижений).

VII. Итоги урока

Контрольные задания

1. Заполните пропуски:

1) m + ... > 2, m > 0; 2) , m ≥ 0, n ≥ 0.

2. Сравните выражения тел, если:

1) m - n = а2;

2) m - n = а2 + 4;

3) m - n = а2 - 2а + 1;

4) m - n = а2 - 2а + 2.

VIII . Домашнее задание

1. Изучить схему доказательства неравенств, рассматриваемых на уроке.

2. Решить упражнения: на доказательство неравенств, подобных рассмотренным на уроке.

3. Повторить свойства числовых равенств .


Урок и презентация на тему: "Основные свойства числовых неравенств и способы их решения."

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Комбинаторика и теория вероятностей Уравнения и неравенства

Введение в числовые неравенства

Ребята, с неравенствами мы уже сталкивались, например, когда начинали знакомиться с понятием корня квадратного . Интуитивно понятно, что с помощью неравенств можно оценить, какое из данных чисел больше или меньше. Для математического описания достаточно добавить специальный символ, который будет означать либо больше, либо меньше.

Запись выражения $a>b$ на математическом языка означает, что число $a$ больше числа $b$. В свою очередь, это значит, что $a-b$ - положительное число.
Запись выражения $a

Как и практически все математические объекты неравенства имеют некоторые свойства. Изучением этих свойств мы и займемся на этом уроке.

Свойство 1.
Если $a>b$ и $b>c$, то $a>c$.

Доказательство.
Очевидно, что $10>5$, и $5>2$, и конечно $10>2$. Но математика любит строгие доказательства для самого общего случая.
Если $a>b$, то $a-b$ - положительное число. Если $b>c$, то $b-c$ - положительное число. Давайте сложим два полученных положительных числа.
$a-b+b-c=a-c$.
Сумма двух положительных чисел есть положительное число, но тогда $a-c$ также положительное число. Из чего следует, что $a>c$. Свойство доказано.

Более наглядно данное свойство можно показать, используя числовую прямую. Если $a>b$, то число $a$ на числовой прямой будет лежать правее $b$. Соответственно, если $b>c$, то число $b$ будет лежать правее числа $с$.
Как видно из рисунка точка $a$ в нашем случае находится правее точки $c$, а это означает, что $a>c$.

Свойство 2.
Если $a>b$, то $a+c>b+c$.
Иначе говоря, если число $a$ больше числа $b$, то какое бы мы число не прибавили (положительное или отрицательное) к этим числам, знак неравенства будет также сохраняться. Доказывается данное свойство очень легко. Нужно выполнить вычитание. Та переменная, которую прибавляли, исчезнет и получится верное исходное неравенство.

Свойство 3.
а) Если обе части неравенства умножить на положительное число, то знак неравенства сохраняется.
Если $a>b$ и $c>0$, тогда $ac>bc$.
б) Если обе части неравенства умножить на отрицательное число, то знак неравенства следует поменять на противоположный.
Если $a>b$ и $c Если $abc$.

При делении следует действовать тем же образом (делим на положительное число - знак сохраняется, делим на отрицательно число - знак меняется).

Свойство 4.
Если $a>b$ и $c>d$, то $a+c>b+d$.

Доказательство.
Из условия: $a-b$ - положительное число и $c-d$ - положительное число.
Тогда сумма $(a-b)+(c-d)$ - тоже положительное число.
Поменяем местами некоторые слагаемые $(a+с)-(b+d)$.
От перемены мест слагаемых сумма не изменяется.
Значит $(a+с)-(b+d)$ - положительное число и $a+c>b+d$.
Свойство доказано.

Свойство 5.
Если $a, b ,c, d$ - положительные числа и $a>b$, $c>d$, то $ac>bd$.

Доказательство.
Так как $a>b$ и $c>0$, то, используя свойство 3, имеем $ac>bc$.
Так как $c>d$ и $b>0$, то, используя свойство 3, имеем $cb>bd$.
Итак, $ac>bc$ и $bc >bd$.
Тогда, используя свойство 1, получаем $ac>bd$. Что и требовалось доказать.

Определение.
Неравенства вида $a>b$ и $c>d$ ($a Неравенства вида $a>b$ и $cd$) называются неравенствами противоположного смысла.

Тогда свойство 5 можно перефразировать. При умножение неравенств одного смысла, у которых левые и правые части положительные, получается неравенство того же смысла.

Свойство 6.
Если $a>b$ ($a>0$, $b>0$), то $a^n>b^n$, где $n$ – любое натуральное число.
Если обе части неравенства положительные числа и их возвести в одну и ту же натуральную степень, то получится неравенство того же смысла.
Заметим: если $n$ – нечетное число, то для любых по знаку чисел $a$ и $b$ свойство 6 выполняется.

Свойство 7.
Если $a>b$ ($a>0$, $b>0$), то $\frac{1}{a}

Доказательство.
Чтобы доказать данное свойство, необходимо при вычитании $\frac{1}{a}-\frac{1}{b}$ получить отрицательное число.
$\frac{1}{a}-\frac{1}{b}=\frac{b-a}{ab}=\frac{-(a-b)}{ab}$.

Мы знаем, что $a-b$ - положительное число, и произведение двух положительных чисел - тоже положительное число, т.е. $ab>0$.
Тогда $\frac{-(a-b)}{ab}$ - отрицательное число. Свойство доказано.

Свойство 8.
Если $a>0$, то выполняется неравенство: $a+\frac{1}{a}≥2$.

Доказательство.
Рассмотрим разность.
$a+\frac{1}{a}-2=\frac{a^2-2a+1}{a}=\frac{(a-1)^2}{a}$ - неотрицательное число.
Свойство доказано.

Свойство 9. Неравенство Коши (среднее арифметическое больше либо равно среднего геометрического).
Если $a$ и $b$ - неотрицательные числа, то выполняется неравенство: $\frac{a+b}{2}≥\sqrt{ab}$.

Доказательство.
Рассмотрим разность:
$\frac{a+b}{2}-\sqrt{ab}=\frac{a-2\sqrt{ab}+b}{2}=\frac{(\sqrt{a}-\sqrt{b})^2}{2}$ - неотрицательное число.
Свойство доказано.

Примеры решения неравенств

Пример 1.
Известно, что $-1.5 а) $3a$.
б) $-2b$.
в) $a+b$.
г) $a-b$.
д) $b^2$.
е) $a^3$.
ж) $\frac{1}{b}$.

Решение.
а) Воспользуемся свойством 3. Умножим на положительное число, значит знак неравенства не меняется.
$-1.5*3 $-4.5<3a<6.3$.

Б) Воспользуемся свойством 3. Умножим на отрицательное число, значит знак неравенства меняется.
$-2*3.1>-2*b>-2*5.3$.
$-10.3
в) Сложив неравенства одинакового смысла, получим неравенство того же смысла.
$-1.5+3.1 $1.6

Г) Умножим все части неравенства $3.1 $-5.3<-b<-3.1$.
Теперь выполним операцию сложения.
$-1.5-5.3 $-6.8

Д) Все части неравенства положительны, возведя их в квадрат, получим неравенство того же смысла.
${3.1}^2 $9.61

Е) Степень неравенства нечетная, тогда можно смело возводить в степень и не менять знак.
${(-1.5)}^3 $-3.375

Ж) Воспользуемся свойством 7.
$\frac{1}{5.3}<\frac{1}{b}<\frac{1}{3.1}$.
$\frac{10}{53}<\frac{1}{b}<\frac{10}{31}$.

Пример 2.
Сравните числа:
а) $\sqrt{5}+\sqrt{7}$ и $2+\sqrt{8}$.
б) $π+\sqrt{8}$ и $4+\sqrt{10}$.

Решение.
а) Возведем каждое из чисел в квадрат.
$(\sqrt{5}+\sqrt{7})^2=5+2\sqrt{35}+7=12+\sqrt{140}$.
$(2+\sqrt{8})^2=4+4\sqrt{8}+8=12+\sqrt{128}$.
Вычислим разность квадратов этих квадратов.
$(\sqrt{5}+\sqrt{7})^2-(2+\sqrt{8})^2=12+\sqrt{140}-12-\sqrt{128}=\sqrt{140}-\sqrt{128}$.
Очевидно, получили положительное число, что означает:
$(\sqrt{5}+\sqrt{7})^2>(2+\sqrt{8})^2$.
Так как оба числа положительных, то:
$\sqrt{5}+\sqrt{7}>2+\sqrt{8}$.

Задачи для самостоятельного решения

1. Известно, что $-2.2Найти оценки чисел.
а) $4a$.
б) $-3b$.
в) $a+b$.
г) $a-b$.
д) $b^4$.
е) $a^3$.
ж) $\frac{1}{b}$.
2. Сравните числа:
а) $\sqrt{6}+\sqrt{10}$ и $3+\sqrt{7}$.
б) $π+\sqrt{5}$ и $2+\sqrt{3}$.

Неравенства в математике играют заметную роль. В школе в основном мы имеем дело с числовыми неравенствами , с определения которых мы начнем эту статью. А дальше перечислим и обоснуем свойства числовых неравенств , на которых базируются все принципы работы с неравенствами.

Сразу отметим, что многие свойства числовых неравенств аналогичны . Поэтому, излагать материал будем по такой же схеме: формулируем свойство, приводим его обоснование и примеры, после чего переходим к следующему свойству.

Навигация по странице.

Числовые неравенства: определение, примеры

Когда мы вводили понятие неравенства, то заметили, что неравенства часто определяют по виду их записи. Так неравенствами мы назвали имеющие смысл алгебраические выражения, содержащие знаки не равно ≠, меньше <, больше >, меньше или равно ≤ или больше или равно ≥. На основе приведенного определения удобно дать определение числового неравенства:

Встреча с числовыми неравенствами происходит на уроках математики в первом классе сразу после знакомства с первыми натуральными числами от 1 до 9 , и знакомства с операцией сравнения. Правда, там их называют просто неравенствами, опуская определение «числовые». Для наглядности не помешает привести пару примеров простейших числовых неравенств из того этапа их изучения: 1<2 , 5+2>3 .

А дальше от натуральных чисел знания распространяются на другие виды чисел (целые, рациональные, действительные числа), изучаются правила их сравнения, и это значительно расширяет видовое разнообразие числовых неравенств: −5>−72 , 3>−0,275·(7−5,6) , .

Свойства числовых неравенств

На практике работать с неравенствами позволяет ряд свойств числовых неравенств . Они вытекают из введенного нами понятия неравенства. По отношению к числам это понятие задается следующим утверждением, которое можно считать определением отношений «меньше» и «больше» на множестве чисел (его часто называют разностным определением неравенства):

Определение.

  • число a больше числа b тогда и только тогда, когда разность a−b является положительным числом;
  • число a меньше числа b тогда и только тогда, когда разность a−b – отрицательное число;
  • число a равно числу b тогда и только тогда, когда разность a−b равна нулю.

Это определение можно переделать в определение отношений «меньше или равно» и «больше или равно». Вот его формулировка:

Определение.

  • число a больше или равно числу b тогда и только тогда, когда a−b – неотрицательное число;
  • число a меньше или равно числу b тогда и только тогда, когда a−b – неположительное число.

Данные определения мы будем использовать при доказательстве свойств числовых неравенств, к обзору которых мы и переходим.

Основные свойства

Обзор начнем с трех основных свойств неравенств. Почему они основные? Потому, что они являются отражением свойств неравенств в самом общем смысле, а не только по отношению к числовым неравенствам.

Числовым неравенствам, записанным с использованием знаков < и >, характерно:

Что касается числовых неравенств, записанных при помощи знаков нестрогих неравенства ≤ и ≥, то они обладают свойством рефлексивности (а не антирефлексивности), так как неравенства a≤a и a≥a включают в себя случай равенства a=a . Также им свойственны антисимметричность и транзитивность.

Итак, числовые неравенства, записанные при помощи знаков ≤ и ≥, обладают свойствами:

  • рефлексивности a≥a и a≤a – верные неравенства;
  • антисимметричности, если a≤b , то b≥a , и если a≥b , то b≤a .
  • транзитивности, если a≤b и b≤c , то a≤c , а также, если a≥b и b≥c , то a≥c .

Их доказательство очень похоже на уже приведенные, поэтому не будем на них останавливаться, а перейдем к другим важным свойствам числовых неравенств.

Другие важные свойства числовых неравенств

Дополним основные свойства числовых неравенств еще серией результатов, имеющих большое практическое значение. На них основаны методы оценки значений выражений, на них базируются принципы решения неравенств и т.п. Поэтому целесообразно хорошо разобраться с ними.

В этом пункте свойства неравенств будем формулировать только для одного знака строгого неравенства, но стоит иметь в виду, что аналогичные свойства будут справедливы и для противоположного ему знака, а также для знаков нестрогих неравенств. Поясним это на примере. Ниже мы сформулируем и докажем такое свойство неравенств: если a

  • если a>b , то a+c>b+c ;
  • если a≤b , то a+c≤b+c ;
  • если a≥b , то a+c≥b+c .

Для удобства представим свойства числовых неравенств в виде списка, при это будем давать соответствующее утверждение, записывать его формально с помощью букв, приводить доказательство, после чего показывать примеры использования. А в конце статьи сведем все свойства числовых неравенств в таблицу. Поехали!

    Прибавление (или вычитание) любого числа к обеим частям верного числового неравенства дает верное числовое неравенство. Другими словами, если числа a и b таковы, что a

    Для доказательства составим разность левой и правой частей последнего числового неравенства, и покажем, что она отрицательна при условии a(a+c)−(b+c)=a+c−b−c=a−b . Так как по условию a

    На доказательстве этого свойства числовых неравенств для вычитания числа c не останавливаемся, так как на множестве действительных чисел вычитание можно заменить прибавлением −c .

    Например, если к обеим частям верного числового неравенства 7>3 прибавить число 15 , то получится верное числовое неравенство 7+15>3+15 , что то же самое, 22>18 .

    Если обе части верного числового неравенства умножить (или разделить) на одно и то же положительное число c, то получится верное числовое неравенство. Если обе части неравенства умножить (или разделить) на отрицательное число c , и изменить знак неравенства на противоположный, то получится верное неравенство. В буквенном виде: если для чисел a и b выполняется неравенство ab·c.

    Доказательство. Начнем со случая, когда c>0 . Составим разность левой и правой частей доказываемого числового неравенства: a·c−b·c=(a−b)·c . Так как по условию a0 , то произведение (a−b)·c будет отрицательным числом как произведение отрицательного числа a−b на положительное число c (что следует из ). Следовательно, a·c−b·c<0 , откуда a·c

    На доказательстве рассмотренного свойства для деления обеих частей верного числового неравенства на одно и то же число c не останавливаемся, так как деление всегда можно заменить умножением на 1/c .

    Покажем пример применения разобранного свойства на конкретных числах. Например, можно обе части верного числового неравенства 4<6 умножить на положительное число 0,5 , что дает верное числовое неравенство −4·0,5<6·0,5 , откуда −2<3 . А если обе части верного числового неравенства −8≤12 разделить на отрицательное число −4 , и изменить знак неравенства ≤ на противоположный ≥, то получится верное числовое неравенство −8:(−4)≥12:(−4) , откуда 2≥−3 .

    Из только что разобранного свойства умножения обеих частей числового равенства на число следуют два практически ценных результата. Так их и сформулируем в виде следствий.

    Все разобранные выше в этом пункте свойства объединяет то, что сначала дано верное числовое неравенство, и из него посредствам некоторых манипуляций с частями неравенства и знаком получается другое верное числовое неравенство. Сейчас мы приведем блок свойств, в которых изначально дано не одно, а несколько верных числовых неравенств, а новый результат получается из их совместного использования после сложения или умножения их частей.

    Если для чисел a , b , c и d справедливы неравенства a

    Докажем, что (a+c)−(b+d) – отрицательное число, этим будет доказано, что a+c

    По индукции это свойство распространяется на почленное сложение трех, четырех, и, вообще, любого конечного числа числовых неравенств. Так, если для чисел a 1 , a 2 , …, a n и b 1 , b 2 , …, b n справедливы неравенства a 1 a 1 +a 2 +…+a n .

    Например, нам даны три верных числовых неравенства одного знака −5<−2 , −1<12 и 3<4 . Рассмотренное свойство числовых неравенств позволяет нам констатировать, что неравенство −5+(−1)+3<−2+12+4 – тоже верное.

    Можно почленно умножать числовые неравенства одного знака, обе части которых представлены положительными числами. В частности, для двух неравенств a

    Для доказательства можно умножить обе части неравенста a

    Указанное свойство справедливо и для умножения любого конечного числа верных числовых неравенств с положительными частями. То есть, если a 1 , a 2 , …, a n и b 1 , b 2 , …, b n – положительные числа, причем a 1 a 1 ·a 2 ·…·a n .

    Отдельно стоит заметить, что если в записи числовых неравенств содержатся неположительные числа, то их почленное умножение может приводить к неверным числовым неравенствам. Например, числовые неравенства 1<3 и −5<−4 – верные и одного знака, почленное умножение этих неравенств дает 1·(−5)<3·(−4) , что то же самое, −5<−12 , а это неверное неравенство.

    • Следствие. Почленное умножение одинаковых верных неравенств вида a

В заключение статьи, как и было обещано, соберем все изученные свойства в таблицу свойств числовых неравенств :

Список литературы.

  • Моро М. И. . Математика. Учеб. для 1 кл. нач. шк. В 2 ч. Ч. 1. (Первое полугодие) / М. И. Моро, С. И. Волкова, С. В. Степанова.- 6-е изд. - М.: Просвещение, 2006. - 112 с.: ил.+Прил. (2 отд. л. ил.). - ISBN 5-09-014951-8.
  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.