Методы очистки воздуха от загрязнений. Методы и средства защиты атмосферного воздуха. Что мы можем предпринять

  • 2 Физические критерии и принципы установления норм (нормирование) овпф
  • 3 Оптимальные и допустимые величины показателей микроклимата на рабочих местах производственных помещений в зависимости от категории работ
  • 4 Ионизирующие излучения. Характер воздействия, критерии оценки.
  • 5. Вредные вещества, их классификация и биологическое действия
  • 1 Виды прогнозов загрязнения окружающей среды. Особенности построения краткосрочных и долгосрочных прогнозов.
  • 2. Принципы организации системы мониторинга загрязнения атмосферного воздуха. Виды постов по контролю.
  • 3. Организация системы мониторинга загрязнения поверхностных вод. Принципы размещения пунктов наблюдения.
  • 4. Принципы организации системы мониторинга загрязнения почв с/х районов и городских территорий
  • 5. Методы и средства контроля среды обитания (контактные, дистанционные, биологические).
  • 1. Влияние отраслей экономики на состояние окружающей среды
  • 2. Воздействие негативных факторов на человека и техносферу
  • 4. Характеристика основных загрязняющих веществ и механизм их образования.
  • 5. Характеристика промышленного техногенеза в одной из отраслей промышленности
  • 2. Структура, органы управления и режимы функционирования Российской системы по чс (рсчс).
  • 3. Инженерная защита населения.
  • 4. Общие понятия устойчивости функционирования объектов экономики в мирное и военное время.
  • 6. Психологическая подготовка населения к действиям в чс.
  • 1. Классификация впф.
  • 3. Меры профилактики профессиональных заболеваний, отравлений.
  • 4. Основные принципы гигиенической классификации условий труда по степени вредности, тяжести и напряженности трудового процесса.
  • 5. Гигиенические требования к организации рабочих мест пользователей пэвм.
  • 6.Производственная вентиляция. Классификация. Очистка воздуха от пыли и вредных веществ.
  • 1. Правовые и нормативные основы государственной экспертизы условий труда в рф
  • 2. Органы надзора и контроля в области условий и охраны труда, промышленной безопасности. Задачи и функции
  • 3. Система сертификации работ по охране труда в организациях (ссот) Основная цель, задачи, функции.
  • 4. Объекты сертификации в Системе сертификации работ по охране труда в организациях (ссот). Организационная структура ссот. Функции органов по сертификации (ос) и испытательных лабораторий (ил).
  • 5. Порядок проведения сертификации работ по охране труда в организациях.
  • 6.Правила аккредитации органов по сертификации и испытательных лабораторий
  • 1.Физико-химические основы горения.
  • 2. Теория горения: тепловая, диффузионная, цепная.
  • 3. Условия возникновения и развития процессов горения.
  • 1. Основные понятия в области безопасности труда (опасность, безопасность, безопасность труда, риск, приемлемый риск, эргономика).
  • 4. Взрывы: типы взрывов, классификация.
  • 3. Структура, основные функции и права Ростехнадзора.
  • 4. Общие требования безопасности при выполнении работ повышенной опасности.
  • 5. Обеспечение электробезопасности на предприятии.
  • 6. Организация пожарной безопасности на предприятии.
  • 7. Сертификация работ по охране труда в организации (порядок сертификации, знак безопасности).
  • 8. Обеспечение безопасности при выполнении работ на высоте и верхолазных работ.
  • 9. Требования безопасности при выполнении погрузочно-разгрузочных работ.
  • 10. Общие требования безопасности при эксплуатации паровых и водогрейных котлов, сосудов, находящихся под давлением.
  • 1. Диаграммы причинно-следственных связей, как модели процессов в системе
  • 2. Основные этапы системного анализа
  • 1.Цели, задачи и принципы экологической экспертизы.
  • 2.Экологические требования при размещении, проектировании строительстве, реконструкции, вводе в эксплуатацию предприятий, сооружений и иных объектов.
  • 1.Законодательство и нормативно – технические основы безопасности жизнедеятельности
  • 2. Государственные требования в области охраны труда.
  • 3. Федеральный закон «о техническом регулировании».
  • 4. Порядок расследования и учета несчастных случаев на производстве.
  • 5.Порядок расследования профессиональных заболеваний.
  • 6. Страхование от несчастных случаев на производстве и профессиональных заболеваний.
  • 7. Порядок возмещения вреда, причиненного здоровью работника на производстве.
  • 8. Система управления от на предприятии.
  • 9. Инструкция по от в организации.
  • 10. Государственный надзор и контроль в области от.
  • 11. Государственная система управления охраной труда и деятельностью в чс
  • 12. Инструктирование и обучение работников организации по от.
  • 13. Аттестация рабочих мест по условиям труда, Льготы и компенсация за особые условия труда.
  • 1. Классификация аварий и катастроф. Статистика арий и катастроф
  • 2. Прогнозирование аварий и катастроф
  • 3. Основы теории риска. Анализ риска. Управление риска.
  • 1. Принципы и методы менеджмента. Социально-психологические основы менеджмента.
  • 2. Государственная система управления охраной окружающей среды
  • 3.Экономическая оценка эффективности природоохранных мероприятий. Сущность и процесс принятия экологических решений
  • 4. Оценка экономической эффективности внедрения средств обеспечения безопасности
  • 1. Классификация и основные применения экобиозащитной техники и технологий
  • 2. Химические методы очистки воздуха
  • 3. Системы очистки сточных вод
  • 4. Принципы и методы защиты от шума жилых зданий, территорий жилой постройки
  • 2. Химические методы очистки воздуха

    Основной физической характеристикой примесей атмосферы является концентрация – масса в-ва в ед-це объема воздуха при н.у. Концентрация примесей (мг/м3) определяет физическое, химическое и другие воздействия в-в на окр.среду и человека и служит основным параметром при нормировании содержания примесей в атмосфере. Методы очистки промышленных выбросов от газообразных и парообразных загрязнителей по характеру протекания физико-хим. процессов делят на пять групп: абсорбция, хемосорбция, адсорбция, термическая нейтрализация, каталитический метод.

    Метод абсорбции обеспечивает очистку газовых выбросов путем разделения газовоздушной смеси на составные части за счет поглощения одной или нескольких вредных примесей (абсорбатов), содержащихся в этой смеси, жидким поглотителем (абсорбентом) с образованием раствора. Для удаления из технологических выбросов таких газов, как аммиак, хлористый или фтористый водород, в качестве жидкого поглотителя используется вода. Очищенный газ обычно отводится в атмосферу, а жидкость содержащую вредные растворимые примеси, подвергают регенерации для отделения вредных в-в, после чего возвращают в аппарат или отводят в качестве отхода. Метод хемосорбции заключается в поглощении вредных газовых и паровых примесей, содержащихся в газовых выбросах, твердыми или жидкими поглотителями с образованием малолетучих или малорастворимых химических соединений. Этот метод применяют при небольших концентрациях вредных примесей в отходных газах. Его широко применяют для очистки газов от окислов азота, образующихся при сжигании топлива, выделяющихся из ванн для травления. Очистка осущ-ся с использованием в качестве хемосорбента известкового раствора. Адсорбционный метод основан на поглощении содержащихся в газах вредных примесей поверхностью твердых пористых тел с ультрамикроскопической структурой, называемых адсорбентами. Чем больше пористость адсорбента и выше концентрация примеси, тем интенсивнее протекает процесс адсорбции. В качестве адсорбентов широко применяют активированный уголь, а также активированный глинозем, селикагель. Хим.нейтрализация обеспечивает окисление токсичных примесей в газовых выбросах до менее токсичных при наличии свободного кислорода и высркрй температуры газов. Этот метод применяется при больших объемах газовых выбросов и высокой концентрации примесей. Каталитический метод предназначен для превращения вредных примесей в вещества безвредные или менее вредные для окр.среды с использованием специальных веществ – катализаторов. Катализаторы изменяют скорость и направление хим.реакции. В качестве катализаторов используют платину, палладий и другие благородные металлы или их соединения. Каталитические методы широко используют для очистки от вредных примесей, содержащихся в газовоздушных выбросах цехов окраски, а также для нейтрализации выхлопных газов автомобилей.

    3. Системы очистки сточных вод

    Система очистки сточных вод. Системы водоснабжения и водоотведения в агломерациях являются совместными для жилой и пром. Зоны.На крупных предприятиях как правило имеется собственная система водного хозяйства с полным технологическим циклом от забора воды до ее очистки, обезвреживания и утилизации твердой фазы. Водозаборные сооружения забирают природную воду из поверхностного водоисточника. Насосная станция первого подъема по напорным трубопроводам подает е на очистные сооружения. Здесь вода очищается до питьевого качества и из резервуаров насосной станцией второго подъема подается в населенный пункт, как правило имеющий кольцевую водопроводную сеть. Вода используется на питьевые, хоз.нужды, полив улиц и насаждений, на предприятиях местной промышленности. Использованную воду по закрытой канализационной сети отводят за пределы города и главной канализационной насосной станцией подают на городские очистные сооружения. Здесь сточные воды проходят механическую и биологическую очистку, дезинфицируются и подаются на биологические пруды, где очищаются в естественных условиях. После прудов вода по своим качествам незначительно отличается от воды естественного водоема, может сбрасываться в реку, озеро и т.д. Пром.предприятие потребляет питьевую и техническую воду. Технич.вода чаще всего применяется в водооборотных циклах Сточ.воды от промпредприятий, содержащие специфические загрязнения, а также дождевые и талые воды с территорий пром.площадок могут сбрасываться в систему водоотведения населенного пункта и подвергаться биологической очистке совместно с городскими сточ.водами после прохождения локальных очистных сооружений.

    Очистка сточных вод подразумевает:

    Очистку от суспензированных и эмульгированных примесей (грубодисперсные примеси: отстаивание, процеживание и фильтрация (гидроциклоны), флотация, осветление во взвешенном осадке, центробежное фильтрование и отстаивание; мелкодисперсные примеси: коагуляция, флокуляция, электрокоаг-я, электрофлок-я);

    Очистку от растворённых примесей (минеральные примеси – дистилляция, обратный осмос замораживание; органические примеси - экстракция, адсорбция, окисление; газы – отдувка, нагрев, реагентные методы; нерастворённые и растворённые примеси – устранение, закачка в скважины, захоронение, закачка в глубины морей, термическое уничтожение).

    Отстойники; аэротент(к) (барботирование воды - подводится воздух и происходит окисление примесей); гидроциклон.

    Очистка сточ. вод обеспечивается путем внедрения след. Технических решений и мероприятий.

    Механическая очистка – совершенствование гидродинамических режимов существующих отстойных сооружений; применение вместо отстойников сетчатых установок; предварительная обработка сточных вод перед осветлением коагулянтами.

    Химическая очистка – применение более активных коагулянтов; повторное использование шлаков и осадков хим. Очистки вод; выделение и утилизация в основном или вторичном производстве продуктов реакции

    Физико-химическая очистка- расширение и совершенствование процессов гипер-, ультрафильтрации, экстракции, адсорбции, ионообмена, позволяющих выделять и возвращать в основное производство продукты, а очищенные воды после корректировки состава до нормативных величин использовать в оборотном водоснабжении; разработка методов предварительных физ. И хим. Воздействия на очищаемые воды; физ. Обработка (омагничивание, ультразвуковая, высокочастотная), приводящая к изменению физико-химических характеристик и соответственно к более глубокой степени выделения загрязнений из вод.

    Биологическая очистка – применение метода предварительной анаэробной подготовки сточ. Вод; применение высшей водной растительности (эйхорния водная или водяной гиацинт, пистия. Аир) в качестве самостоятельного фитореактора для очистки сточ.вод с/х комплексов.; широкое применение биосорбционных методов. В настоящее время наибольшую технологическую и экологическую сложность представляет не очистка сточ.вод, а проблема обработки и утилизации их твердой фазы.. Основные задачи обработки шламов и осадков сточ.вод – обезвоживание, обеззараживание и утилизация



    Добавить свою цену в базу

    Комментарий

    Источники загрязнения

    Основным фактором загрязнения воздуха в помещении является пыль. В ее состав входят микроскопические волокна текстиля, споры грибков и плесени, частички кожи, бактерии, пыльца растений, уличная сажа, мелкие клещи и продукты их жизнедеятельности. Она наполовину состоит из сильнейших аллергенов, которые могут стать причиной аллергического ринита, воспаления глаз, кашля, раздражения кожи и даже астмы.

    Кроме пыли, загрязнение воздуха происходит посредством кухонных паров, состоящих из мельчайших капель жира и создающих неприятный специфических запах в квартире.

    • Курение, а, точнее, табачный дым, который может не выветриваться несколько недель – еще один немаловажный фактор токсичности воздуха.
    • От района, в котором вы живете также зависит чистота воздуха в доме. Источниками его загрязнения часто становятся отделочные материалы, с помощью которых происходило благоустройство квартиры, а также вещества, выделяющиеся из стен домов и недоброкачественной мебели, стройматериалы из ДСП.
    • Пары ртути – также нередкое явление, которое можно наблюдать в квартирах. Обычно причиной становится разбитый термометр.
    • Действие токсинов на организм происходит постепенно. Отравление возникает в результате постоянного их воздействия. Токсины поступают к нам в организм через рот, но в основном вместе с вдыхаемым воздухом.

    Список токсинов и вредных веществ, содержащихся в воздухе можно продолжать долго. Но основная суть должна быть понятна каждому: воздух в квартире нуждается в постоянной очистке. Как это делается? Об этом расскажем дальше.

    Очистку газообразных выбросов от пыли или тумана на практике осуществляют в различных по конструкции аппаратах, которые можно разделить на четыре основные группы:

    1. механические пылеуловители (пылеотстойные или пылеосадочные камеры, инерционные пыле- и брызгоуловители, циклоны и мультициклоны). Аппараты этой группы применяют обычно для предварительной очистки газов;
    2. мокрые пылеуловители (полые, насадочные или барботажцые скрубберы, пенные аппараты, трубы Вентури и др.). Эти устройства более эффективны, чем сухие пылеуловители;
    3. фильтры (волокнистые, ячейковые, с насыпными слоями зернистого материала, масляные и др.). Наиболее распространены рукавные фильтры;
    4. электрофильтры – аппараты тонкой очистки газов–улавливают частицы размером от 0,01 мкм. Эффективность электрофильтра может достигать 99,9%.

    Обычно необходимая степень очистки может быть обеспечена лишь комбинированной установкой, включающей несколько аппаратов одного или разных типов.

    Методы очистки

    Одной из актуальных проблем на сегодняшний день является очистка воздуха от различного рода загрязнителей. Как раз от их физико-химических свойств необходимо исходить при выборе того или иного метода очистки. Рассмотрим основные современные способы удаления загрязняющих веществ из воздушной среды.

    Механическая очистка

    Сущность данного метода заключается в механической фильтрации частиц при прохождении воздуха через специальные материалы, поры которых способны пропускать воздушный поток, но при этом удерживать загрязнителя. От размера пор, ячеек фильтрующего материала зависит скорость и эффективность фильтрации. Чем больше размер, тем быстрее протекает процесс очистки, но эффективность его ниже при этом. Следовательно, перед выбором данного метода очистки необходимо изучить дисперсность загрязняющих веществ среды, в которой он будет применяться. Это позволит производить очистку в пределах требуемой степени эффективности и за минимальный период времени.

    Абсорбционный метод

    Абсорбция представляет собой процесс растворения газообразного компонента в жидком растворителе. Абсорбционные системы разделяют на водные и неводные. Во втором случае применяют обычно малолетучие органические жидкости. Жидкость используют для абсорбции только один раз или же проводят ее регенерацию, выделяя загрязнитель в чистом виде. Схемы с однократным использованием поглотителя применяют в тех случаях, когда абсорбция приводит непосредственно к получению готового продукта или полупродукта.

    В качестве примеров можно назвать:

    • получение минеральных кислот (абсорбция SO3 в производстве серной кислоты, абсорбция оксидов азота в производстве азотной кислоты);
    • получение солей (абсорбция оксидов азота щелочными растворами с получением нитрит-нитратных щелоков, абсорбция водными растворами извести или известняка с получением сульфата кальция);
    • других веществ (абсорбция NH3 водой для получения аммиачной воды и др.).

    Схемы с многократным использованием поглотителя (циклические процессы) распространены шире. Их применяют для улавливания углеводородов, очистки от SO2 дымовых газов ТЭС, очистки вентгазов от сероводорода железно-содовым методом с получением элементарной серы, моноэтаноламиновой очистки газов от CO2 в азотной промышленности.

    В зависимости от способа создания поверхности соприкосновения фаз различают поверхностные, барботажные и распыливающие абсорбционные аппараты.

    • В первой группе аппаратов поверхностью контакта между фазами является зеркало жидкости или поверхность текучей пленки жидкости. Сюда же относят насадочные абсорбенты, в которых жидкость стекает по поверхности загруженной в них насадки из тел различной формы.
    • Во второй группе абсорбентов поверхность контакта увеличивается благодаря распределению потоков газа в жидкость в виде пузырьков и струй. Барботаж осуществляют путем пропускания газа через заполненный жидкостью аппарат либо в аппаратах колонного типа с тарелками различной формы.
    • В третьей группе поверхность контакта создается путем распыления жидкости в массе газа. Поверхность контакта и эффективность процесса в целом определяется дисперсностью распыленной жидкости.

    Наибольшее распространение получили насадочные (поверхностные) и барботажные тарельчатые абсорберы. Для эффективного применения водных абсорбционных сред удаляемый компонент должен хорошо растворяться в абсорбционной среде и часто химически взаимодействовать с водой, как, например, при очистке газов от HCl, HF, NH3, NO2. Для абсорбции газов с меньшей растворимостью (SO2, Cl2, H2S) используют щелочные растворы на основе NaOH или Ca(OH)2. Добавки химических реагентов во многих случаях увеличивают эффективность абсорбции благодаря протеканию химических реакций в пленке. Для очистки газов от углеводородов этот метод на практике используют значительно реже, что обусловлено, прежде всего, высокой стоимостью абсорбентов. Общими недостатками абсорбционных методов является образование жидких стоков и громоздкость аппаратурного оформления.

    Электрический метод очистки

    Данный метод применим для мелкодисперсных частиц. В электрических фильтрах создается электрическое поле, при прохождении через которое частица заряжается и осаждается на электроде. Основными преимуществами данного метода является его высокая эффективность, простота конструкции, легкость в эксплуатации – нет необходимости в периодической замене элементов очистки.

    Адсорбционный метод

    Основан на химической очистке от газообразных загрязнителей. Воздух контактирует с поверхностью активированного угля, в процессе чего загрязняющие вещества осаждаются на ней. Данный метод в основном применим при удалении неприятных запахов и вредных веществ. Минусом является необходимость систематической замены фильтрующего элемента.

    Можно выделить следующие основные способы осуществления процессов адсорбционной очистки:

    • После адсорбции проводят десорбцию и извлекают уловленные компоненты для повторного использования. Таким способом улавливают различные растворители, сероуглерод в производстве искусственных волокон и ряд других примесей.
    • После адсорбции примеси не утилизируют, а подвергают термическому или каталитическому дожиганию. Этот способ применяют для очистки отходящих газов химико-фармацевтических и лакокрасочных предприятий, пищевой промышленности и ряда других производств. Данная разновидность адсорбционной очистки экономически оправдана при низких концентрациях загрязняющих веществ и (или) многокомпонентных загрязнителей.
    • После очистки адсорбент не регенерируют, а подвергают, например, захоронению или сжиганию вместе с прочно хемосорбированным загрязнителем. Этот способ пригоден при использовании дешевых адсорбентов.

    Фотокаталитическая очистка

    Является одним из самых перспективных и эффективных методов очистки на сегодняшний день. Главное его преимущество – разложение опасных и вредных веществ на безвредные воду, углекислый газ и кислород. Взаимодействие катализатора и ультрафиолетовой лампы приводит к взаимодействию на молекулярном уровне загрязнителей и поверхности катализатора. Фотокаталитические фильтры абсолютно безвредны и не требуют замены очищающих элементов, что делает их использование безопасным и весьма выгодным.

    Термическое дожигание

    Дожигание представляет собой метод обезвреживания газов путем термического окисления различных вредных веществ, главным образом органических, в практически безвредных или менее вредных, преимущественно СО2 и Н2О. Обычные температуры дожигания для большинства соединений лежат в интервале 750-1200 °C. Применение термических методов дожигания позволяет достичь 99%-ной очистки газов.

    При рассмотрении возможности и целесообразности термического обезвреживания необходимо учитывать характер образующихся продуктов горения. Продукты сжигания газов, содержащих соединения серы, галогенов, фосфора, могут превосходить по токсичности исходный газовый выброс. В этом случае необходима дополнительная очистка. Термическое дожигание весьма эффективно при обезвреживании газов, содержащих токсичные вещества в виде твердых включений органического происхождения (сажа, частицы углерода, древесная пыль и т.д.).

    Важнейшими факторами, определяющими целесообразность термического обезвреживания, являются затраты энергии (топлива) для обеспечения высоких температур в зоне реакции, калорийность обезвреживаемых примесей, возможность предварительного подогрева очищаемых газов. Повышение концентрации дожигаемых примесей ведет к значительному снижению расхода топлива. В отдельных случаях процесс может протекать в автотермическом режиме, т. е. рабочий режим поддерживается только за счет тепла реакции глубокого окисления вредных примесей и предварительного подогрева исходной смеси отходящими обезвреженными газами.

    Принципиальную трудность при использовании термического дожигания создает образование вторичных загрязнителей, таких как оксиды азота, хлор, SO2 и др.

    Термические методы широко применяются для очистки отходящих газов от токсичных горючих соединений. Разработанные в последние годы установки дожигания отличаются компактностью и низкими энергозатратами. Применение термических методов эффективно для дожигания пыли многокомпонентных и запыленных отходящих газов.

    Промывочный способ

    Осуществляется промывкой жидкостью (водой) потока газа (воздуха). Принцип действия: жидкость (вода) вводимая в поток газа (воздуха) движется с высокой скоростью, дробиться на мелкие капли мелкодисперсную взвесь) обвалакивает частицы взвеси (происходит слияние жидкостной фракции и взвеси) в результате укрупненные взвеси гарантированно улавливаются промывочным пылеуловителем. Конструкция: конструктивно промывочные пылеуловители представлены скрубберами, мокрыми пылеуловителями, скоростными пылеуловителями, в которых жидкость движется с большой скоростью и пенными пылеуловителями, в которых газ в виде мелких пузырьков проходит через слой жидкости (воды).

    Плазмохимические методы

    Плазмохимический метод основан на пропускании через высоковольтный разряд воздушной смеси с вредными примесями. Используют, как правило, озонаторы на основе барьерных, коронных или скользящих разрядов, либо импульсные высокочастотные разряды на электрофильтрах. Проходящий низкотемпературную плазму воздух с примесями подвергается бомбардировке электронами и ионами. В результате в газовой среде образуется атомарный кислород, озон, гидроксильные группы, возбуждённые молекулы и атомы, которые и участвуют в плазмохимических реакциях с вредными примесями. Основные направления по применению данного метода идут по удалению SO2, NOx и органических соединений. Использование аммиака, при нейтрализации SO2 и NOx, дает на выходе после реактора порошкообразные удобрения (NH4)2SO4 и NH4NH3, которые фильтруются.

    Недостатком данного метода являются:

    • недостаточно полное разложение вредных веществ до воды и углекислого газа, в случае окисления органических компонентов, при приемлемых энергиях разряда
    • наличие остаточного озона, который необходимо разлагать термически либо каталитически
    • существенная зависимость от концентрации пыли при использовании озонаторов с применением барьерного разряда.

    Гравитационный способ

    Основан на гравитационном осаждении влаги и (или) взвешенных частиц. Принцип действия: газовый (воздушный) поток попадает в расширяющуюся осаждающую камеру (емкость) гравитационного пылеуловителя, в которой замедляется скорость потока и под действием гравитации происходит осаждение капельной влаги и (или) взвешенных частиц.

    Конструкция: Конструктивно осаждающие камеры гравитационных пылеуловителей могут быть прямоточного типа, лабиринтного и полочного. Эффективность: гравитационный способ очистки газа позволяет улавливать крупные взвеси.

    Плазмокаталитический метод

    Это довольно новый способ очистки, который использует два известных метода – плазмохимический и каталитический. Установки, работающие на основе этого метода, состоят из двух ступеней. Первая – это плазмохимический реактор (озонатор), вторая — каталитический реактор. Газообразные загрязнители, проходя зону высоковольтного разряда в газоразрядных ячейках и взаимодействуя с продуктами электросинтеза, разрушаются и переходят в безвредные соединения, вплоть до CO2 и H2O. Глубина конверсии (очистки) зависит от величины удельной энергии, выделяющейся в зоне реакции. После плазмохимического реактора воздух подвергается финишной тонкой очистке в каталитическом реакторе. Синтезируемый в газовом разряде плазмохимического реактора озон попадает на катализатор, где сразу распадается на активный атомарный и молекулярный кислород. Остатки загрязняющих веществ (активные радикалы, возбужденные атомы и молекулы), не уничтоженные в плазмохимическом реакторе, разрушаются на катализаторе благодаря глубокому окислению кислородом.

    Преимуществом этого метода являются использование каталитических реакций при температурах, более низких (40-100 °C), чем при термокаталитическом методе, что приводит к увеличению срока службы катализаторов, а также к меньшим энергозатратам (при концентрациях вредных веществ до 0,5 г/м³.).

    Недостатками данного метода являются:

    • большая зависимость от концентрации пыли, необходимость предварительной очистки до концентрации 3-5 мг/м³,
    • при больших концентрациях вредных веществ(свыше 1 г/м³) стоимость оборудования и эксплуатационные расходы превышают соответствующие затраты в сравнении с термокаталитическим методом

    Центробежный способ

    Основан на инерционном осаждении влаги и (или) взвешенных частиц за счет создания в поле движения газового потока и взвеси центробежной силы. Центробежный способ очистки газа относится к инерционным способам очистки газа (воздуха). Принцип действия: газовый (воздушный) поток направляется в центробежный пылеуловитель в котором, за счет изменении направления движения газа (воздуха) с влагой и взвешенными частицами, как правило по спирали, происходит очистка газа. Плотность взвеси в несколько раз больше плотности газа (воздуха) и она продолжает двигаться по инерции в прежнем направлении и отделяется от газа (воздуха). За счет движения газа по спирали создается центробежная сила, которая во много раз превосходит силу тяжести. Конструкция: Конструктивно центробежные пылеуловители представлены циклонами. Эффективность: осаждается сравнительно мелкая пыль, с размером частиц 10 – 20 мкм.

    Не стоит забывать об элементарных методах очистки воздуха от пыли, как влажная уборка, регулярное проветривание, поддержание оптимального уровня влажности и температурного режима. При этом периодически избавляться от скоплений в помещении большого количества хлама и ненужных предметов, которые являются «пылесборниками» и не несут в себе никаких полезных функций.

    Вывоз, переработка и утилизация отходов с 1 по 5 класс опасности

    Работаем со всеми регионами России. Действующая лицензия. Полный комплект закрывающих документов. Индивидуальный подход к клиенту и гибкая ценовая политика.

    С помощью данной формы вы можете оставить заявку на оказание услуг, запросить коммерческое предложение или получить бесплатную консультацию наших специалистов.

    Отправить

    На сегодняшний день, как никогда остро, стоит вопрос вредными веществами. Очистка воздуха является наиболее приоритетной задачей, из-за высокого уровня загрязнения, главной причиной которого является деятельность человека, в частности, развитие промышленности, сельского хозяйства, увеличение количества автотранспортных средств.

    Ежедневный объем выбросов вредных веществ (газы, вредные примеси), которые вступают в реакцию с атмосферными газами (O2, N2) ведут к изменению состава воздуха и увеличению количества СО2. Различные изменения в атмосфере ведут к возникновению кислотных осадков, негативно влияющих на грунты, почву, флору и фауну. Кроме этого, такие осадки ведут к постепенному разрушению архитектурных объектов, сооружений, зданий, оборудования.

    Весомый вклад в загрязнение атмосферы вносят промышленные производства, которые были введены в эксплуатацию несколько десятилетий назад, и функционирующие по сей день, не имеющие современной системы очистки воздуха. Очень часто в слаборазвитых странах отсутствует какое-либо оборудование для очистки воздуха, что приводит к настоящей экологической катастрофе на близлежащих территориях.

    Средства защиты атмосферы

    Выделим основные меры по очистке атмосферного воздуха и защите атмосферы от вредного антропогенного влияния:

    • Внедрение современных экологически безопасных технологических процессов на производстве. Создание малоотходных или замкнутых технологических циклов, которые способствуют полному исключению или же значительному снижению вредных выбросов в атмосферу. Предварительное очищение используемого сырья, для снижения в его составе вредных примесей. Переход на альтернативные источники энергии, которые вообще не имеют вредных компонентов, загрязняющих атмосферу, либо, имеют минимальное содержание вредных веществ. Переход с двигателей внутреннего сгорания, на альтернативные моторы: электродвигатели, гибридные, водородные и другие.
    • Внедрение очистных сооружений. К средствам защиты атмосферы от вредного влияния жизнедеятельности человека должны относиться способы очистки воздуха при помощи очистных сооружений, которые позволят довести до минимума вредные выбросы в атмосферу на производстве и в сельском хозяйстве.
    • Внедрение санитарных зон. СЗЗ – санитарно-защитная зона – полоса территории, которая разделяет промышленную зону от жилой. Ранее при строительстве промышленных и жилых объектов практически не обращали внимание на использование санитарно-защитных зон, что приводило к размещению рядом производственной и жилой зоны. Установление ССЗ, ее длина, ширина, площадь определяются исходя из количества выделяемых в атмосферу вредных примесей.
    • Внедрение правильного архитектурно-планировочного разделения подразумевает правильное расположение промышленных производств и жилых сооружений: с учетом рельефа местности, направления ветра, автомобильных и других видов дорог.

    Методы очистки

    На сегодняшний день существуют различные методы очищения, выделим самые эффективные.

    Озонный метод

    Озонный метод используют для очистки атмосферного воздуха от вредных выбросов и дезодорации выбросов с промышленных предприятий. Делают это путем введения озона, который способствует ускорению окислительных реакций. Время контакта газа с озоном, для обезвреживания вредных компонентов составляет от 0,5 до 0,9 секунды.

    Усредненные затраты на использование озона в качестве дезодоратора и очистителя составляют до 4,5% от мощности энергоблока. Такая очистка воздуха от вредных веществ, обычно, используется не в промышленности, а при переработке животного сырья (мясо и жирокомбинаты), а также в быту.

    Термокаталитический метод

    Основан на использовании в качестве очистителя — катализатора. В емкости (реакторе) с содержанием катализатора происходит очищение токсичных газообразных примесей. Катализаторами обычно выступают: минералы, металлы, которые обладают сильными межатомными полями. Катализатор должен иметь устойчивую структуру в условиях возникновения реакции.

    Этим способом выполняется эффективное очищение от запахов и вредных соединений. Он довольно дорогой. Поэтому главная тенденция последних лет направлена на создание и развитие недорогих катализаторов, которые эффективно работают при любых температурах, в любых условиях, устойчивы к ядовитым соединениям, и, кроме этого, являются энергоэффективными, с минимальными затратами на их эксплуатацию. Использование катализаторов, в качестве очистителей, довольно широко применяется при очищении газов от оксидов азота.

    Абсорбционный метод

    Заключается в растворении в жидком растворителе газообразного компонента. Загрязнитель выделяют при помощи жидкости, которую используют один раз. Так получают минеральные кислоты, соли и другие вещества. Плазмохимический метод заключается в использовании в качестве очистителя высоковольтных разрядов, через которые пропускают загрязненную воздушную смесь. В качестве оборудования применяют электрофильтры.

    Адсорбционный метод

    Его можно назвать одним из самых распространенных, особенно на территории США. Очищение воздушного пространства от вредных примесей на основе адсорбции доказало свою эффективность в промышленной эксплуатации.

    Специальные системы, где основные адсорбенты это сорбенты, оксиды и активированные угли, позволяют не только очистить плохо пахнущие дымовые газы от запаха, но и в разы снижают содержание в них вредных веществ, а после этого выполняют каталитическое или термическое дожигание, чтобы добиться максимального результата. Особенно данный комплекс мер часто применяют в химической, фармацевтической или пищевой промышленности.

    Термический метод или термическое дожигание

    Из названия понятно, что очищение вредных выбросов заключается в их термическом окислении, при температуре от 750 до 1200 °C. Этим способом достигается 99% очистка газов. Из недостатков следует отметить ограниченность применения.

    Этот способ эффективный для очистки газов, содержащих твердые включения в виде: углерода, сажи, древесной пыли. Если в выбросах содержатся такие примеси, как сера, фосфор, галогены, то продукты горения при использовании термокаталитического метода по своей токсичности будут превосходить исходные.

    Плазмокаталитический

    Новый метод, объединяющий в себе методы очистки воздуха от вредных веществ: каталитический и плазмохимический. Эти мероприятия по очистке воздуха от вредных веществ хорошо изучены и широко применяются на практике, а данный метод, является новым и высокоэффективным. Происходит двухступенчатая очистка через реакторы:

    1. Плазмохимический реактор, в котором происходит озонирование.
    2. Каталитический реактор. На первом этапе вредные примеси проходят через высоковольтный разряд, где, взаимодействуя с продуктами электросинтеза, переходят в экологически безопасные соединения. На втором этапе происходит финишная очистка при помощи синтеза на молекулярный и атомарный кислород. Остатки вредных веществ окисляются кислородом.

    Недостатком этого метода является его дороговизна и обязательная предварительная очистка воздуха от пыли. В особенности, при ее большом содержании.

    Фотокаталитический

    Фотокаталитический метод очистки воздуха от вредных веществ также относится к современным, инновационным, которые применяются все чаще. Применяется аппарат для очистки воздуха на основе катализаторов из TiO2 (оксид титана), которые облучаются ультрафиолетом. Этот метод широко используется в бытовых очистительных приборах и является одним из самых эффективных путей очищения поступающего воздуха.

    Критерии выбора очистителей

    Очистка воздуха в помещении сегодня очень актуальна для многих людей, живущих в городе. Его качество оставляет желать лучшего, поэтому активное развитие получила не только промышленная очистка продуктов производства, но и бытовая очистка воздуха от запахов, вредных веществ, табака, пыли.

    Чтобы получить качественное и чистое воздушное пространство в помещении, необходимо оборудование с качественными и эффективными фильтрами.

    Используемые фильтры

    В основном, используют несколько видов фильтров:

    • угольные
    • водные
    • озонирующие
    • фотокаталитические
    • электростатические

    Каждый из видов имеет свои недостатки и преимущества. В Эффективных моделях очистителей всегда используют не один, а несколько разных средств очистки воздуха (многоступенчатая очистка). Вам могут предложить очистители воздуха с красивыми цветными дисплеями, лапочками, индикаторами, но на чистоту воздуха в помещении данные функции влияния не оказывают.

    Чтобы очистка воздуха действительно была эффективной, а деньги потрачены не зря, всегда выбирайте прибор для очистки воздуха с наличием нескольких видов очищающих компонентов. Чем больше их будет, тем лучше он будет выполнять свою функцию. С приборами многоступенчатой системой фильтрации, очень эффективным будет функция увлажнения воздуха. Это не только позволит сделать воздух свежее, но и позволит самому контролировать уровень влажности в помещении, позволит более эффективно справиться с очисткой воздуха от табачного дыма, устранить пыль, неприятные запахи.

    Широкое применение вместо аппаратов для очистки атмосферного воздуха получают климатические комплексы. Они являются многофункциональными приборами, объединяющими в себе три функции:

    • очищение
    • увлажнение
    • ионизацию

    Климатические комплексы имеют более высокую стоимость, нежели обычные очистители или ионизаторы, но качество очистки воздуха в помещении, котором установлен климатический комплекс, гораздо выше.

    Популярными производителями климатических комплексов, которые используются для промышленной очистки воздуха, а также для очистки воздуха в ресторанах, отелях, магазинах, офисах или квартирах, являются известные мировые бренды: Panasonic, Daikin, Midea, Boneco, IQAir, Euromate, Venta, Winia и другие.

    Перед покупкой воздухоочистителей и климатических комплексов внимательно ознакомьтесь с их характеристиками, производительностью и функциональностью.


    Все методы очистки делятся на регенеративные и деструктивные. Первые позволяют возвращать в производство компоненты выбросов, вторые трансформируют эти компоненты в менее вредные.

    Методы очистки газовых выбросов можно разделить по типу обрабатываемого компонента (очистка от аэрозолей – от пыли и тумана, очистка от кислых и нейтральных газов и так далее).

    · Электрические методы очистки.

    При этом способе очистки газовый поток направляется в электрофильтр, где проходит в пространстве между двумя электродами – коронирующим и осадительным. Частицы пыли заряжаются, движутся к осадительному электроду, разряжаются на нем. Таким методом можно очищать пыли с удельным сопротивлением от 100 до 100 млн. Ом*м. Пыли с меньшим удельным сопротивлением сразу же разряжаются и улетают, а с большим – образуют плотный изолирующий слой на осадительным электроде, резко уменьшая степень очистки. Методом электрической очистки можно удалять не только пыли, но и туманы. Очистка электрофильтров производится путем смыва пыли водой, вибрацией или с помощью ударно-молоткового механизма.

    · Различные мокрые методы.

    Использование пенных аппаратов, скрубберов.

    Для очистки от газов применяют следующие методы:

    · Адсорбция.

    То есть поглощение твёрдым веществом газового (в нашем случае) компонента. В качестве адсорбентов (поглотителей) применяют активные угли различных марок, цеолиты, силикагель и другие вещества. Адсорбция – надёжный способ, позволяющий достигать высоких степеней очистки; кроме того, это регенеративный метод, то есть уловленный ценный компонент можно вернуть обратно в производство. Применяется периодическая и непрерывная адсорбция. В первом случае по достижении полной адсорбционной емкости адсорбента газовый поток направляют в другой адсорбер, а адсорбент регенерируют – для этого используется отдувка острым паром или горячим газом. Затем ценный компонент можно получить из конденсата (если для регенерации использовался острый пар); для этой цели используется ректификация, экстракция или отстаивание (последнее возможно в случае взаимной нерастворимости воды и ценного компонента). При непрерывной адсорбции слой адсорбента постоянно перемещается: часть его работает на поглощение, часть – регенерируется. Это, конечно, способствует истиранию адсорбента. В случае достаточной стоимости регенерируемого компонента использование адсорбции может быть выгодным. Например, недавно (весной 2001 года) проведенный для одного из кабельных заводов расчёт участка рекуперации ксилола показал, что срок окупаемости составит менее года. При этом 600 т ксилола, которые ежегодно попадали в атмосферу, будут возвращены в производство.

    · Абсорбция.

    То есть поглощение газов жидкостью. Этот метод основан либо на процессе растворения газовых компонентов в жидкости (физическая адсорбция), либо на растворении вместе с химической реакцией – химическая адсорбция (например, поглощение кислого газа раствором с щелочной реакцией). Этот метод также является регенеративным, из полученного раствора можно выделить ценный компонент (при использовании химической адсорбции это не всегда возможно). В любом случае вода очищается и хотя бы частично возвращается в систему оборотного водоснабжения.

    · Термические методы.

    Являются деструктивными. При достаточной теплотворной способности выбросного газа его можно сжечь напрямую (все видели факелы, на которых горит попутный газ), можно применить каталитическое окисление, или (при малой теплотворной способности газа) использовать его в качестве дутьевого газа в печах. Получающиеся в результате термического разложения компоненты должны быть менее опасными для окружающей среды, чем исходный компонент (например, органические соединения можно окислить до углекислого газа и воды – если нет других элементов, кроме кислорода, углерода и водорода). Этот метод позволяет добиться высокой степени очистки, но может стоить дорого, особенно если используется дополнительное топливо.

    · Различные химические методы очистки.

    Как правило связанные с использованием катализаторов. Таковым, например, является каталитическое восстановление оксидов азота из выхлопных газов автотранспорта (в общем виде механизм этой реакции описывается схемой:

    C n H m + NO x + CO----->CO 2 + H 2 O +N 2 ,

    где в качестве катализатора kt используется платина, палладий, рутений или другие вещества). Методы могут требовать применения реагентов и дорогих катализаторов.

    · Биологическая очистка.

    Для разложения загрязняющих веществ используются специально подобранные культуры микроорганизмов. Метод отличается низкими затратами (реагентов используется мало и они дешевые, главное - микроорганизмы живые и размножаются сами, используя загрязнения как пищу), достаточно высокой степенью очистки, но в нашей стране, в отличие от Запада, широко распространения, к сожалению, пока не получил.

    · Аэроионы - мельчайшие жидкие или твердые частицы, заряженные положительно или отрицательно. Особенно благоприятно действие отрицательных (легких аэроионов). Их справедливо называют витаминами воздуха.

    Механизм действия отрицательных аэроионов на взвешенные в воздухе частицы состоит в следующем. Отрицательные аэроионы воздуха заряжают (или перезаряжают) пыль и микрофлору, находящиеся в воздухе, до определенного потенциала, пропорционально их радиусу. Заряженные пылевые частицы или микроорганизмы начинают двигаться вдоль силовых линий электрического поля по направлению к противоположно (положительно) заряженному полюсу, т.е. к земле, к стенам и потолку. Если выразить в длинах силы гравитации и силы электрические, действующие на тонкодисперсную пыль, то легко можно увидеть, что электрические силы превосходят силы гравитации в тысячи раз. Это дает возможность по желанию строго направлять движение облака тонкодисперсной пыли и очищать, таким образом воздух в данном месте. При отсутствии электрического поля и диффузном движении отрицательных аэроионов между каждым движущимся аэроионом и положительно заряженной землей (полом) возникают силовые линии, вдоль которых движется данный аэроион вместе с частичкой пыли или бактерией. Осевшие на поверхности пола, потолка и стен микроорганизмы могут периодически удаляться.

    Биоремедиация атмосферы

    Биоремедиация атмосферы – комплекс методов очистки атмосферы с помощью микроорганизмов.

    Цианобактерии:

    Исследователи из Школы инженерии и прикладных наук им. Генри Самуэли при Калифорнийском университете в Лос-Анджелесе генетически модифицировали цианобактерии (сине-зелёные водоросли), которые теперь способны поглощать CO2 и вырабатывать жидкое топливо изобутан, имеющий большой потенциал в качестве альтернативы бензину. Реакция происходит под действием солнечной энергии через фотосинтез. Новый метод имеет два преимущества. Во-первых, снижается объём парниковых газов из-за утилизации CO2. Во-вторых, получаемое жидкое горючее может быть использовано в нынешней энергетической инфраструктуре, в том числе в большинстве автомобилей. Используя цианобактерии Synechoccus elongatus , исследователи генетическим путём увеличили количество захватывающего углекислый газ фермента. Затем были внедрены гены от других микроорганизмов, позволившие поглощать CO2 и солнечный свет. В результате бактерии производят газ изобутеральдегид.

    Биофильтрация:

    Биофильтрация является наиболее выгодной с экономической точки зрения и наиболее отработанной технологией очистки отходящих газов. Она может быть успешно использована для защиты атмосферы на предприятиях пищевой, табачной, нефтеперерабатывающей промышленности, станциях очистки сточных вод, а также в сельском хозяйстве.

    Институт Биохимии им. А. Н. Баха РАН (ИНБИ) - лидер российского рынка в области биологических методов очистки промышленных вентвыбросов от паров летучих органических соединений (ЛОС). Оно разработало уникальную микробиологическую технологию БИОРЕАКТОР, которая выгодно отличается от существующих методов по своим техническим параметрам, капитальным и эксплуатационным затратам. Основой технологии БИОРЕАКТОР является консорциум природных иммобилизованных микроорганизмов, специально подобранных и адаптированных для высокоэффективной (80-99 %) деградации разнообразных ЛОС, например, ароматических углеводородов, карбонильных, С1-, хлорорганических и многих других соединений. БИОРЕАКТОР также эффективен для удаления неприятных запахов. Способ основан на микробиологической утилизации вредных органических веществ с образованием углекислого газа и воды специально подобранными нетоксичными штаммами микроорганизмами (деструкторами загрязнений), проверенными и зарегистрированными в установленном порядке. Способ реализуется в новой высокоэффективной биофильтрационной установке, обеспечивающей эффективную непрерывную очистку отработанных газовоздушных выбросов от различных органических загрязнений: фенол, ксилол, толуол, формальдегид, циклогексан, уайт-спирит, этилацетат, бензин, бутанол и др.

    В состав установки входят:

    Биоабсорбер, - вспомогательное оборудование-циркуляционный насос, клапан,

    Емкость (100л) для солевого раствора, КИП, теплообменник, хвостовой вентилятор.

    Установка в рабочем состоянии (с жидкостью) весит ок. 6,0 т, имеет габариты 4*3,5*3 м (в помещении) и установочную мощность 4 квт.

    Преимущества разработки. Биофильтрационная установка имеет следующие основные преимущества:

    Высокую эффективность очистки газо-воздушных выбросов (от 92 до 99%),

    Низкие эксплуатационные энергозатраты до 0,3КВт*ч/м 3 ,

    Высокую производительность по очищаемому газовому потоку (10- 20тыс./м 3 *ч),

    Низкое аэродинамическое сопротивление газовому потоку (100-200 Ра),

    Простое обслуживание, длительную, надежную и безопасную эксплуатацию.

    Научно-техническая разработка отработана в промышленном варианте.

    ·Биопрепараты МИКРОЗИМ(TM) ОДОР ТРИТ:

    Биологический препарат - нейтрализатор запахов, действующий по принципу нейтрализации летучих соединений. Биопрепарат представляет собой комплекс биологических экстрактов растительного происхождения, вступающих в биохимические реакции с летучими соединениями широкого спектра от химических: ацетона, фенолов, до органических: меркаптанов, сероводорода, аммиака, и в результате реакции уничтожающих летучие соединения и нейтрализующих запахи вызванные этими летучими соединениями. Биопрепарат не маскирует запах с помощью ароматизаторов или отдушек, но уничтожает запах путем естественной очистки воздуха от летучих соединений. Результатом действия препарата Одор Трит является приемлемый уровень запаха (интенсивностью 1-2 балла) без посторонних ароматов (ароматизаторов, отдушек).

    

    В настоящее время разработано и опробовано в промышленности большое количество различных методов очистки газов от технических загрязнений: NOx, SO2, H2S, NH3, оксида углерода, различных органических и неорганических веществ.

    Опишем эти основные методы и укажем их преимущества и недостатки.

    а) Абсорбционный метод.

    Абсорбция представляет собой процесс растворения газообразного компонента в жидком растворителе. Абсорбционные системы разделяют на водные и неводные. Во втором случае применяют обычно малолетучие органические жидкости. Жидкость используют для абсорбции только один раз или же проводят ее регенерацию, выделяя загрязнитель в чистом виде. Схемы с однократным использованием поглотителя применяют в тех случаях, когда абсорбция приводит непосредственно к получению готового продукта или полупродукта. В качестве примеров можно назвать:

      получение минеральных кислот (абсорбция SO3 в производстве серной кислоты, абсорбция

      оксидов азота в производстве азотной кислоты) ,

      получение солей (абсорбция оксидов азота щелочными растворами с получением нитрит-нитратных щелоков, абсорбция водными растворами извести или известняка с получением

      сульфата кальция),

      других веществ (абсорбция NH3 водой для получения аммиачной воды и др.).

    Схемы с многократным использованием поглотителя (циклические процессы) распространены шире. Их применяют для улавливания углеводородов, очистки от SO2 дымовых газов ТЭС, очистки вентгазов от сероводорода железно-содовым методом с получением элементарной серы, моноэтаноламиновой очистки газов от СО2 в азотной промышленности.

    В зависимости от способа создания поверхности соприкосновения фаз различают поверхностные, барботажные и распыливающие абсорбционные аппараты.

    В первой группе аппаратов поверхностью контакта между фазами является зеркало жидкости или поверхность текучей пленки жидкости. Сюда же относят насадочные абсорбенты, в которых жидкость стекает по поверхности загруженной в них насадки из тел различной формы. Во второй группе абсорбентов поверхность контакта увеличивается благодаря распределению потоков газа в жидкость в виде пузырьков и струй. Барботаж осуществляют путем пропускания газа через заполненный жидкостью аппарат либо в аппаратах колонного типа с тарелками различной формы.

    В третьей группе поверхность контакта создается путем распыления жидкости в массе газа. Поверхность контакта и эффективность процесса в целом определяется дисперсностью

    распыленной жидкости.

    Наибольшее распространение получили насадочные (поверхностные) и барботажные тарельчатые абсорберы.Для эффективного применения водных абсорбционных сред удаляемый компонент должен хорошо растворяться в абсорбционной среде и часто химически взаимодействовать с водой, как, например, при очистке газов от HCl, HF, NH3, NO2. Для абсорбции газов с меньшей растворимостью (SO2, Cl2, H2S) используют щелочные растворы на основе NaOH или Ca(OH)2. Добавки химических реагентов во многих случаях увеличивают эффективность абсорбции благодаря протеканию химических реакций в пленке. Для очистки газов от углеводородов этот метод на практике используют значительно реже, что обусловлено, прежде всего, высокой стоимостью абсорбентов. Общими недостатками абсорбционных методов является образование жидких стоков и громоздкость аппаратурного оформления.

    б) Адсорбционный метод.

    Адсорбционный метод являются одним из самых распространенных средств защиты воздушного бассейна от загрязнений. Только в США введены и успешно эксплуатируются десятки тысяч адсорбционных систем. Основными промышленными адсорбентами являются активированные угли, сложные оксиды и импрегнированные сорбенты. Активированный уголь (АУ) нейтрален по отношению к полярным и неполярным молекулам адсорбируемых соединений. Он менее селективен, чем многие другие сорбенты, и является одним из немногих, пригодных для работы во влажных газовых потоках. Активированный уголь используют, в частности, для очистки газов от дурно пахнущих веществ, рекуперации растворителей и т.д.

    Оксидные адсорбенты (ОА) обладают более высокой селективностью по отношению к полярным молекулам в силу собственного неоднородного распределения электрического потенциала. Их недостатком является снижение эффективности в присутствии влаги. К классу ОА относят силикагели, синтетические цеолиты, оксид алюминия.

    Можно выделить следующие основные способы осуществления процессов адсорбционной очистки:

      После адсорбции проводят десорбцию и извлекают уловленные компоненты для повторного использования. Таким способом улавливают различные растворители, сероуглерод в производстве искусственных волокон и ряд других примесей.

      После адсорбции примеси не утилизируют, а подвергают термическому или каталитическому дожиганию. Этот способ применяют для очистки отходящих газов химико-фармацевтических и лакокрасочных предприятий, пищевой промышленности и ряда других производств. Данная разновидность адсорбционной очистки экономически оправдана при низких концентрациях загрязняющих веществ и (или) многокомпонентных загрязнителей.

      После очистки адсорбент не регенерируют, а подвергают, например, захоронению или сжиганию вместе с прочно хемосорбированным загрязнителем. Этот способ пригоден при использовании дешевых адсорбентов.

    Для десорбции примесей используют нагревание адсорбента, вакуумирование, продувку инертным газом, вытеснение примесей более легко адсорбирующимся веществом, например, водяным паром. В последнее время особое внимание уделяют десорбции примесей путем вакуумирования, при этом их часто удается легко утилизировать.

    Для проведения процессов адсорбции разработана разнообразная аппаратура. Наиболее распространены адсорберы с неподвижным слоем гранулированного или сотового адсорбента. Непрерывность процессов адсорбции и регенерации адсорбента обеспечивается применением аппаратов с кипящим слоем.

    В последние годы все более широкое применение получают волокнистые сорбционно-активные материалы. Мало отличаясь от гранулированных адсорбентов по своим емкостным характеристикам, они значительно превосходят их по ряду других показателей. Например, их отличает более высокая химическая и термическая стойкость, однородность пористой структуры, значительный объем микропор и более высокий коэффициент массопередачи (в 10-100 раз больше, чем у сорбционных материалов). Установки, в которых используются волокнистые материалы, занимают значительно меньшую площадь. Масса адсорбента при использовании волокнистых материалов меньше, чем при использовании АУ в 15-100 раз, а масса аппарата в 10 раз. Сопротивление слоя не превышает при этом 100 Па.

    Повысить технико-экономические показатели существующих процессов удается также путем оптимальной организации стадии десорбции, например, за счет программированного подъема температуры.

    Следует отметить эффективность очистки на активированных углях сотовой (ячеистой) структуры, обладающих улучшенными гидравлическими характеристиками. Такие сорбенты могут быль получены нанесением определенных композиций с порошком АУ на вспененную синтетическую смолу или вспениванием смеси заданного состава, содержащей АУ, а также выжиганием наполнителя из смеси, включающей АУ вместе со связующим.

    Еще одним направлением усовершенствования адсорбционных методов очистки является разработка новых модификаций адсорбентов – силикагелей и цеолитов, обладающих повышенной термической и механической прочностью. Однако гидрофильность этих адсорбентов затрудняет их применение.

    Наибольшее распространение получили адсорбционные методы извлечения из отходящих газов растворителей, в том числе хлорорганических. Это связано с высокой эффективностью процесса очистки газов (95-99%), отсутствием химических реакций образования вторичных загрязнителей, быстрой окупаемостью рекуперационных установок (обычно 2-3 года) благодаря повторному использованию растворителей и длительным (до 10 лет) сроком службы АУ. Ведутся активные работы по адсорбционному извлечению из газов оксидов серы и азота.

    Адсорбционные методы являются одним из самых распространенных в промышленности способов очистки газов. Их применение позволяет вернуть в производство ряд ценных соединений. При концентрациях примесей в газах более 2-5 мг/ м куб. очистка оказывается даже рентабельной. Основной недостаток адсорбционного метода заключается в большой энергоемкости стадий десорбции и последующего разделения, что значительно осложняет его применение для многокомпонентных смесей.

    в) Термическое дожигание.

    Дожигание представляет собой метод обезвреживания газов путем термического окисления различных вредных веществ, главным образом органических, в практически безвредных или менее вредных, преимущественно СО2 и Н2О. Обычные температуры дожигания для большинства соединений лежат в интервале 750-1200 град.С. Применение термических методов дожигания позволяет достичь 99%-ной очистки газов.

    При рассмотрении возможности и целесообразности термического обезвреживания необходимо учитывать характер образующихся продуктов горения. Продукты сжигания газов, содержащих соединения серы, галогенов, фосфора, могут превосходить по токсичности исходный газовый выброс. В этом случае необходима дополнительная очистка. Термическое дожигание весьма эффективно при обезвреживании газов, содержащих токсичные веществав виде твердых включений органического происхождения (сажа, частицы углерода, древесная пыль и т.д.).

    Важнейшими факторами, определяющими целесообразность термического обезвреживания, являются затраты энергии (топлива) для обеспечения высоких температур в зоне реакции, калорийность обезвреживаемых примесей, возможность предварительного подогрева очищаемых газов. Повышение концентрации дожигаемых примесей ведет к значительному снижению расхода топлива. В отдельных случаях процесс может протекать в автотермическом режиме, т. е. рабочий режим поддерживается только за счет тепла реакции глубокого окисления вредных примесей и предварительного подогрева исходной смеси отходящими обезвреженными газами.

    Принципиальную трудность при использовании термического дожигания создает образование вторичных загрязнителей, таких как оксиды азота, хлор, SO2 и др.

    Термические методы широко применяются для очистки отходящих газов от токсичных горючих соединений. Разработанные в последние годы установки дожигания отличаются компактностью и низкими энергозатратами. Применение термических методов эффективно для дожигания пыли многокомпонентных и запыленных отходящих газов.

    г). Термокаталитические методы.

    Каталитические методы газоочистки отличаются универсальностью. С их помощью можно освобождать газы от оксидов серы и азота, различных органических соединений, монооксида углерода и других токсичных примесей. Каталитические методы позволяют преобразовывать вредные примеси в безвредные, менее вредные и даже полезные. Они дают возможность перерабатывать многокомпонентные газы с малыми начальными концентрациями вредных примесей, добиваться высоких степеней очистки, вести процесс непрерывно, избегать образования вторичных загрязнителей. Применение каталитических методов чаще всего ограничивается трудностью поиска и изготовления пригодных для длительной эксплуатации и достаточно дешевых катализаторов. Гетерогенно-каталитическое превращение газообразных примесей осуществляют в реакторе, загруженном твердым катализатором в виде пористых гранул, колец, шариков или блоков со структурой, близкой к сотовой. Химическое превращение происходит на развитой внутренней поверхности катализаторов, достигающей 1000 м кв. / г.

    В качестве эффективных катализаторов, находящих применение на практике, служат самые различные вещества – от минералов, которые используются почти без всякой предварительной обработки, и простых массивных металлов до сложных соединений заданного состава и строения. Обычно каталитическую активность проявляют твердые вещества с ионными или металлическими связями, обладающие сильными межатомными полями. Одно из основных требований, предъявляемых к катализатору - устойчивость его структуры в условиях реакции. Например, металлы не должны в процессе реакции превращаться в неактивные соединения.

    Современные катализаторы обезвреживания характеризуются высокой активностью и селективностью, механической прочностью и устойчивостью к действию ядов и температур. Промышленные катализаторы, изготавливаемые в виде колец и блоков сотовой структуры, обладают малым гидродинамическим сопротивлением и высокой внешней удельнойповерхностью.

    Наибольшее распространение получили каталитические методы обезвреживания отходящих газов в неподвижном слое катализатора. Можно выделить два принципиально различных метода осуществления процесса газоочистки - в стационарном и в искусственно создаваемом нестационарном режимах.

    1. Стационарный метод.

    Приемлемые для практики скорости химических реакций достигаются на большинстве дешевых промышленных катализаторов при температуре 200-600 град С. После предварительной очистки от пыли (до 20 мг/ м куб.) и различных каталитических ядов (As,Cl2 и др.) газы обычно имеют значительно более низкую температуру.

    Подогрев газов до необходимых температур можно осуществлять за счет ввода горячих дымовых газов или с помощью электроподогревателя. После прохождения слоя катализатора очищенные газы выбрасываются в атмосферу, что требует значительных энергозатрат. Добиться снижения энергозатрат можно, если тепло отходящих газов использовать для нагревания газов, поступающих в очистку. Для нагрева служат обычно рекуперативные трубчатые теплообменники.

    При определенных условиях, когда концентрация горючих примесей в отходящих газах превышает 4-5 г/м куб., осуществление процесса по схеме с теплообменником позволяет обойтись без дополнительных затрат.

    Такие аппараты могут эффективно работать только при постоянных концентрациях (расходах) или при использовании совершенных систем автоматического управления процессом.

    Эти трудности удается преодолеть, проводя газоочистку в нестационарном режиме.

    2. Нестационарный метод (реверс-процесс).

    Реверс-процесс предусматривает периодическое изменение направлений фильтрации газовой смеси в слое катализатора с помощью специальных клапанов. Процесс протекаетследующим образом. Слой катализатора предварительно нагревают до температуры, при которой каталитический процесс протекает с высокой скоростью. После этого в аппарат подают очищенный газ с низкой температурой, при которой скорость химического превращения пренебрежимо мала. От прямого контакта с твердым материалом газ нагревается, и в слое катализатора начинает с заметной скоростью идти каталитическая реакция. Слой твердого материала (катализатора), отдавая тепло газу, постепенно охлаждается до температуры, равной температуре газа на входе. Поскольку в ходе реакции выделяется тепло, температура в слое может превышать температуру начального разогрева. В реакторе формируется тепловая волна, которая перемещается в направлении фильтрации реакционной смеси, т.е. в направлении выхода из слоя. Периодическое переключение направления подачи газа на противоположное позволяет удержать тепловую волну в пределах слоя как угодно долго.

    Преимущество этого метода в устойчивости работы при колебаниях концентраций горючих смесей и отсутствие теплообменников.

    Основным направлением развития термокаталитических методов является создание дешевых катализаторов, эффективно работающих при низких температурах и устойчивых к различным ядам, а также разработка энергосберегающих технологических процессов с малыми капитальными затратами на оборудование. Наиболее массовое применение термокаталитические методы находят при очистке газов от оксидов азота, обезвреживании и утилизации разнообразных сернистых соединений, обезвреживания органических соединений и СО.

    Для концентраций ниже 1 г/м куб. и больших объемов очищаемых газов использование термокаталитического метода требует высоких энергозатрат, а также большого количества катализатора.

    д). Озонные методы.

    Озонные методы применяют для обезвреживания дымовых газов от SO2(NOx) и дезодорации газовых выбросов промышленных предприятий. Введение озона ускоряет реакции окисление NO до NO2 и SO2 до SO3 . После образования NO2 и SO3 в дымовые газы вводят аммиак и выделяют смесь образовавшихся комплексных удобрений (сульфата и нитрата аммония).Время контакта газа с озоном, необходимое для очистки от SO2 (80-90%) и NOx (70-80%)составляет 0,4 – 0,9 сек. Энергозатраты на очистку газов озонным методом оценивают в 4-4,5% от эквивалентной мощности энергоблока, что является, по-видимому, основной причиной, сдерживающей промышленное применение данного метода.

    Применение озона для дезодорации газовых выбросов основано на окислительном разложении дурно пахнущих веществ. В одной группе методов озон вводят непосредственно в очищаемые газы, в другой газы промывают предварительно озонированной водой. Применяют также последующее пропускание озонированного газа через слой активированного угля или подачуего на катализатор. При вводе озона и последующем пропускании газа через катализатор температура превращения таких веществ как амины, ацетальдегид, сероводород и др.понижается до 60-80 град.С. В качестве катализатора используют как Pt/Al2O3, так и оксиды меди, кобальта, железа на носителе. Основное применение озонные методы дезодорации находят при очистке газов, которые выделяются при переработке сырья животного происхождения на мясо- (жиро-)комбинатах и в быту.

    е). Биохимические методы.

    Биохимические методы очистки основаны на способности микроорганизмов разрушать и преобразовывать различные соединения. Разложение веществ происходит под действием ферментов, вырабатываемых микроорганизмами в среде очищаемых газов. При частом изменении состава газа микроорганизмы не успевают адаптироваться для выработки новых ферментов, и степень разрушения вредных примесей становится неполной. Поэтому биохимические системы более всего пригодны для очистки газов постоянного состава.

    Биохимическую газоочистку проводят либо в биофильтрах, либо в биоскрубберах. В биофильтрах очищаемый газ пропускают через слой насадки, орошаемый водой, которая создает влажность, достаточную для поддержания жизнедеятельности микроорганизмов. Поверхность насадки покрыта биологически активной биопленкой (БП) из микроорганизмов.

    Микроорганизмы БП в процессе своей жизнедеятельности поглощают и разрушают содержащиеся в газовой среде вещества, в результате чего происходит рост их массы. Эффективность очистки в значительной мере определяется массопереносом из газовой фазы в БП и равномерным распределением газа в слое насадки. Такого рода фильтры используют, например, для дезодорации воздуха. В этом случае очищаемый газовый поток фильтруется в условиях прямотока с орошаемой жидкостью, содержащей питательные вещества. После фильтра жидкость поступает в отстойники и далее вновь подается на орошение.

    В настоящее время биофильтры используют для очистки отходящих газов от аммиака, фенола, крезола, формальдегида, органических растворителей покрасочных и сушильных линий, сероводорода, метилмеркаптана и других сероорганических соединений.

    К недостаткам биохимических методов следует отнести, во-первых, низкую скорость биохимических реакций, что увеличивает габариты оборудования; во-вторых, специфичность (высокую избирательность) штаммов микроорганизмов, что затрудняет переработку многокомпонентных смесей; в-третьих, трудоемкость переработки смесей переменного состава.

    ж). Плазмохимические методы.

    Плазмохимический метод основан на пропускании через высоковольтный разряд воздушной смеси с вредными примесями. Используют, как правило, озонаторы на основе барьерных, коронных или скользящих разрядов, либо импульсные высокочастотные разряды на электрофильтрах. Проходящий низкотемпературную плазму воздух с примесями подвергается бомбардировке электронами и ионами. В результате в газовой среде образуется атомарный кислород, озон, гидроксильные группы, возбуждённые молекулы и атомы, которые и участвуют в плазмохимических реакциях с вредными примесями. Основные направления по применению данного метода идут по удалению SO2, NOx и органических соединений. Использование аммиака, при нейтрализации SO2 и NOx, дает на выходе после реактора порошкообразные удобрения (NH4)2SO4 и NH4NH3, которые фильтруются.

    Недостатком данного метода являются:

      недостаточно полное разложение вредных веществ до воды и углекислого газа, в случае окисления органических компонентов, при приемлемых энергиях разряда

      наличие остаточного озона, который необходимо разлагать термически либо каталитически

      существенная зависимость от концентрации пыли при использовании озонаторов с применением барьерного разряда.

    3) Плазмокаталитический метод

    Это довольно новый способ очистки, который использует два известных метода – плазмохимический и каталитический. Установки, работающие на основе этого метода, состоят из двух ступеней. Первая – это плазмохимический реактор (озонатор), вторая - каталитический реактор. Газообразные загрязнители, проходя зону высоковольтного разряда в газоразрядных ячейках и взаимодействуя с продуктами электросинтеза, разрушаются и переходят в безвредные соединения, вплоть до СО2 и Н2О. Глубина конверсии (очистки) зависит от величины удельной энергии, выделяющейся в зоне реакции. После плазмохимического реактора воздух подвергается финишной тонкой очистке в каталитическом реакторе. Синтезируемый в газовом разряде плазмохимического реактора озон попадает на катализатор, где сразу распадается на активный атомарный и молекулярный кислород. Остатки загрязняющих веществ (активные радикалы, возбужденные атомы и молекулы), не уничтоженные в плазмохимическом реакторе, разрушаются на катализаторе благодаря глубокому окислению кислородом.

    Преимуществом этого метода являются использование каталитических реакций при температурах, более низких (40-100 град. С), чем при термокаталитическом методе, что приводит к увеличению срока службы катализаторов, а также к меньшим энергозатратам (при концентрациях вредных веществ до 0,5 г/ м куб.).

    Недостатками данного метода являются:

      большая зависимость от концентрации пыли, необходимость предварительной очистки до концентрации 3-5 мг/м куб.,

      при больших концентрациях вредных веществ (свыше 1 г/м куб.) стоимость оборудования и эксплуатационные расходы превышают соответствующие затраты в сравнении с термокаталитическим методом

    и) Фотокаталитический метод.

    Сейчас широко изучается и развивается Фотокаталитический метод окисления органических соединений. В основном при этом используются катализаторы на основе ТiО2 , которые облучаются ультрафиолетом. Известны бытовые очистители воздуха японской фирмы «Daikin», использующие этот метод. Недостатком метода является засорение катализатора продуктами реакции. Для решения этой задачи используют введение в очищаемую смесь озона, однако данная технология применима для ограниченного состава органических соединений и при небольших концентрациях.